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Abstract. In this work, an efficient training algorithm for feedforward neural networks is presented. It is
based on a scaled version of the conjugate gradient method suggested by Perry, which employs the spectral
steplength of Barzilai and Borwein that contains second order information without estimating the Hessian
matrix. The learning rate is automatically adapted at each epoch, using the conjugate gradient values and
the learning rate of the previous one. In addition, a new acceptability criterion for the learning rate is
utilized based on non-monotone Wolfe conditions. The efficiency of the training algorithm is proved on
the standard tests, including XOR, 3-bit parity, font learning and function approximation problems.

1 INTRODUCTION

Several adaptive learning algorithms for feedforward neural networks have recently been discovered for
solving approximation, pattern recognition, classification and other well known problems. Many of these
algorithms are based on the gradient descent algorithm well known in optimization theory. They usually
have a poor convergence rate and depend on parameters which have to be specified by the user, because
no theoretical basis for choosing them exists. The values of these parameters are often crucial for the
success of the algorithm. One of these algorithms is the standard backpropagation (BP) [11]. Although
BP is the most common and widely used supervised training algorithm, nevertheless, because of the user
depended parameters, it is usually inefficient on large scale problems.

The neural network training can be formulated as a nonlinear unconstrained optimization problem.
So the training process can be realized by minimizing the error function E defined by

E =
1
2

P∑
p=1

NM∑
j=1

(
oM

j,p − tj,p
)2

=
P∑

p=1

Ep, E ∈ C2 (1)

where
(
oM

j,p − tj,p
)2 is the squared difference between the actual output value at the j-th output layer

neuron for pattern p and the target output value. The scalar p is an index over input-output pairs. The
general purpose of the training is to search an optimal set of connection weights in the manner that the
errors of the network output can be minimized.

The BP algorithm uses the steepest descent search direction [14] with a fixed step size α in order to
perform the minimization of the error function. The iterative form of this algorithm is

wk+1 = wk − αgk

where w denotes a column weight vector with components w1, w2, . . . , wn which is defined in the n–
dimensional real space Rn, and g the gradient vector of the error function E at w, that is g = ∇E(w).
E represents the batch error measure defined as the sum of squared differences error function over the
entire training set.
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The inefficiency of steepest descent is due to the fact that the minimization directions and step sizes
are chosen poorly; if the first step size does not lead directly to the minimum, steepest descent will zig-zag
with many smal steps.

The back propagation search direction d is usually augmented with a momentum term (Rumelhart
et. al., 1986):

dk+1 = −gk+1 + βk · (wk − wk−1)

This extra term is generally interpreted as to avoiding oscillations. It will be shown below that adding
the momentum term is wise when the values αk and βk are well chosen; one method which chooses these
parameters is known as conjugate gradient.

In this work we introduce and analyze a Nonmonotone Spectral Conjugate Gradient BackPropagation
(NSCGBP) method. The NSCGBP is based on a scaled version of the conjugate gradient method
suggested from Perry [8], [4], which employs the spectral steplength of Barzilai and Borwein [1], [5],
[6], that contains second order information without estimating the Hessian matrix. The learning rate is
automatically adapted at each epoch, using the conjugate gradient values and the learning rate of the
previous one [9]. In addition, NSCGBP is combined with a new acceptability criterion for the learning
rate, based on a generalization of the Wolfe’s rule ([2]).

The plan of this paper is as follows. In section 2 we present the proposed training algorithm. Section
3 contains our numerical examples and results. The final section contains a discussion of our results,
directions for further research and some concluding remarks.

2 THE PROPOSED METHOD

2.1 PERRY’S CONJUGATE GRADIENT METHOD

The training phase of a feedforward neural network is an unconstrained nonlinear optimization problem.
The goal of the training is to search an optimal set of connection weights in the manner that the errors
of the network output can be minimized. Besides the classical and well known steepest descent algorithm
[14], conjugate gradient algorithm is another search method that can be used to minimize network output
error in conjugate directions. One of the remarkable properties of the conjugate gradient method is its
ability to generate, in a very economical fashion, a set of vectors with a property known as conjugacy
[13].

The standard conjugate gradient method is to minimize the differentiable function (1) by generating
a sequence of approximation wk+1 iteratively according to

wk+1 = wk + αkdk (2)

The scalar αk is the steplength, known in neural network notation as learning rate. The steplength αk can
be determined by line search techniques in the way that E(wk + αkdk) is minimized along the direction
dk, given wk and dk fixed.

The standard conjugate gradient algorithm begins the minimization process with an initial estimate
w0 and an initial search direction

d0 = −∇E(w0) = −g0 (3)

Each direction dk+1 is chosen to be a linear combination of the steepest descent direction −gk+1 and
the previous direction dk. We write

dk+1 = −gk+1 + βkdk (4)

where the scalar βk is to be determined by the requirement that dk and dk+1 must fulfill the conjugacy
property. There are many formulae for the parameter βk. One of them is the formula introduced by
Perry [8] and is given

βk =
(yk − sk)T gk+1

sT
k yk

(5)

where

sk = wk+1 − wk and yk = gk+1 − gk (6)

Conjugate gradient method has a second order convergence property without complex calculation of
the Hessian matrix. A faster convergence established than first order steepest descent approach.
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2.2 THE BARZILAI AND BORWEIN STEPLENGTH

In optimization theory, the classical steepest descent algorithm for the unconstrained minimization of
E : Rn → R is given by

wk+1 = wk + ηkdk (7)

where dk = −gk = −∇E(wk) ∈ R is the steepest descent search direction and ηk = arg minη E(wk + ηdk)
is the steplength. This method has slow convergence and is badly affected by ill-conditioning, therefore
several choices of steplengths have been proposed.

An interesting new idea is the choices of steplength that are proposed and analyzed by Barzilai and
Borwein [1] for the steepest descent method for unconstrained optimization. Barzilai and Borwein seek
choices of ηk that give a superlinear rate of convergence, and that can be applied in practice without the
computation of second derivatives. They take the view that a steepest descent iteration is equivalent to
letting wk+1 minimize the quadratic model when the Hessian matrix Hk is a multiple of the unit matrix,
and they generate suitable multipliers for k ≥ 2 from the secant equation.

More specifically, Barzilai and Borwein [1] proposed two new step sizes for use in conjunction with
the negative gradient −gk. They studied the iteration wk+1 = wk−Skgk, where Sk has the form Sk = ηkI.
Firstly, ηk minimizes ||sk−1−ηyk−1||2, with sk−1 = wk−wk−1 and yk−1 = gk−gk−1. The motivation for
this choice is that it provides a two-point approximation to the secant equation underlying quasi-Newton
methods. This yields the iteration

wk+1 = wk − ηkgk (8)

where ηk is given by

ηk =
〈sk−1, yk−1〉
〈yk−1, yk−1〉

(9)

where 〈·, ·〉 denotes the standard inner product.
By symmetry, they minimize ||ηsk−1 − yk−1||2 with respect to η. The corresponding step size turns

out to be

ηk =
〈sk−1, sk−1〉
〈sk−1, yk−1〉

(10)

The step size ηk given by (10) is the inverse of the Rayleigh quotient

sT
k−1[

∫ 1

0

∇2E(wk + tsk−1)dt]sk−1/sT
k−1sk−1 (11)

which, of course, lies between the largest and the smallest eigenvalue of the Hessian average
∫ 1

0
∇2E(wk +

tsk−1)dt. This implies that the step size contains second order information without estimating the Hessian
matrix. The results shown that this choice of the step size is very efficient [1].

2.3 THE NSCGBP TRAINING METHOD

In this section we will introduce and analyze the nonmonotone spectral conjugate gradient training
method. As it is mentioned before, the problem we have to deal with is to minimize the error function
(1). Let the family of gradient training algorithms having the iterative form

wk+1 = wk + αkdk (12)

where wk is the current point, dk is the search direction and αk is the steplength.
In our method, by adopting the ideas from Birgin and Martinez in [4], the directions are generated

by

dk+1 = −ηkgk+1 + βksk (13)

for k = 0, 1, 2, . . ., where gk denotes ∇E(wk), w0 ∈ Rn is arbitrary and d0 = −g0.
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Suppose, for a moment, that E(w) ∈ C2 and H ≡ ∇2E(w) is positive definite. This implies that
yk 6= 0. Therefore, the true minimizer w∗ satisfies

w∗ = wk+1 + d∗

where

Hd∗ = −gk+1

Pre-multiplying by sT
k , this gives

sT
k Hd∗ = −sT

k gk+1

Therefore

yT
k d∗ = −sT

k gk+1

Thus the hyper-plane

Hk ≡ {d ∈ Rn|yT
k d = −sT

k gk+1}

contains the optimum increment d∗, which gives w∗ = wk+1 + d∗. Observe that the null direction d = 0
belongs to H only if sT

k gk+1 = 0 which is not our assumption at all.
By the discussion above, it is natural to impose, for the search direction dk+1,

dk+1 ∈ Hk (14)

Then, by (13), we have

βk =
(ηkyk − sk)T gk+1

sT
k yk

(15)

For ηk = 1 the above formula is reduced to the formula (5) introduced by Perry in [8].
In this paper, as Birgin and Martinez in [4], we decided to replace the classical choice ηk = 1 with

the spectral gradient choice

ηk =
〈sk, sk〉
〈sk, yk〉

(16)

which is the Barzilai and Borwein steplength that we discussed in section 2.2.
The learning rate αk is a modification of Shanno’s choice which has been used in CONMIN [9].

Therefore

αk =

{
1

||g0||2 , if k = 0;
αk−1||dk−1||2

||dk||2 , otherwise.
(17)

where dk is the conjugate gradient direction, dk−1 is the previous one, and αk−1 is the previous learning
rate. The initial learning rate α0 is 1/||g0||2 where g0 is the initial steepest descent direction.

As a learning rate acceptability criterion we will utilize the nonmonotone Wolfe criterion introduced
by Jiye Han, Jie Sun and Wenyu Sun in [2]. We suggest that the learning rate αk can be computed along
the search direction dk by a Wolfe nonmonotone line search, which does not enforce the common sense
requirement E(wk+1) < E(wk), but uses a learning rate acceptability criterion which is a generalization
of Wolfe’s rule. Specifically, we impose that the error function value E of each new epoch must satisfy the
Wolfe’s conditions with respect to the maximum error function value of a prefixed number M of previous
epochs. The nonmonotone Wolfe conditions is given by

E(wk + αkdk)− max
0≤j≤M

E(wk−j) ≤ c1αk∇E(wk)T dk (18)

∇E(wk + αkdk)T dk ≥ c2∇E(wk)T dk (19)

where 0 < c1 ≤ c2 < 1 and M is a non-negative integer.
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The first condition (18) allows any point to be accepted if it improves sufficiently the function value
compared with the largest of the M + 1 (or k if k ≤ M) most recent function values. The integer
M controls the amount of monotonicity that is allowed. The second condition (19) ensures that the
denominator of spectral gradient choice (16) is well defined and always positive, since it implies that
sT

k yk > 0. Both conditions allows an increase in the error function values without affecting the global
convergence properties as have been proved in [2].

At this point we will summarize the NSCGBP training algorithm.

Algorithm 2.1

1. Initialization:

1.1 Number of epochs k = 0.

1.2 Error goal:= eg.

1.3 Parameters M ≥ 1 and 0 < c1 ≤ c2 < 1.

1.4 Weight vector:=w0.

2. Calculate the gradient g0 = ∇E(w0). Calculate the learning rate α0 using the
relation (17). Compute the weight vector w1 according to relation (12) and set
k = k + 1.

3. Compute the Barzilai and Borwein spectral gradient choice ηk using the relation
(16). Check if 1/ηk < e or 1/ηk < 1/e. If the relations holds then accept ηk

else set ηk = 1.

4. Calculate βk by Perry’s formula given by the relation (15). Calculate the
new search direction d according to relation (13). If the condition dT gk+1 ≤
−10−3||d||2||gk+1||2 holds then set dk+1 = d, otherwise set dk+1 = −ηkgk+1.

5. Calculate the new learning rate αk according to relation (17)

6. Update the weight vector wk+1 according to relation (12). Calculate the gradient
gk+1 = ∇E(wk+1).

6.1 If the learning rate acceptability condition (nonmonotone
line search) (18) and (19) is fullfilled goto Step 7.

6.2 Set αk = αk/2 and goto Step 6.

7. Check if E(wk+1) > eg, set k=k+1 and goto Step 3. Otherwise, get the final
weight vector w∗ and the corresponding value of E.

Remark 2.1 Parameter e is the one that Raydan in [7] introduces in order to avoid having the spectral
gradient choice very large or too small.

Remark 2.2 The search direction computed in Step 4 according to relation (13) can fail to be a descent
direction. In our algorithm, when the angle between d and −gk+1 is not acute enough we ”restart” the
algorithm with the spectral gradient direction −ηkgk+1, in the same manner as in [4].

Remark 2.3 As we can see from the above algorithm, the method needs the same function and gradient
evaluations, because of the nonmonotone Wolfe conditions, in order to accept the learning rate. These
conditions as it is obvious from (18) and (19) need a function and a gradient evaluation.

3 NUMERICAL EXAMPLES

The nonmonotone spectral conjugate gradient backpropagation method (NSCGBP), as described in the
previous section, was tested in four problems in order to study and evaluate the performance. The
problems have been tested, are the eXclusive OR Problem, the 3-bit Parity Problem, the Font Learning
Problem and the Continuous Function Approximation Problem. On each problem, four algorithms have
been simulated. These algorithms are the standard backpropagation (BP), the momentum backpropa-
gation (MBP) [3], the adaptive backpropagation (ABP) [12] and the NSCGBP. For the simulations an
IBM PC compatible with Matlab Version 5.3 has been used. We have utilized Matlab Neural Network
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Toolbox Version 3.0 for the BP, MBP and ABP algorithms. For the heuristic parameters of the previous
three algorithms, Toolbox default values are used, unless stated otherwise. The NSCGBP algorithm has
been implemented in Matlab environment and the values of parameters M , c1, c2 and e have been fixed
to 10, 10−4, 0.5 and 10−3, respectively. At the start of each simulation, the weights of the network have
been initialized by the Nguyen - Widrow method [10]. Each algorithm has been tested for the same initial
weights. During training of the network, each time step is called an epoch and is defined to be a single
sweep through all training patterns. At the end of each epoch, the weights of the network have been
updated.

The results of all four algorithms will be presented. For each problem, we present a table which
summarizes the performance of the algorithms for simulations that have reached solution. The resulted
parameters are: min the minimum number, max the maximum number, mean the mean value, s.d. the
standard deviation of function and gradient evaluations and succ. the simulations succeeded out of 1000
simulations. As it is already known, each algorithm, including the NSCGBP, has the same number of
function and gradient evaluations. If an algorithm fails to converge, it is considered that it fails to train
the FNN, but its epochs, function and gradient evaluations are not included in the statistical analysis of
the algorithms. This fact clearly favors BP, MBP and ABP that require too many epochs to complete
the task and/or often fail to converge.

3.1 THE EXCLUSIVE - OR PROBLEM

The first problem we have been encountered is the eXclusive - OR (XOR) Boolean function problem,
which is considered as a classical problem for the FNN training. The XOR function maps two binary
inputs to a single binary output. As it is well known this function is not linearly separable.

Algorithm min max mean s.d. succ.
BP 31 975 103.53 132.05 69.9%
MBP 24 922 125.59 156.94 73.9%
ABP 19 865 49.11 74.34 69.6%
NSCGBP 29 998 145.27 185.40 84.6%

Table 1: The XOR Problem

The selected architecture of the FNN is 2-2-1 (six weights and three biases) with logistic neurons
with biases in the hidden layer and with a linear output neuron with bias. The error goal has been set to
0.01 and the maximum epochs to 1000. For the BP and MBP algorithms the learning rate is chosen to
be 0.1 instead of the default value 0.01 to accelerate their convergence, since they converge slowly with
the default value in this problem. The results of the simulations are presented in Table 1.

3.2 THE 3-BIT PARITY PROBLEM

In this simulation we have been considered the 3-bit parity problem, which can be considered as the
3-bit version of the XOR problem. This problem maps three binary inputs to a single binary output.
The target of the output is 1, if the number of 1 bits in the input is odd, and 0 otherwise. The selected
architecture of the FNN is 3-2-1 (eight weights and three biases) with logistic neurons with biases in the
hidden layer and with a linear output neuron with bias. The error goal has been set to 0.01 and the
maximum epochs to 1000. For the BP and MBP algorithms the learning rate is chosen to be 0.1 instead
of the default value 0.01 to accelerate their convergence, since they converge slowly with the default value
in this problem. The results of the simulations are presented in Table 2.

Algorithm min max mean s.d. succ.
BP - - - - 0.0%
MBP 174 991 487.94 205.01 56.2%
ABP 435 972 563.46 113.56 48.4%
NSCGBP 161 994 424.07 171.64 75.6%

Table 2: The 3-bit Parity Problem
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3.3 THE FONT LEARNING PROBLEM

The third test problem we have been encountered is the font learning problem. We present to the network
26 matrices with the capital letters of the English alphabet. Each letter has been defined in terms of
binary values on a grid of size 5× 7. The selected architecture of the FNN is 35-30-26 (1830 weights and
56 biases) with logistic neurons with biases in the hidden layer and with a linear output neuron with bias.

Algorithm min max mean s.d. succ.
BP 1070 1992 1550.8 184.76 75.1%
MBP 1226 1801 1521 156.27 4.2%
ABP 1285 1998 1785.6 160.73 36.2%
NSCGBP 325 1250 713.32 131.09 100.0%

Table 3: The Font Learning Problem

Also, in order to improve the performance of the methods with fixed learning rate (i.e. BP and
MBP), the weights have been initialized following the Nguyen - Widrow method, as we have stated
in the beginning of this section, but afterwards the weights and biases of the output layer have been
multiplied by 0.01. The error goal has been set to 0.1 and the maximum epochs to 2000. The results of
the simulations are presented in Table 3.

3.4 THE CONTINUOUS FUNCTION APPROXIMATION PROBLEM

The last problem we have been considered is the approximation of the continuous transcendental function
F (x) = sin(x) cos(x). This problem maps one real input to a single real output. The input values are
20 equally spaced points xi ∈ [0, 2π] and the target values are the mapping of these points from function
F (x). As it is cleared, we have 20 patterns and each pattern is consisted of one input x ∈ [0, 2π] and one
target value F (x).

Algorithm min max mean s.d. succ.
BP 366 984 793.01 157.11 7.7%
MBP 349 994 791.65 162.28 7.8%
ABP 125 999 619.27 217.87 32.5%
NSCGBP 130 999 487.78 193.38 69.8%

Table 4: The Cont. Function Approx. Problem

The selected architecture of the FNN is 1-10-1 (twenty weights and eleven biases) with logistic
neurons with biases in the hidden layer and with a linear output neuron with bias. The error goal has
been set to 0.1 and the maximum epochs to 1000. The results of the simulations are presented in Table 4.

4 CONCLUSIONS

In this paper, a new training method is introduced for fast supervised learning. It is shown that this
method is very promising with several advantages. Our experimental results shown that the NSCGBP
method clearly outperforms the classical training algorithms (BP, MBP and ABP). It has improved the
average number of function and gradient evaluations, and better convergence rates have established. Also,
it is observed an increment in the convergence speed.

Further work must be done in order to evaluate the generalization of the method. Moreover, it would
be interesting to replace the learning rate adaption with more sophisticated learning rate adaptions. On
the other hand, we can substitute Perry’s formula with other well known formulae as Fletcer-Reeves and
Polac-Ribiére, in order to test how the NSCGBP will perform.
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