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1 Department of Mathematics, University of Patras, Patras, Greece
E-mail: pkarazer@math.upatras.gr
2 Department of Mathematics, University of Patras, Patras, Greece
E-mail: matzaris@master.math.upatras.gr
3 Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
E-mail: velebil@math.feld.cvut.cz

Received 29 May 2009; Revised 19 May 2011

We propose a construction of the final coalgebra for a finitary endofunctor of a finitely

accessible category and study conditions under which this construction is available. Our

conditions always apply when the accessible category is cocomplete, hence is a locally

finitely presentable (l.f.p.) category. Thus we give an explicit and uniform construction of

the final coalgebra in this case. On the other hand, there are interesting examples of final

coalgebras beyond the realm of l.f.p. categories to which our results apply. In particular

we construct the final coalgebra for every finitary endofunctor on the category of linear

orders and we analyze Freyd’s coalgebraic characterization of the closed unit as an

instance of this construction. We use and extend results of Tom Leinster, developed for

his study of self-similar objects in topology, relying heavily on his formalism of modules

(corresponding to endofunctors) and complexes for a module.

1. Introduction

Coalgebras for an endofunctor (of, say, the category of sets) are well-known to describe
systems of formal recursive equations. Such a system of equations then specifies a po-
tentially infinite “computation” and one is naturally interested in giving (uninterpreted)
semantics to such a computation. In fact, such semantics can be given by means of a
coalgebra again: this time by the final coalgebra for the given endofunctor.

Let us give a simple example of that.

Example 1.1. Suppose that we fix a set A and we want to consider the set Aω of
infinite sequences of elements of A, called streams. Moreover, we want to define a function
zip : Aω ×Aω −→ Aω that “zips up” two streams, i.e., the equality

zip
(
(a0, a1, a2, . . .), (b0, b1, b2, . . .)

)
= (a0, b0, a1, b1, a2, b2, . . .)
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support of the Carathéodory Basic Research Grant of the University of Patras.
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holds.
One possible way of working with infinite expressions like streams is to introduce an

additional approximation structure on the set of infinite expressions and to speak of an
infinite expression as of a “limit” of its finite approximations, either in the sense of a
complete partial order or of a complete metric space, see (Goguen, Thatcher, Wagner
and Wright (1977)) and (America and Rutten (1989)), respectively. Such an approach
may get rather technical and the additional approximation structure may seem rather
arbitrary.

In fact, using the ideas of Calvin Elgot and his collaborators, see (Elgot (1975)) and (El-
got, Bloom and Tindell (1978)), combined with a coalgebraic approach to systems of
recursive equations (Rutten (2000)) and (Aczel, Adámek, Milius and Velebil (2003)), one
may drop the additional structure altogether and define solutions by corecursion, i.e., by
means of a final coalgebra.

Clearly, the above zipping function can be specified by a system of recursive equations

zip(a, b) = (head(a), zip(b, tail(a))) (1.1)

one equation for each pair a, b of streams, where we have used the functions
head(a0, a1, a2, . . .) = a0 and tail(a0, a1, a2, . . .) = (a1, a2, . . .).

In fact, the above system (1.1) of recursive equations can be encoded as a map

e : Aω ×Aω −→ A×Aω ×Aω, (a, b) 7→ (head(a), b, tail(a)) (1.2)

This means that we rewrote the system (1.1) as a coalgebra and we will show now that a
final coalgebra gives its unique solution, namely the function zip. To this end, we define
first an endofunctor Φ of the category of sets by the assignment

X 7→ A×X

A coalgebra for Φ (with an underlying set X) is then any mapping e : X −→ ΦX, i.e., a
mapping of the form

e : X −→ A×X

Suppose that a final coalgebra

τ : TA −→ A× TA

for Φ exists. Its finality means that for any coalgebra c : Z −→ A × Z there exists a
unique mapping c† : Z −→ TA such that the square

Z
c //

c†

��

A× Z

A×c†

��

TA τ
// A× TA

(1.3)

commutes. Moreover, it is well-known that the mapping τ must be a bijection due to
finality. Luckily, in our case the final coalgebra is well-known to exist and has the following
description: TA is the set of all streams Aω and the mapping τ sends a ∈ Aω to the pair
(head(a), tail(a)).
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If we instantiate the coalgebra e from (1.2) for c in the above square and if we chase
the elements of Aω × Aω around it, we see that the uniquely determined function e† :
Aω ×Aω −→ Aω satisfies the recursive equation (1.1).

The reason for the existence of a final coalgebra for Φ is that both the category of
sets and the endofunctor Φ are “good enough”: the category of sets is locally finitely
presentable and the functor is finitary (we explain what that means in more detail below).

However, it is not the case that a final coalgebra exists for every “good enough” functor:
for example the identity endofunctor of the category of sets and injections does not have a
final coalgebra for cardinality reasons. Yet there are examples of interesting endofunctors
of “less good” categories that still have a final coalgebra, see, e.g., Example 4.1 below.

On the other hand the need to look for final coalgebras in environments different that
of Set and all functions as arrows is indisputable: In the above example choosing A = N,
one obtains NN as the final coalgebra and that is well known to be isomorphic (in Set) to
the continuum. As (Pavlović and Pratt (2002)) argue though, it is not possible to reveal
the order of the continuum out of this characterization of the underlying set as a final
coalgebra. In order to achieve that, one has to introduce structure on Set, for example by
working in the category Pos, the category of partially ordered sets and order-preserving
maps.

Structured (possibly many-sorted) sets satisfying properties that are expressed syn-
tactically by sentences of a certain reasonable complexity (and homomorphisms between
them) are organized in locally finitely presentable categories (l.f.p). This appears to many
people to be the right level of generality for discussing (final) coalgebras. See (Adámek
(2003)), (Klin (2007)), (Breugel, Hermida, Makkai and Worrell (2007)), (Worrell (2005)).
It is well known that final coalgebras exist for accessible endofunctors (= determined by
small pieces of data) on locally presentable categories. This is due to the fact that cate-
gories of coalgebras are a certain kind of 2-categorical limit, and the category of locally
presentable categories with accessible functors as 1-morphisms are closed under such lim-
its (this is essentially due to (Makkai and Paré (1989)), but see also (Breugel, Hermida,
Makkai and Worrell (2007))). On the other hand there is no hitherto known construction
that applies to all locally (finitely) presentable categories and (finitely) accessible endo-
functors. Such constructions are known for the category of sets and finitary endofunctors
((Worrell (2005))) but the attempts to extend these constructions to locally finitely pre-
sentable categories had only partial success ((Adámek (2003))). We supply here such a
construction. The important thing, however, is that our uniform description of final coal-
gebras will be very reminiscent of streams: the coalgebra structure of a final coalgebra is
always given by analogues of head and tail mappings from the previous example.

Dealing with l.f.p categories may itself not be sufficient. Many structures that enjoy
properties of bigger syntactical complexity (e.g fields, linear orders, orders with specified
endpoints) are organized in (what is more general than l.f.p) finitely accessible categories.
We give here conditions that ensure the existence of final coalgebras in this wider context.
One may object here the possible utility of such an endeavor: rather than studying
the final coalgebra in an environment of structured sets with rich properties (e.g linear
orders), specify the final coalgebra in an environment of structured sets with less rich
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properties (e.g posets) and verify that the particular object has the richer properties (is
linearly ordered). This objection would be completely justified if we knew in advance
the object and tried to describe it as a final coalgebra (as it is the case when trying to
describe the continuum, the Cantor set or the Baire space as a final coalgebra (Pavlović
and Pratt (2002))). But for a general accessible endofunctor, say on an l.f.p category,
identifying the final coalgebra as a known object (notwithstanding the fact that we supply
a construction of it), may involve some guessing. In contrast, the proposed sufficient
conditions may be easy to verify. For example we show that every finitary endofunctor
on the category of linear orders and order-preserving maps admits a final coalgebra (see
Corollary 5.17). Furthermore, Freyd’s characterization of the closed unit interval as a
final coalgebra ((Freyd (1999)), (Freyd (2008))) shows that the interesting contexts to
discuss final coalgebras go beyond the l.f.p case.

The organization of the paper

In this work we will make advantage of the fact that finitary endofunctors of finitely
accessible categories can be fully reconstructed from essentially small data. In fact, fini-
tary endofunctors can be replaced by flat modules on the small categories of finitely
presentable objects. Such pairs

(small category, flat module)

fully encode the pattern of the recursive process in question.
We recall the concepts of finitary functors and finitely accessible categories and the

process of passing from endofunctors to modules in Section 2.
In Section 3 we indicate how complexes emerge when one tries to prove a fixed point

lemma for finitary endofunctors on l.f.p categories, imitating the proof of the classical
Knaster-Tarski lemma. We introduce there the main tool of the paper — the category
of complexes for a (flat) module. The category of complexes will then allow us to give
a concrete description of final coalgebras. Furthermore, we formulate a condition on the
category of complexes that ensures that a final coalgebra for the module in question exists,
see Theorem 3.10 below. As a byproduct we obtain, in Corollary 3.12, a new proof of the
well-known fact that every finitary endofunctor of a locally finitely presentable category
has a final coalgebra. Moreover, we prove that the elements of the final coalgebra are
essentially the complexes.

In Section 4 we discuss endofunctors on the category of partially ordered sets with
distinct endpoints. This category is finitely accessible but not l.f.p. We explain how our
conditions are applied to guarantee that the final coalgebra exists for large classes of
endofunctors on this category (and possibly similar ones). Freyd, in characterizing the
closed unit interval as a final coalgebra, works exactly in this category. We show how our
description of the final coalgebra yields the closed unit interval in this case. Finally, and
in the same vein, we indicate how our construction guarantees the existence of cofree
coalgebras for every finitary endofunctor on such a category.

Although the results of Section 3 give a concrete desription of the final coalgebra in
the more general framework of finitely accessible categories, the condition (given there)
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which ensures that the underlying object of the final coalgebra lives in the category, is
rather hard to verify. We devote Section 5 to a certain weakening of this condition. The
weaker condition on the category of complexes of the module yields a final coalgebra
as well but the module has to satisfy a certain side condition of finiteness flavor. We
also elaborate on that finiteness condition so that, as said above, we can verify that it is
satisfied by all finitary endofunctors on linear orders.

In some cases, one can prove that the conditions we give are necessary and sufficient
for the existence of a final coalgebra. We devote Section 6 to finding conditions on the
endofunctor that ensure the existence of such a characterization. The necessity of our
conditions applies to endofunctors that are pointed, i.e they admit a natural transforma-
tion from the identity functor. Endofunctors that arise as composites of adjoints form
examples.

Related work

This work is very much influenced by the work of Tom Leinster, (Leinster (2011)) on
self-similarity in topology, as it builds on his ideas of a complex for a module.

In fact, Leinster works with categories that are “accessible” for the notion of com-
ponentwise filtered, i.e with categories of functors that satisfy the flatness conditions of
Section 2 only with respect to finite connected diagrams. Our contribution in Section 3
lies in the fact that we show that his methods can be applied as to cover the case of
general flat functors. Put differently, but in a technically equivalent manner, Leinster
works with flat functors on categories that arise as cocompletions of small categories
under coproducts. Extending his methods to the study of flat functors on all small cat-
egories allows us to account for finitary functors on l.f.p categories. Thus his method of
construction of the final coalgebra turns out to yield a general method for describing final
coalgebras for finitary functors on l.f.p categories. A modified notion of complex is used
in (Karazeris, Matzaris and Velebil) (work in progress) for constructing cofree coalgebras
for finitary endofunctors on finitely accessible categories.

Leinster provides, in his framework, sufficient weak conditions for the existence of the
final coalgebra. They involve a finiteness condition as well. His finiteness condition is too
restrictive in our framework. Our Section 5 gives a different perspective than his and
involves different methods.

Other descriptions of final coalgebras, that work in more restrictive frameworks, follow
from the analysis of the final coalgebra sequence, see (Adámek (2003)), (Worrell (2005)).
We indicate how our construction relates to that.

Acknowledgements
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drafts of this paper.
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2. Preliminaries

In this preliminary section we introduce the notation and terminology that we will use in
the rest of the paper. Most of it is fairly standard, we refer to books (Adámek and Rosický
(1994)) and (Borceux (1994)) for the material concerning finitely accessible categories
and finitary functors.

Coalgebras and final coalgebras

We give a precise definition of (final) coalgebras, see, e.g., (Rutten (2000)) for motivation
and examples of various coalgebras in the category of sets.

Definition 2.1. Suppose Φ : K −→ K is any functor.

(1) A coalgebra for Φ is a morphism e : X −→ Φ(X).
(2) A homomorphism of coalgebras from e : X −→ Φ(X) to e′ : X ′ −→ Φ(X ′) is a

morphism h : X −→ X ′ making the following square

X
e //

h

��

Φ(X)

Φ(h)

��

X ′
e′

// Φ(X ′)

commutative.
(3) A coalgebra τ : T −→ Φ(T ) is called final , if it is a terminal object of the category

of coalgebras, i.e., if for every coalgebra e : X −→ Φ(X) there is a unique morphism
e† : X −→ T such that the square

X
e //

e†

��

Φ(X)

Φ(e†)

��

T τ
// Φ(T )

commutes.

Finitely accessible and locally finitely presentable categories

Finitely accessible and locally finitely presentable categories are those where every object
can be reconstructed knowing its “finite parts”. This property has, for example, the
category Set of sets and mappings, where a set P is recognized as finite exactly when its
hom-functor Set(P,−) : Set −→ Set preserves colimits of a certain class — the so-called
filtered colimits.

A colimit of a general diagram D : D −→ K is called filtered , provided that its
scheme-category D is filtered. A category D is called filtered provided that every finite
subcategory of D admits a cocone. In more elementary terms, filteredness of D can be
expressed equivalently by the following three properties:

(1) The category D is nonempty.
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(2) Each pair d1, d2 of objects of D has an “upper bound”, i.e., there exists a cocone

d1
))
d

d2

55

in D .
(3) Each parallel pair of morphisms in D can be “coequalized”, i.e., for each parallel pair

d1
//
// d2

of morphisms in D there is a completion to a commutative diagram of the form

d1
//
// d2

// d

in D .

A category is D called cofiltered provided that the dual category Dop is filtered.
An object P of a category K is called finitely presentable if the hom-functor K (P,−) :

K −→ Set preserves filtered colimits.

Definition 2.2. A category K is called finitely accessible if it has filtered colimits and if
it contains a small subcategory consisting of finitely presentable objects such that every
object of K is a filtered colimit of these finitely presentable objects.

A cocomplete finitely accessible category is called locally finitely presentable.

Remark 2.3. Locally finitely presentable categories were introduced by Peter Gabriel
and Friedrich Ulmer (Gabriel and Ulmer (1971)), finitely accessible categories were in-
troduced by Christian Lair (Lair (1981)) under the name sketchable categories. Tight
connections of these concepts to (infinitary) logic can be found in the book (Makkai and
Paré (1989)), the book (Adámek and Rosický (1994)) deals with the connection of these
concepts to categories of structures.

Example 2.4.

(1) The category Set of sets and mappings is locally finitely presentable. The finitely
presentable objects are exactly the finite sets.

(2) Every variety of finitary algebras is a locally finitely presentable category. The finitely
presentable objects are exactly the algebras that are presented by finitely many gen-
erators and finitely many equations in the sense of universal algebra.

(3) The category Inj having sets as objects and injective maps as morphisms is a finitely
accessible category that is not locally finitely presentable. The finitely presentable
objects are exactly the finite sets.

(4) Denote by Field the category of fields and field homomorphisms. Then Field is a finitely
accessible category that is not locally finitely presentable.

(5) The category Lin of linear orders and monotone maps is finitely accessible but not
locally finitely presentable. The finitely presentable objects are exactly the finite or-
dinals.

(6) Let Pos0,1 denote the following category:

(a) Objects are posets having distinct top and bottom elements.
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(b) Morphisms are monotone maps preserving top and bottom elements.

Then Pos0,1 is a Scott complete category in the sense of Jǐŕı Adámek (Adámek (1997)):
it is finitely accessible and every small diagram in Pos0,1 that has a cocone, has a
colimit.
Scott complete categories are therefore “not far away” from being cocomplete and
thus locally finitely presentable.
However, Pos0,1 is not locally finitely presentable since it lacks a terminal object.
Finitely presentable objects in Pos0,1 are exactly the finite posets having distinct
bottom and top elements.

(7) The category of topological spaces and continuous maps is not finitely accessible.
Although this category has filtered (in fact, all) colimits, the only finitely presentable
objects are finite discrete topological spaces and these do not suffice for reconstruction
of a general topological space.

Of course, more examples of “everyday-life” finitely accessible categories can be found in
the literature, see, e.g., papers (Diers (1980)) and (Diers (1980)) by Yves Diers.

Flat functors

Every finitely accessible category K is equivalent to a category of the form

Flat(A ,Set)

(where A is a small category) that consists of all flat functors X : A −→ Set and all
natural transformations between them.

A functor X : A −→ Set is called flat if its category of elements elts(X) is cofiltered.
The category elts(X) has pairs (x, a) with x ∈ Xa as objects and as morphisms from
(x, a) to (x′, a′) those morphisms f : a −→ a′ in A with the property that Xf(x) = x′.

Flat functors X can be characterized by any of the following equivalent conditions:

(1) The functor X : A −→ Set is a filtered colimit of representable functors.
(2) The left Kan extension LanY X : [A op ,Set] −→ Set of X : A −→ Set along the

Yoneda embedding Y : A −→ [A op ,Set] preserves finite limits.

In case when K is locally finitely presentable one can prove that K is equivalent to
the category

Lex(A ,Set)

of all finite-limits-preserving functors on a small finitely complete category A . In fact,
the flat functors are exactly the finite-limits-preserving ones in this case.

Example 2.5. In this example we show how to express Set as a category of flat functors.
Denote by E : Setfp −→ Set the full dense inclusion of an essentially small category of
finite sets. In fact, in this example, we choose as a representative set of finitely presentable
objects the set of finite ordinals.

The correspondence

X 7→ Set(E−, X)
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then provides us with an equivalence

Set ' Flat(Setopfp ,Set) = Lex(Setopfp ,Set)

of categories. The slogan behind this correspondence is the following one:

Instead of describing a set X by means of its elements x ∈ X (as we do in Set), we
describe a set by “generalized elements” of the form n −→ X, where n is a finite
ordinal.

Thus, a set X now “varies in time”: the hom-set Set(n, X) is the “value” of X at “time”
n.

Remark 2.6. The above example is an instance of a general fact: every finitely accessible
category K is equivalent to Flat(K op

fp ,Set), where E : Kfp −→ K denotes the full
inclusion of the essentially small subcategory consisting of finitely presentable objects.

The equivalence works as follows: the flat functor X : K op
fp −→ Set is sent to the

object

X ? E

which is a colimit of E weighted by X. Such a colimit is defined as an object X ? E

together with an isomorphism

K (X ? E, Z) ∼= [K op
fp ,Set](X, K (E−, Z))

natural in Z. The above colimit can be considered to be an “ordinary” colimit of the
diagram of elements of X:

x ∈ Xa 7→ Ea

This explains the weight terminology: every Ea is going to be counted “Xa-many times”
in the colimit X ? E. See (Borceux (1994)) for more details.

Flat modules

On finitely accessible categories there is class of functors that can be fully reconstructed
by knowing their values on “finite parts”. An example is the finite-powerset endofunctor

Pfin : X 7→ {S | S ⊆ X, S is finite }

of the category of sets. Such endofunctors can be characterized as exactly those preserving
filtered colimits.

Definition 2.7. A functor Φ : K −→ L between finitely accessible categories is called
finitary if it preserves filtered colimits.

By the above considerations, every finitary endofunctor Φ : K −→ K of a finitely
accessible category K can be considered, to within equivalence, as a finitary endofunctor

Φ : Flat(A ,Set) −→ Flat(A ,Set)

Since the full embedding A op −→ Flat(A ,Set) exhibits Flat(A ,Set) as a free cocomple-
tion of A op w.r.t. filtered colimits (also denoted as Ind(A ), the “inductive” cocomple-
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tion), we can then reconstruct Φ from a mere functor

MΦ : A op −→ Flat(A ,Set)

(no preservation properties) by means of filtered colimits.
The latter functor can be identified with a functor of the form MΦ : A op ×A −→ Set

with the property that every MΦ(a,−) : A −→ Set is flat. Such functors of two variables
(without the extra flatness property) are commonly called modules. We will give the
extra property a name.

Definition 2.8. A module M : A � // B from a small category A to a small category
B is a functor M : A op × B −→ Set. Given two such modules, M and N , a module
morphism M −→ N is a natural transformation between the respective functors.

A module M as above is called flat if every partial functor M(a,−) : B −→ Set is a
flat functor in the usual sense.

Remark 2.9. The above module terminology makes perfect sense if we denote an ele-
ment m ∈ M(a, b) by an arrow

a �
m //b

and think of it as of a “vector” on which the categories A and B can act by means of
their morphisms (“scalars”):

(1) Given f : a′ −→ a in A , then

a′
f

//a �
m //b

denotes the element M(f, b)(m) ∈ M(a′, b).
Had we denoted such an action by m@f , then it is obvious that equations m@(f ·f ′) =
(m@f)@f ′ and m@1a = m hold — something that we know from classical module
theory.

(2) Given g : b −→ b′ in B, then

a �
m //b

g
//b′

denotes the element M(a, g)(m) ∈ M(a, b′).
(3) Functoriality of M gives an unambiguous meaning to diagrams of the form

a′
f

//a �
m //b

g
//b′

(4) We also extend the notion of commutative diagrams. For example, by saying that the
following square

a �
m //

f

��

b

g

��

a′ �
m′

// b′

commutes we mean that the equality m′@f = g@m holds.
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Remark 2.10. The broken arrow notation also allows us to formulate flatness of a
module M : A � // B in elementary terms. Namely, for every a in A the following
three conditions must be satisfied:

(1) There is a broken arrow

a �
m //b

for some b in B.
(2) For any two broken arrows

b1

a
"lll

m1 66lll

�R
RR
m2 ((RRR

b2

there is a commutative diagram

b1

a

#mmmmmmm

m1

66mmmmmmm

�
m //

�Q
QQQQQQ

m2
((QQQQQQQ

b
f1

==

f2

!!

b2

(3) For every commutative diagram

b1

u
��

v
��

a
"lll

m1 66lll

�R
RR
m2 ((RRR

b2

there is a commutative diagram

b

f
��

a

-m
==

�
m1 //

sC
CCC

m2
!!CCC

C
b1

u
��

v
��

b2

Example 2.11. In this example we show how the finitary endofunctor

X 7→ X ×X + A

of the locally finitely presentable category Set can be viewed as a flat module.
In this sense, we identify the endofunctor X 7→ X×X +A of Set with the endofunctor

Φ : Set(E−, X) 7→ Set(E−, X ×X) + Set(E−, A)

of Flat(Setopfp ,Set). The corresponding flat module

M : Setopfp � // Setopfp
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then has values

M(a, b) = Setfp(b, a× a) + Set(b, A)

at finite ordinals a, b.

The above resemblance to classical module theory† can be pushed further: modules
can composed by “tensoring” them.

Definition 2.12. Suppose M : A � // B and N : B � // C are modules. By

N ⊗M : A � // C

we denote their composition which is defined objectwise by means of a coend(
N ⊗M

)
(a, c) =

∫ b

N(b, c)×M(a, b)

Remark 2.13. A coend is a special kind of colimit. The elements of
(
N ⊗M

)
(a, c) are

equivalence classes. A typical element of
(
N ⊗M

)
(a, c) is an equivalence class [(n, m)]

represented by a pair (n, m) ∈ N(b, c) × M(a, b) where the equivalence is generated by
requiring the pairs

(n, f@m) and (n@f,m)

to be equivalent, where n, f and m are as follows:

a �
m //b

f
//b′ �

n //c

Above, we denoted the actions of M and N by the same symbols, not to make the
notation heavy.

It is well-known (see (Borceux (1994))) that the above composition organizes modules
into a bicategory : the composition is associative only up to a coherent isomorphism and
the identity module A : A � // A , sending (a′, a) to the hom-set A (a′, a), serves as a
unit only up to a coherent isomorphism. The following result is then easy to prove.

Lemma 2.14. Every identity module is flat and composition of flat modules is a flat
module.

Remark 2.15. The above composition of modules makes one to attempt to draw dia-
grams such as

a2 �
m2 //a1 �

m1 //a0

for elements m1 ∈ M(a1, a0), m2 ∈ M(a2, a1) of a module M : A � // A . Such dia-
grams are, however, to be considered only formally — we never compose two “broken”
arrows.

† The resemblance can be made precise by passing to enriched category theory, see (Borceux (1994)).
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The tensor notation from the above paragraphs allows us to pass from endofunctors
to modules completely.

Observe that any flat functor X : A −→ Set can be considered as a flat module
X : 1 � // A where 1 denotes the one-morphism category.

Then, given a flat module M : A � // A , the assignment X 7→ M ⊗ X defines a
finitary endofunctor of Flat(A ,Set).

In fact, every finitary endofunctor Φ of Flat(A ,Set) arises in the above way: construct
the flat module MΦ as above, then there is an isomorphism

Φ ∼= MΦ ⊗−

of functors.

The category of complexes

Formal chains of “broken arrows” will be the main tool of the rest of the paper. We
define a category of such chains (this definition comes from the paper (Leinster (2011))
of Tom Leinster).

Assumption 2.16. In the rest of the paper,

M : A � // A

denotes a flat module on a small category A . The pair (A ,M) is called a self-similarity
system.

Remark 2.17. The terminology self-similarity system is due to Tom Leinster (Leinster
(2011)) and has its origin in the intention to study (topological) spaces that are self-
similar. Since we refer to (Leinster (2011)) below, we keep the terminology, although our
motivation is different.

3. Complexes and The Strong Solvability Condition

We present here our main technical tool, the category of complexes for a module. The
notion of complex has been introduced by T. Leinster (Leinster (2011)), in the course of
his study of self-similar objects. It encodes precisely the idea that a self-similar object is
obtained via successive approximations. We adopt a slightly different approach in order
to motivate this notion: Let us view coalgebras as generalizing the pre-fixed points of a
continuous endofunctor of a poset and try to think of a “greatest fixed point lemma”, a
lá Knaster-Tarski.

Consider any finitely accessible category K and a finitary endofunctor Φ : K → K .
We form the category of coalgebras, Coalg(Φ), and try to find a terminal object in it. In
the posetal case one would define it as

x0 =
∨
{x ∈ K | x ≤ Φ(x)},

provided such a supremum existed in K . By analogy one would wish to form the colimit
over all coalgebras. This poses a size problem in the case of a category, but since K is
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finitely accessible we may try to restrict ourselves to coalgebras with finitely presented
carriers. Since it is not the case now that all coalgebras participate in the colimit that
defines the purported final coalgebra, we are faced with the problem of defining a coal-
gebra morphism out of an arbitrary coalgebra (K, e : K → Φ(K)) , K ∈ K . Since we
know that K is finitely accessible and the functor Φ finitary we have:

— K is a filtered colimit of finitely presentable objects,

K = colim(Kfp ↓ K
E−→ K )

— Φ preserves filtered colimits,

Φ(K) = colim(Kfp ↓ K
E−→ K

Φ−→ K )

Consider now a component of the filtered colimit, K = colim ai:

a0 ina0
))SSSSSS

K
e // Φ(K)

a0 is a finitely presentable object and the colimit, Φ(K) = colim Φ(ai) is filtered, so there
is a factorization of the morphism e · ina0 through a component of the colimit:

a0

ina0
((RRRRRR

m1 // Φ(a1) Φ(ina1 )

**UUUUUU

K
e // Φ(K)

Doing the same for the component ina1 we take:

a0

ina0
''PPPPPP

m1 // Φ(a1) Φ(ina1 )

))TTTTTT

K
e // Φ(K)

a1

ina1 77nnnnnn
m2

// Φ(a2) Φ(ina2 )

55jjjjjj

If we continue like this, there arises a sequence

a0
m1 // Φ(a1), a1

m2 // Φ(a2), a2
m3 // Φ(a3), . . . (3.4)

of morphisms in K , where all the objects a0, a1, a2, . . . are finitely presentable.

We call such a sequence of morphisms a complex. Using the correspondence between
arrows b

m // Φ(a) and module elements a �
m // b , explained in the previous section,

we may rephrase the definition in terms of sequences of module elements. Notice that
we will eventually need to use the advantages of the latter notation (in particular the
possibility of composing arrows with module elements) and the subsequent “calculus of
complexes” in order to develop our theory.

Definition 3.1. Given a (flat) module M on a small category A , the category

Complex(M)
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of M -complexes and their morphisms is defined as follows:

(1) Objects, called M -complexes, are countable chains of the form

. . . �
m3 // a2 �

m2 // a1 �
m1 // a0

A single complex as above will be denoted by (a•,m•) for short.
(2) Morphisms from (a•,m•) to (a′•,m

′
•) are sequences fn : an −→ a′n, denoted by (f•),

such that all squares in the following diagram

. . . �
m3 // a2 �

m2 //

f2

��

a1 �
m1 //

f1

��

a0

f0

��

. . . �
m′

3

// a′2 �
m′

2

// a′1 �
m′

1

// a′0

commute.

For n ≥ 0, we denote by

Complexn(M)

the category of n-truncated M -complexes. Its objects are finite chains

an �
mn // an−1 � // . . . � // a2 �

m2 // a1 �
m1 // a0

and the morphisms of Complexn(M) are defined in the obvious way.
The obvious truncation functors are denoted by

prn : Complex(M) −→ Complexn(M), n ≥ 0

Observe that Complex0(M) = A .

Example 3.2. Recall the flat module M of Example 2.11 that corresponds to the finitary
endofunctor X 7→ X ×X + A of sets.

An M -complex

. . . �
m3 // a2 �

m2 // a1 �
m1 // a0
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can be identified with a “binary tree” of maps of the form

. . .

a2

m000
3 44iiiiii

m001
3

**UUUUUU
. . .

a1

m00
2

99ssssss

m01
2

%%KKKKKK
. . .

a2

m010
3 44iiiiii

m011
3

**UUUUUU
. . .

a0

m0
1

BB����������

m1
1

��
99

99
99

99
99 . . .

a2

m100
3 44iiiiii

m101
3

**UUUUUU
. . .

a1

m10
2

99ssssss

m11
2

%%KKKKKK
. . .

a2

m110
3 44iiiiii

m111
3

**UUUUUU
. . .

where each path is either infinite or it ends with a generalized element an −→ A of A.

Remark 3.3. Notice that in the alternative notation a morphism of complexes becomes
just a sequence of morphisms in K making the obvious squares commutative:

a0
m1 //

f0

��

Φ(a1)

Φ(f1)

��

a1
m2 //

f1

��

Φ(a2)

Φ(f2)

��

a2
m3 //

f2

��

Φ(a3)

Φ(f3)

��

. . .

a′0
m′

1

// Φ(a′1) a′1
m′

2

// Φ(a′2) a′2
m′

3

// Φ(a′3)

In this case, stressing the notational distinction, we denote a complex by a• and the
category of complexes by Complex(Φ).

Returning to the definition of the final coalgebra, we may now revise our strategy,
following the analysis preceding Definition 3.1.

Consider T ∈ K to be the colimit of the diagram

Complex(Φ)
pr0−→ Kfp

E−→ K

In order that this definition works, two things would be needed: That this colimit exists
in K (recall that this is not automatically granted when K is not l.f.p) and that it is
the carrier of a coalgebra structure.

Concerning the existence of the above colimit in the finitely accessible K , it would
suffice to know that the colimit is filtered, i.e that the indexing category of complexes
is filtered. The Strong Solvability Condition on a self-similarity system (A ,M) asserts
exactly that.

Definition 3.4. We say that (A ,M) satisfies the Strong Solvability Condition if the
category Complex(M) is cofiltered.



Final Coalgebras in Accessible Categories 17

Remark 3.5. The Strong Solvability Condition implies that the diagram(
Complex(M)

)op prop0 // A op Y // [A ,Set]

of representables is filtered. Its colimit (a flat functor!) is going to be the carrier of the
final coalgebra for M ⊗−, see Theorem 3.10 below.

Although the condition is rather strong and hard to verify directly in a general finitely
accessible category (and we will seek a weaker one in Section 5), it is easily verified in the
realm of locally finitely presentable categories and it can also be employed for studying
final coagebras in certain non-l.f.p accessible categories (see Section 4).

Proposition 3.6. Suppose that there exists a coalgebra for M ⊗ − and that A has
nonempty finite limits. Then the category Complex(M) is cofiltered.

Proof. Suppose that e : X −→ M ⊗X is some coalgebra. The functor X must be flat,
hence there exists an element x0 ∈ Xa0. Consider the element ea0(x0) ∈ (M ⊗X)(a0).
Since

(M ⊗X)(a0) =
∫ a

M(a, a0)×Xa

there exist a1, m1 ∈ M(a1, a0) and x1 ∈ Xa1 such that the pair (m1, x2) represents
ea0(x0). It is clear that in this way we can construct a complex.

Suppose that

D : D −→ Complex(M)

with D finite and nonempty, is given. Let us put

Dd

Dδ

��

=

. . . �
md

3 // ad
2

δ2

��

�
md

2 // ad
1

δ1

��

�
md

1 // ad
0

δ0

��

Dd′ . . . �
md′

3

// ad′

2
�

md′
2

// ad′

1
�

md′
1

// ad′

0

and observe that, for each n ≥ 0, its n-th coordinate provides us with a diagram of shape
D in A . Since A has finite nonempty limits, we can denote, for each n ≥ 0, by

cd
n : an −→ ad

n

the limit of the n-th coordinate.
For each n ≥ 0, we define mn+1 ∈ M(an+1, an) as follows: since

M(an+1, an) ∼= lim
d

M(an+1, a
d
n)
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holds by flatness of M , there is a unique mn+1 such that the square

an+1 �
mn+1

//

cd
n+1

��

an

cd
n

��

ad
n+1 �

md
n+1

// ad
n

commutes.
The complex (a•,m•) defined in the above manner is easily seen to be a limit of

D : D −→ Complex(M). This finishes the proof that Complex(M) is cofiltered, hence
(A ,M) satisfies the Strong Sovability Condition.

Returning now to the issue of defining the coalgebra structure τ : T −→ Φ(T ), we will
prove that Φ(T ) is a cocone. In this connection recall the proof of the classical (posetal)
fixed-point lemma: One shows that Φ(x0) is an upper bound for the set defining x0.
Having assumed now that the category Complex(Φ) is filtered (and the endofunctor Φ is
finitary), we have

Φ(T ) = colim Φ(pr0(a
•
i ))

Consider the diagram

pr0(a•i ) = a0
i

m1
i //

inpr0(a•
i
)

$$JJJJJJJJJJJJ

pr0(h•)=h0

��

Φ(a1
i ) = Φ(pr0(a

•+1
i ))

Φ(in
pr0(a

•+1
i

)
)

((PPPPPPPPPPPPP

Φ(h1)

��

T
τ // Φ(T )

pr0(a•j ) = a0
j

m1
j

//

inpr0(a•
j
)

::uuuuuuuuuuu
Φ(a1

j ) = Φ(pr0(a
•+1
j ))

Φ(in
pr0(a

•+1
j

)
)

77nnnnnnnnnnnn

where, h• : a•i −→ a•j is a diagram in Complex(Φ), i.e

a0
i

m1
i //

h0

��

Φ(a1
i ) ,

Φ(h1)

��

a1
i

m2
i //

h1

��

Φ(a2
i ) ,

Φ(h2)

��

. . .

a0
j

m1
j

// Φ(a1
j ) , a1

j
m2

j

// Φ(a2
j ) , . . .

(3.5)

such that

inpr0(a
•
j ) · h0 = inpr0(a

•
i )

If we omit the first square we take a new diagram in Complex(Φ). We denote the new
complexes with a•+1

i and a•+1
j where, ∂0(a•+1

i ) = a1
i and pr0(a

•+1
j ) = a1

j .
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From the definition of T , we take that the latter complexes participate to the colimit as
well, and since Φ preserves filtered colimits we have the following commutative diagram,

Φ(pr0(a
•+1
i )) = Φ(a1

i )
Φ(in

pr0(a
•+1
i

)
)

((PPPPPPPPPPPPPPP

Φ(h1)

��

Φ(T )

Φ(pr0(a
•+1
j )) = Φ(a1

j )
Φ(in

pr0(a
•+1
j

)
)

77nnnnnnnnnnnnnnn

Hence,

Φ(inpr0(a
•+1
i )) ·m1

i = Φ(inpr0(a
•+1
j )) · Φ(h1) ·m1

i

= Φ(inpr0(a
•+1
j )) ·m1

j · h0

which renders Φ(T ) a cocone.
Finally from the universal property of the colimit T , we take the desired morphism
τ : T −→ Φ(T ), with

τ · inpr0(a
•
i ) = inpr0(a

•+1
i ) ·m

1
i

for all i.
Having produced a coalgebra whose carrier is, under suitable assumptions, a filtered

colimit of representable functors (equivalently, finitely presentable objects), all that re-
mains is to produce the unique coalgebra homomorphism into it out of an arbitrary
coalgebra. To that end we rely on the following fundamental idea of Tom Leinster:

Definition 3.7. The complex (a•,m•) together with the sequence (xn) constructed in
the beginning of the proof of 3.6 is called an e-resolution of x0 ∈ Xa0.

Remark 3.8. The above construction of an e-resolution indicates that a coalgebra e :
X −→ M ⊗X is a system of recursive equations that “varies in time”. For at “time” a0

we can write the system of formal recursive equations

x0 ≡ m1 ⊗ x1

x1 ≡ m2 ⊗ x2

...

where (xn) and (a•,m•) form the e-resolution of x0 ∈ Xa0. Above, we use the tensor
notation to denote, e.g., by m1⊗ x1 the element of

∫ a
M(a, a0)×Xa represented by the

pair (m1, x1).
Of course, any “evolution of time” f : a0 −→ a′0 provides us with a compatible corre-

sponding recursive system starting at x′0 = Xf(x0) ∈ Xa′0.
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Remark 3.9. The proof of the following theorem is a straightforward modification of
the proof of Theorem 5.11 of (Leinster (2011)). The reason is that our definition of the
carrier of the final coalgebra (as a certain colimit) coincides with the definition of Tom
Leinster’s (as being pointwise a set of connected components of a certain diagram, see
Theorem 2.1 of (Paré (1973)). Observing this, the reasoning of the proof goes exactly as
in (Leinster (2011)).

Theorem 3.10. Any (A ,M) satisfying the Strong Solvability Condition admits a final
coalgebra for M ⊗−.

Proof. Define T : A −→ Set to be the colimit of the diagram(
Complex(M)

)op prop0 // A op Y // [A ,Set] (3.6)

By the Strong Solvability Condition, T is a flat functor, being a filtered colimit of repre-
sentables. Observe that x ∈ Ta is an equivalence class of complexes of the form

. . . �
m3 // a2 �

m2 // a1 �
m1 // a0 = a

where two such complexes are equivalent if and only if they both map to a further complex
ending at a, via complex morphisms having identity on a as the 0-th component. Thus it is
exactly a reduction (due to filteredness) of the description of elements of a final coalgebra
that Tom Leinster has for his setting in (Leinster (2011)). We denote equivalence classes
by square brackets.

In this representation of the objects of K as flat functors, the coalgebra structure
τ : T −→ M ⊗ T , investigated in the discussion following the proof of Proposition 3.6,
has the following objectwise transcription: For each a ∈ A

τa : Ta −→ (M ⊗ T )(a) =
∫ a′

M(a′, a)× Ta′

is a map sending the equivalence class

[ . . . �
m3 // a2 �

m2 // a1 �
m1 // a0 = a ]

to the element

a1 �
m1 // a0 ⊗ [ . . . �

m3 //a2 �
m2 //a1 ]

of (M ⊗ T )(a) (recall the tensor notation of Remark 3.8).
By Proposition 5.8 of (Leinster (2011)) such τ is a natural isomorphism. That τ : T −→

M ⊗ T is a final coalgebra follows from Theorem 5.11 of (Leinster (2011)), once we have
verified that T is flat. Tom Leinster proves finality with respect to componentwise flat
functors so, a fortiori , the coalgebra τ is final with respect to coalgebras whose carriers
are flat functors.

Remark 3.11. Observe that (the a-th component of) the mapping τa : Ta −→ (M ⊗
T )(a) is indeed very similar to the coalgebraic structure τ = 〈head, tail〉 of the final
coalgebra of streams of Example 1.1.
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In the realm of locally finitely presentable categories, every finitary endofunctor ad-
mits a final coalgebra. The well-known technique for proving this result is that of 2-
categorical limits of locally finitely presentable categories, see, e.g., (Makkai and Paré
(1989)) or (Adámek and Rosický (1994)).

Our technique will allow us to give an alternative proof of this theorem, see Corol-
lary 3.12 below. In fact, the colimit of (3.6) gives an explicit description of a final coal-
gebra.

Corollary 3.12. Every finitary endofunctor of a locally finitely presentable category
admits a final coalgebra.

Proof. Recall that the category of the form Flat(A ,Set) is locally finitely presentable,
if the category A has all finite limits. Denote by (A ,M) the corresponding self-similarity
system. We need to show that Complex(M) is cofiltered.

(1) The category Flat(A ,Set) ' Lex(A ,Set) has an initial object, ⊥, say. Hence the
unique morphism ! : ⊥ −→ M ⊗ ⊥ is a coalgebra and the category Complex(M) is
nonempty.

(2) By Proposition 3.6, the category Complex(M) has cones for nonempty finite diagrams.

Now use Theorem 3.10.

Theorem 3.10 provides us with a concrete description of the final coalgebra as the
colimit of the filtered diagram(

Complex(M)
)op prop0 // A op Y // [A ,Set]

From that one can easily deduce, for example, the well-known description of the final
coalgebra for the endofunctor X 7→ X ×X + A on Set that we gave in the 3.2.

Remark 3.13. There have been many approaches to giving concrete descriptions of
the final coalgebra in various settings. The main vehicle towards such descriptions has
been that of the “final sequence”, which has been studied exhaustively for the case of
finitary endofunctors of sets by J. Worrell ((Worrell (2005))) and generalized to certain
l.f.p categories by J. Adámek ((Adámek (2003))). This approach involves the limit L of
the ωop-indexed diagram

... −→ Φn(1) −→ ... −→ Φ(1) −→ 1,

where 1 is the terminal object of the l.f.p category. This limit may not yield the carrier
of the final coalgebra (even in sets, as the example of the “finite powerset” endofunctor
shows), but it does so if we keep iterating: Worrell shows that the limit of

... −→ Φn(L) −→ ... −→ Φ(L) −→ L

always gives the carrier of the final coalgebra (“the sequence stabilizes after ω + ω

steps”). Adámek generalizes this to strongly l.f.p categories with a projective genera-
tor and finitary endofunctors preserving strong monomorphisms (see (Adámek (2003))
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for the involved terminology). In the framework of Adámek’s the final coalgebra is a
strong subobject of L. Notice here that there is always a canonically defined morphism

σ : T −→ L

where for each a ∈ A

σa([ . . . �
m3 // a2 �

m2 // a1 �
m1 // a ]) = 〈. . . , [ a1 �

m1 // a , [ a2 �
m2 // a1 ]] , [ a1 �

m1 // a ]〉
Here the equivalence class

[ a1 �
m1 // a , [ a2 �

m2 // a1 , ...[ an+1 �
m3 // an ]...]] ,

denotes the element of Φn+1(1)(a) ∼= (M ⊗ (... ⊗ (M ⊗ 1)...)(a). We can not deduce,
exploiting our description, whether this map is injective in any framework more general
than that anticipated by Adámek’s result.

Notice finally that the representation of the finitary endofunctor as a “tensor product”
indicates a representation of the elements of L at level a as an infinitely branching,
infinitely long tree rooted at a, bearing a close relationship with the elements of the limit
L for the finite powerset functor on sets.
Suppose that

L = lim
n

M (n) ⊗ 1

then for each a ∈ A

L(a) = 〈. . . , [ a2
1 �

m2
1 // a , [ a2

2 �
m2

2 // a2
1 ]] , [ a1

1 �
m1

1 // a ]〉

such an element, can be represented as:

a

a1
1

$nnnnnnnn

m1
1

77nnnnnnnn

a2
1

/
}}}}

m2
1

>>}}}}

a3
1

Um3
1

OO

an
1

�PPPPPPPP

mn
1

hhPPPPPPPP

a2
2

Um2
2

OO

a3
2

Um3
2

OO

. . . an
2

Umn
2

OO

a3
3

Um3
3

OO

an
3

Umn
3

OO

...

U
OO

4. Final coalgebras on posets with distinct endpoints

Before moving to the completely general case of a finitely accessible category and the
investigation of more tractable conditions that would ensure the existence of a final coal-
gebra, let us focus on certain finitary endofunctors on the category of posets with distinct
endpoints. This category serves as a suitable ground to test the proposed construction of
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the final coalgebra, both in terms of verifying the Strong Solvability Condition, as well
as for identifying the object we construct with something well-known and classical. In
particular, P. Freyd’s description of the closed unit interval as a final coalgebra takes
place over this category, which falls outside the realm of l.f.p categories.

Example 4.1. Recall the category Pos0,1 of all posets having distinct top and bottom
and all monotone maps preserving top and bottom of Example 2.4((6)). Recall that Pos0,1

is finitely accessible but not locally finitely presentable.
Let the functor Φ : Pos0,1 −→ Pos0,1 send X to the smash coproduct

X ∨X

of X with itself that is defined as follows: put one copy of X on top of the other one
and glue the copies together by identifying top and bottom. More formally, X ∨X is the
subposet of X × X consisting of pairs (x, 0) or (1, y). The pairs (x, 0) are going to be
called living in the left-hand copy of X and the pairs of the form (1, y) as living in the
right-hand copy.

Clearly, given a coalgebra e : X −→ X ∨X and x ∈ X, one can produce at least one
infinite sequence

x1x2x3 . . .

of 0’s and 1’s as follows: look at e(x) and put x1 = 0 if it is in the left-hand copy of
X, put x1 = 1 otherwise. Then regard e(x) as an element of X again, apply e to it to
produce x2, etc.

One needs to show that the binary expansion e†(x) = 0.x1x2x3 . . . so obtained can be
used to define a map e† : X −→ [0, 1] in a clash-free way (i.e., regardless of the fact that
sometimes we may have a choice in defining xk = 0 or xk = 1). Moreover, the above map
e† is then a witness that the coalgebra

t : [0, 1] −→ [0, 1] ∨ [0, 1]

where [0, 1] denotes the closed unit interval with the usual order and t given by putting
t(x) = (2x, 0) for 0 ≤ x ≤ 1/2 and t(x) = (1, 2x− 1) otherwise, is a final coalgebra for Φ.

See (Freyd (1999)), (Freyd (2008)) for more details on the structure of the unit interval
arising from such a coalgebraic description.

Proposition 4.2. The self-similarity system (A ,M) corresponding to the functor Φ :
Pos0,1 −→ Pos0,1 of Example 4.1 satisfies the Strong Solvability Condition.

Proof. Recall that M is defined as

M(a, b) = Pos0,1(b, a ∨ a)

where the posets a, b are finite (having distinct bottom and top).
A complex (a•,m•) is therefore a chain

m1 : a0 −→ a1 ∨ a1, m2 : a1 −→ a2 ∨ a2, . . . , mi : ai −→ ai+1 ∨ ai+1, . . .

of morphisms in Pos0,1.
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We have to show that Complex(M) is cofiltered and we will use the elementary de-
scription of complexes of Remark 3.3

(1) Complex(M) is nonempty.
Let ai = 2, the two-element chain, for every i ≥ 0 and, for all i ≥ 0, let mi : ai −→
ai+1 ∨ ai+1 be the unique morphism in Pos0,1. This defines a complex.

(2) Complex(M) has cones for two-element discrete diagrams.
Suppose (a•,m•) and (a′•,m

′
•) are given. Hence we have chains

m1 : a0 −→ a1 ∨ a1, m2 : a1 −→ a2 ∨ a2, . . . , mi : ai −→ ai+1 ∨ ai+1, . . .

and

m′
1 : a′0 −→ a′1 ∨ a′1, m′

2 : a′1 −→ a′2 ∨ a′2, . . . , m′
i : a′i −→ a′i+1 ∨ a′i+1, . . .

Since every pair ai, a′i has a cocone in (Pos0,1)fp , every pair ai, a′i has a coproduct
ai + a′i in (Pos0,1)fp due to Scott-completeness of Pos0,1, see Example 2.4((6)).
One then uses flatness of M to obtain the desired vertex (b•, n•) of a cone as follows:
put bi = ai + a′i for all i ≥ 0 and define ni : bi −→ bi+1 ∨ bi+1 to be the one given by
the bijection

Pos0,1(bi, bi+1 ∨ bi+1) = Pos0,1(ai + a′i, bi+1 ∨ bi+1) ∼= Pos0,1(ai, bi+1)×Pos0,1(a′i, bi+1)

applied to the obvious pair of morphisms ai −→ bi+1, a′i −→ bi+1.
(3) Complex(M) has cones for parallel pairs.

This follows immediately from the following claim:

There are no serially commutative squares

X
u //

d
//

s

��

Y

r

��

Z ∨ Z
h∨h //

l∨l
// W ∨W

(4.7)

whenever the maps u, d cannot be coequalized.

Notice first that both h∨ h and l∨ l map the “middle element” (1, 0) of Z ∨Z to the
respective “middle element” in W ∨W .
Next notice that the only reason for which u and d cannot be coequalized is that
some x ∈ X is sent to 0 by d and to 1 by u. Fix this x, and notice that equations
ru(x) = 1 and rd(x) = 0 hold.
Notice also that

Hh = {z ∈ Z ∨ Z | (h ∨ h)(z) = 1}
is a proper subset of {z ∈ Z ∨ Z | z ≥ m} where m denotes the “middle element” of
Z ∨ Z.
Similarly,

Hl = {z ∈ Z ∨ Z | (l ∨ l)(z) = 0}
is a proper subset of {z ∈ Z ∨ Z | z ≤ m}.
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In particular, Hh ∩Hl = ∅.
Suppose that the diagram (4.7) serially commutes. Then s(x) ∈ Hh ∩ Hl, a contra-
diction.

We indicate how the description of the final coalgebra for the squaring functor on the
category Pos0,1 that we gave in Example 4.1 corresponds to the description given by the
proof of Theorem 3.10.

We denote the module, corresponding to the squaring functor X 7→ X ∨ X, by M .
Observe that

M(a, b) = Pos0,1(b, a ∨ a)

holds.
Recall that by Remark 2.6 there is an equivalence

Pos0,1 ' Flat((Pos0,1)
op
fp ,Set)

of categories that we will use now: the flat functor I : (Pos0,1)
op
fp −→ Set that is the

carrier of the final coalgebra for M ⊗ − is transferred by the above equivalence to the
poset

I ? E

see Remark 2.6. We define now the map

beh : I ? E −→ [0, 1]

where [0, 1] is the unit interval with the coalgebra structure described in Example 4.1.
The mapping beh assigns to the equivalence class[

[(a•,m•)], x ∈ a0

]
∈ I ? E

a dyadic expansion that encodes the behaviour of x ∈ a0 as follows: we know that a
complex (a•,m•) is a chain

m1 : a0 −→ a1 ∨ a1, m2 : a1 −→ a2 ∨ a2, . . . , mi : ai −→ ai+1 ∨ ai+1, . . .

of morphisms in Pos0,1. The morphism m1 sends x to the left-hand copy or to the right-
hand copy of a1, so it gives rise to a binary digit k1 ∈ {0, 1} and a new element x1 ∈ a1.
(If m1(x) is in the glueing of the two copies of a1, choose 0 or 1 arbitrarily). Iterating
gives a binary representation 0.k1k2 . . . of an element of [0, 1].

Proposition 4.3. The map

beh : I ? E −→ [0, 1]

is well-defined and a bijection.

Proof.

(1) beh is well-defined: Let
[
[(a•,m•)], x ∈ a0

]
=

[
[(a′•,m

′
•)], x

′ ∈ a′0

]
, then there is an

element
[
[(c•, q•)], y ∈ c0

]
of the colimit and a zig-zag:
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a0
m1 //

��

a1 ∨ a1

��
c0

q1 // c1 ∨ c1

a′0
m′

1 //

OO

a′1 ∨ a′1

OO

a1
m2 //

��

a2 ∨ a2

��
c1

q2 // c2 ∨ c2 . . .

a′1
m′

2 //

OO

a′2 ∨ a′2

OO

such that all the squares are commutative.
Observe that, in order to have the commutativity of the above squares, the morphisms
mi, qi,m

′
i, i = 1, 2, . . . must have the same “behaviour”. This means that if, e.g., the

morphism m1 sends x to the left-hand copy of a1 ∨ a1 then also the q1,m
′
1 will send

the corresponding elements to the left-hand copy of c1 ∨ c1 and a′1 ∨ a′1 respectively.
So, we take the same binary representation in [0, 1], i.e., the equality

beh([(a•,m•)], x ∈ a0) = beh([(a′•,m
′
•)], x

′ ∈ b0)

holds.
(2) beh is one to one:

The key-point here is that there is a morphism f : 5 −→ 5 ∨ 5 , where 5 is the
linear order with five elements, such that for each mi : ai −→ ai+1 ∨ ai+1 there is a
commutative square

ai
mi //

h

��

ai+1 ∨ ai+1

h′∨h′

��

5
f

// 5 ∨ 5

Suppose that {0, t1, t2, t3, 1} are the elements of 5, then the elements of 5 ∨ 5 will be
denoted by {0, tL1 , tL2 , tL3 , c′, tR1 , tR2 , tR3 , 1}.
We define:

f(t) =


0, if t = 0
1, if t = 1

tL2 , if t = t1
tR2 , if t = t3
c′, if t = t2

h(x) =


0, if mi(x) = 0
1, if mi(x) = 1
t1, if mi(x) ∈ aL

i+1

t3, if mi(x) ∈ aR
i+1

t2, if mi(x) = c

h′(z) =


0, if z = 0
1, if z = 1
t2, otherwise

where L, R denotes the left-hand and the right-hand copy and c, c′ are the glueing
points of ai+1 ∨ ai+1 and 5 ∨ 5, respectively. From the above it is easy to verify the
commutativity of the square.
Now, if beh([(a•,m•)], x ∈ a0) = beh([(b•, n•)], y ∈ b0), i.e., if the binary representa-
tions are the same, we can choose without loss of generality the mi and ni to send
the xi, yi to the same copy left-hand or right-hand, respectively. (Hence we avoid the
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case one of them sending an element to the glueing point). Using commutativity of
the above square we have that all the following squares commute:

a0
m1 //

h

��

a1 ∨ a1

h′∨h′

��

5
f

// 5 ∨ 5

b0
n1 //

h

OO

b1 ∨ b1

h′∨h′

OO

a1
m2 //

h

��

a2 ∨ a2

h′∨h′

��

5
f

// 5 ∨ 5 . . .

b1
n2 //

h

OO

b2 ∨ b2

h′∨h′

OO

From this we deduce that there is a zig-zag between the two complexes,(a•,m•),(b•, n•).
Therefore, the equality

[(a•,m•)] = [(b•, n•)]

holds.
(3) beh is epi: For each binary representation 0.k1k2 . . . of an element of [0, 1] we can find

an element of the colimit, using the three-element linear order 3, and a sequence

m1 : 3 −→ 3 ∨ 3, m2 : 3 −→ 3 ∨ 3, . . . mi : 3 −→ 3 ∨ 3, . . .

of morphisms, where each mi assigns the middle element of 3, to the middle element
in the left-hand copy of 3 ∨ 3 if ki = 0, or the middle element in the right-hand copy
if ki = 1.

We continue showing that our approach ensures the existence of the final coalgebra in a
number of other situations that are not covered by Corrolary 3.12, nor by guessing what
the final coalgebra is and then verifying its universal property. First notice that the cat-
egory Pos0,1 has products and coproducts, thus we may define polynomial endofunctors
on it, of the form

X 7→ An ×Xn + ... + A1 ×X + A0

(and such endofunctors are finitary). Notice also that the coproduct is formed by two
disjoint copies glued together at the top and bottom.

Proposition 4.4. Every polynomial endofunctor Φ on posets with distinct endpoints
admits a final coalgebra.

Proof. One may easily see that: The category of coalgebras is non-empty, thus so is
the category of complexes and the existence of coproducts ensures that discrete diagrams
of complexes have cocones.

Moreover, as it was the case with Freyd’s endofunctor, there are no parallel morphisms
of complexes, whenever parallel pairs of maps between the vertices of the complexes can
not be coequalized: If in the diagram
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a
u //

v
//

s

��

b

r

��

An × cn + ... + A1 × c + A0

Φ(h)
//

Φ(l)
// An × dn + ... + A1 × d + A0

(4.8)

an element of a is sent to 0 by u and to 1 by v, then the module element s has to send
this element

— either to 0, hence it remains 0 in Φ(d), or
— to 1 and, again, it remains 1 in Φ(d)
— or to a “middle” element, which then is acted upon by the images of h and l under

the polynomial endofunctor. The middle element can be either in the “constant term”
A0 of the polynomial, which is then mapped to itself by both maps (hence can not
be both 0 and 1), or is some (an, x, x, ..., x) ∈ An × Xn, which is then mapped to
(an,Φ(h)(x), ...,Φ(h)(x)) by the one map and to (an,Φ(l)(x), ...,Φ(l)(x)) by the other
map. Hence we can not have one of them be 0 and the other one be 1, in order to
have serial commutativity, because that would require an to be 0 for the one case and
1 for the other.

Thus the polynomial endofunctor satisfies Strong Solvability Condition, hence it admits
a final coalgebra.

Remark 4.5. It seems possible that the above proposition applies to other categories of
structures (of the kind that together with their homomorphisms form an l.f.p category,
see the Introduction), where we specify that two constants are distinct and, moreover,
have some reasonable behaviour of coproducts. In particular it applies to “bipointed
sets”.

A further situation where our approach could be put at work is the following: Let Φ
be an arbitrary finitary endofunctor on Pos0,1 (or on a category as those discussed in
the previous remark). Since products exists in this category, we may ask whether the
final coalgebra for the endofunctor C × Φ(−) exists. It is well-known though that this
question is tantamount to asking whether the cofree coalgebra on the object C exists.
Indeed, a final coalgebra τC : Ĉ −→ C×Φ(Ĉ) amounts to a pair of morphisms εC : Ĉ −→ C

and κ: Ĉ −→ Φ(Ĉ), so that for every coalgebra X −→ C ×Φ(X) (i.e, pair of morphisms
f :X −→ C and coalgebra structure ρX :X −→ ΦX, there is a unique coalgebra morphism

X
(f,ρx)

//

f̂

��

C × Φ(X)

id×Φ(f̂)

��

Ĉ
(εC ,κ)

// C × Φ(Ĉ)

(4.9)

In other words, for each C, there is a Φ-coalgebra Ĉ, κ and a map εC (the counit) so that
for every f :X −→ C there is a unique coalgebra map f̂ : (X, ρX) −→ (Ĉ, κ), such that
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f = εC · f . A detailed study of the construction of cofree coalgebras in the framework of
accessible categories will be presented elsewhere (see (Karazeris, Matzaris and Velebil)).
Nevertheless, with the methods developed here we can conclude the following:

Proposition 4.6. For every finitary endofunctor Φ on Pos0,1 and object C, the functor
C × Φ(−) admits a final coalgebra. In particular the cofree Φ-coalgebra over C exists.

Proof. As in the proof of the previous proposition, if a pair of parallel morphisms
between a and b can not be coequalized (because for some x ∈ a we have u(x) = 0 and
v(x) = 1) then there is no serially commutative

a
u //

v
//

s

��

b

r

��

C × Φa1

id×Φ(h)
//

id×Φ(l)
// C × b1

(4.10)

for that would that we have both s(x) = 0 and s(x) = 1. Hence the Strong Solvability
Condition applies.

5. The Weak Solvability Condition

Cofilteredness of the category Complex(M) may be hard to verify in the absence of finite
limits in A . We give here a weaker condition that is easier to verify. In particular, we are
going to replace the Strong Solvability Condition by a condition of the same type but
“holding just on the head of complexes”. This whole section is devoted to finding condi-
tions of “how to propagate from the head of a complex to the whole complex”. Proving
the existence of a final coalgebra will require though some extra finiteness condition on
the module M , see Definition 5.9. Our condition is a weakening of that considered by
Tom Leinster (Leinster (2011)). The main result of this section, Theorem 5.15, then shows
that this finiteness condition allows us to conclude that a final coalgebra exists. Our ar-
gument applies to self-similarity systems considered by Tom Leinster (Leinster (2011))
and therefore strenghtens his result on the existence of final coalgebras for self-similarity
systems.

The key tool for the propagation technique is “König’s Lemma for preorders”, see The-
orem 5.6 below. The result relies on a topological fact proved by Arthur Stone in (Stone
(1979)).

To be able to state the weak condition we first need to generalize filteredness of a
category to filteredness of a functor.

Definition 5.1. A functor F : X −→ Y is called filtering , if there exists a cocone for
the composite F ·D, for every functor D : D −→ X with D finite.

A functor F is called cofiltering if F op is filtering.

Remark 5.2. Hence a category X is filtered if and only if the identity functor Id :
X −→ X is filtering.
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A natural candidate for a weaker form of solvability condition is the following one.

Definition 5.3. We say that (A ,M) satisfies the Weak Solvability Condition if the
functor

pr0 : Complex(M) −→ Complex0(M)

is cofiltering.

In particular, observe that the Weak Solvability Condition holds when the category A

is cofiltered.

Remark 5.4. In elementary terms, the Weak Solvability Condition says the following
three conditions:

(1) The category A is non-empty.
(2) For every pair (a•,m•), (a′•,m

′
•) in Complex(M) there is a span

a0

b

f 77oooooo

f ′ &&MMMMMM

a′0

in A .
(3) For every parallel pair of the form

(a•,m•)
(u•)

//

(v•)
// (a′•,m

′
•)

in Complex(M) there is a fork

b
f

// a0

u0 //

v0
// a
′
0

in A .

Observe that, since we assume that Complex(M) is nonempty i.e that at least one object
of K carries a coalgebra structure, the above condition (1) is satisfied: the category A

is nonempty.

Observe that if (A ,M) satisfies the Strong Solvability Condition, it does satisfy the
Weak Solvability Condition. In fact, in this case every functor prn : Complex(M) −→
Complexn(M) is cofiltering. The following result shows that the Weak Solvability Condi-
tion can be formulated in this way.

Proposition 5.5. The following are equivalent:

(1) The Weak Solvability Condition.
(2) The functors prn : Complex(M) −→ Complexn(M) are cofiltering for all n ≥ 0.

Proof. That (2) implies (1) is clear. To prove the converse, we need to verify the
following three properties:
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(a) Every category Complexn(M) is non-empty. This is clear: we assume that Complex(M)
is non-empty.

(b) Every pair prn(a•,m•), prn(a′•,m
′
•) in Complexn(M) has a cone.

Observe that, due to Weak Solvability Condition applied at stage n, we have the
following diagram

an �
mn // an−1 �

mn−1
// . . . �

m1 // a0

bn

fn 77

f ′n
&&
a′n �

m′
n

// a′n−1 �
m′

n−1

// . . . �
m′

1

// a′0

Since the functor M(bn,−) is flat, the pair mn@fn ∈ M(bn, an−1), m′
n@f ′n ∈ M(bn, a′n−1)

of its elements has a cone:

an �
mn // an−1

bn

fn
66

f ′n
''

�
un // bn−1

55

((
a′n �

m′
n

// a′n−1

If we proceed like this down to zero we obtain the desired vertex (b•, u•)(n) in
Complexn(M):

prn(a•,m•)

(b•, u•)(n)

(f•) 44hhhhhh

(f ′•)
**VVVVVV

prn(a′•,m
′
•)

(c) For every parallel pair of the form

prn(a•,m•)
prn(u•)

//

prn(v•)
// prn(a′•,m

′
•)

in Complexn(M), there is a fork.
Consider the following diagram:

bn

fn

��

�
ln // bn−1

fn−1

��

�
ln−1

// . . . �
l1 // b0

f0

��
an

un

��

vn

��

�
mn // an−1

un−1

��

vn−1

��

�
mn−1

// . . . �
m1 // a0

u0

��

v0

��
a′n �

m′
n

// a′n−1 �
m′

n−1

// . . . �
m′

1

// a0

Again, start at stage n, use the Weak Solvability Condition there to obtain fn, and
then use flatness of M(bn,−) to obtain ln and fn−1. Proceed like this down to zero
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and obtain the desired fork

(b•, l•)(n)
(f•)

(n)

// prn(a•,m•)
prn(u•)

//

prn(v•)
// prn(a′•,m

′
•)

in Complexn(M).

This finishes the proof.

In the proof that the Weak Solvability Condition implies the Strong one, we will need
to use “König’s Lemma” for preorders that we formulate in Theorem 5.6 below.

Recall that a preorder 〈X,v〉 is a set X equipped with a reflexive, transitive binary
relation v.

Recall also that a subset B ⊆ X of a preorder is called downward-closed , if for every
b ∈ B and b′ v b we have b′ ∈ B. The dual notion is called upward-closed .

A subset S of a preorder 〈X,v〉 is called final if for every x ∈ X there exists s ∈ S

with x v s.

Theorem 5.6. Suppose that

. . . // Pn+1

pn+1
n // Pn

pn
n−1

// . . .
p1
0 // P0

(5.11)

is a chain of preorders and monotone maps, that satisfies the following two conditions:

(1) Every Pn has a nonempty finite final subset.
(2) The image of any upward-closed set under pn+1

n : Pn+1 −→ Pn is upward-closed.

Then the limit lim Pn is nonempty, i.e., there is a sequence (xn) with pn+1
n (xn+1) = xn

holding for every n ≥ 0.

The proof of Theorem 5.6 will rely on some facts from General Topology that we recall
now. As a reference to topology we refer to the book (Engelking (1989)).

Recall that every preorder 〈X,v〉 can be equipped with the lower topology τv, if we
declare the open sets to be exactly the downward closed sets.

Observe that a set B is closed in the topology τv if and only if it is upward-closed.

Proof of Theorem 5.6. The assumptions (1) and (2) of the statement of the theorem
assure that each Pn is a nonempty compact space in its lower topology and each pn+1

n

is a closed continuous map (i.e., on top of continuity, the image of a closed set is a closed
set). By result of Arthur Stone (Stone (1979)), Theorem 2, any ωop-chain of nonempty
compact spaces and closed continuous maps has a nonempty limit. Therefore lim Pn is
nonempty.

Remark 5.7. Of course, Theorem 5.6 holds whenever Conditions (1) and (2) hold “cofi-
nally”, i.e., whenever there exists n0 such that Conditions (1) and (2) hold for all n ≥ n0.

Notation 5.8. For any diagram D : D −→ Complex(M) with D finite, let PD
n denote

the following preorder:

(1) Points of PD
n are cones for the composite prn ·D : D −→ Complexn(M).
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(2) The relation c vn c′ holds in PD
n if and only if the cone c factors through the cone

c′.

For each n ≥ 0 denote by

pn+1
n : PD

n+1 −→ PD
n

the obvious restriction map and observe that it is monotone.

Also observe that the Weak Solvability Condition guarantees that every preorder PD
n

is nonempty by Proposition 5.5. The Weak Solvability Condition alone does not imply
the Strong one — the self-similarity system (A ,M) has to fulfill additional conditions
that will allow us to apply Theorem 5.6.

Definition 5.9. We say that the module M is compact , if the preorder PD
n has a

nonempty finite final subset, for each n ≥ 0 and each finite nonempty diagram D :
D −→ Complex(M).

First we give easy examples of compact modules.

Example 5.10.

(1) Every module M on a finitely complete category A is compact: in fact, in this case
every preorder PD

n has a one-element final set.
(2) If the module M is finite in the sense of (Leinster (2011)), i.e., if every functor

M(−, b) : A op −→ Set has a finite category of elements, then it is compact.

Nontrivial examples of compact modules will follow later from Proposition 5.12, see
Example 5.14. We need to recall the concept of a factorization system for cocones first.
For details, see, e.g., Chapter IV of (Adámek, Herrlich and Strecker (1990)).

Definition 5.11. Let K be a finitely accessible category.

(1) We say that a cocone cd : Dd −→ X is jointly epi if, for every parallel pair u, v, the
equality u · cd = v · cd for all d implies that u = v holds.

(2) We say that K is a (finite jointly epi, extremal mono)-category if the following two
conditions are satisfied:

(a) Every cocone cd : Dd −→ X for a finite diagram can be factored as

Dd
ed // Z

j
// X

where ed is jointly epi and j is extremal mono.

(b) For every commutative square

Dd
ed //

fd

��

X

g

��

A
j

// B

(for all d)

where ed is a jointly epi cocone and j is extremal mono, there is a unique diagonal
m : X −→ A making the obvious triangles commutative.
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(3) We say that Kfp is finitely cowellpowered , if every finite diagram D : D −→ Kfp

admits (up to isomorphism) only a nonempty finite set of jointly epi cocones.

Proposition 5.12. Suppose the finitely accessible category K satisfies the following
conditions:

(1) K is a (finite jointly epi, extremal mono)-category.
(2) Kfp is finitely cowellpowered.

Suppose that a finitary functor Φ : K −→ K preserves extremal monos coming out of
finitely presentable objects. Then the flat module corresponding to Φ is compact.

Proof. We will use the description of complexes from Remark 3.3.
Let D : D −→ Complex(M) be a finite nonempty diagram. Choose any n ≥ 0 and

denote the value of the composite prn ·D by commutative squares

prn ·Dd

prn·Dδ

��

=

ad
0

md
1 // Φ(ad

1) ad
1

md
2 // Φ(ad

2)

. . .

ad
n−1

md
n // Φ(ad

n)

prn ·Dd′ ad′

0
md′

0

//

δ0

OO

Φ(ad′

1 )

Φ(δ1)

OO

ad′

1
md′

2

//

δ1

OO

Φ(ad′

2 )

Φ(δ2)

OO

ad′

n−1
md′

n

//

δn−1

OO

Φ(ad′

n )

Φ(δn)

OO

in K . We will construct the finite nonempty initial (notice the change of the variance:
A is K op

fp ) family of cocones for prn ·D by proceeding from i = n − 1 downwards to 0
as follows:

For every jointly epi cocone ei+1 : ad
i+1 −→ zi+1 choose all jointly epi cocones ed

i :
ad

i −→ zi and all connecting morphisms ci+1 : zi −→ Φ(zi+1) making the following
diagram

zi
ci+1

// Φ(zi+1)

ad
i

ed
i

OO

md
i+1

// Φ(ad
i+1)

Φ(ed
i+1)

OO

commutative. Observe that there is at least one such pair: the factorization of the
cocone Φ(ed

i+1) ·md
i+1 into a jointly epi and extremal mono. Since every cocone ed

i is
jointly epi, the corresponding ci+1 is determined uniquely.

We claim that the above nonempty finite family of cocones for prn ·D is initial. To that
end, consider any cocone

w0
f1 // Φ(w1) w1

f2 // Φ(w2)

. . .

wn−1
fn // Φ(wn)

ad
0

md
0

//

gd
0

OO

Φ(ad
1)

Φ(gd
1 )

OO

ad
1

md
2

//

gd
1

OO

Φ(ad
2)

Φ(gd
2 )

OO

ad
n−1

md
n

//

gd
n−1

OO

Φ(ad
n)

Φ(gd
n)

OO

for prn · D. Factorize the cocone gd
n into a jointly epi ed

n : ad
n −→ zn followed by an
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extremal mono jn : zn −→ wn. Do the same thing for the cocone gd
n−1 and then use the

diagonalization property to obtain the desired cn : zn−1 −→ Φ(zn)

wn−1
fn // wn

zn−1
cn //

jn−1

OO

Φ(zn)

Φ(jn)

OO

ad
n−1

ed
n−1

OO

md
n

// Φ(ad
n)

Φ(ed
n)

OO

using the fact that Φ(jn) is extremal mono by assumption. Proceed like this downwards
to 0 and obtain thus one of the above chosen cocones through which the given cocone of
g factorizes.

Corollary 5.13. Every flat module on Lin is compact.

Proof. We indicate that the category Lin of all linear orders and all monotone maps
fulfills the assumptions of the above proposition.

(1) Jointly epi cocones ed : Dd −→ X are exactly those where (the underlying set of) X

is the union of the images of all Dd.
(2) A monotone map j : A −→ B is an extremal mono if and only if j is injective and

the linear order on A is that induced by B.
(3) An extremal mono coming out of a finite linear order is split: Consider j : A −→ B, an

extremal mono with A = {x1, ..., xn} finite. Then define s : B −→ A with s(y) = xi,
when i is the smallest index such that y ≤ j(xi). Then obviously s is an order-
preserving splitting of j.

From the above it is clear that Lin is a (finite jointly epi, extremal mono)-category and
that Linfp is finitely cowellpowered. Moreover, extremal monos coming out of finite linear
orders are preserved by any functor.

Example 5.14. To give various examples of finitary functors, we need to introduce the
following notation: given linear orders X and Y we denote by

X ; Y (read: X then Y )

the linear order on the disjoint union of (the underlying sets of) X and Y by putting
every element of X to be lower than any element of Y and leaving the linear orders of
X and Y unchanged.

The second construction is that of ordinal product , by

X ∗ Y

we denote the linear order on the cartesian product of (underlying sets of) X and Y where
we replace each element of Y by a disjoint copy of X. More precisely, (x, y) < (x′, y′)
holds if and only if either x < x′ holds or x = x′ and y < y′.
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It can be proved easily that, for example, the following two assignments

X 7→ X ∗ ω, X 7→ (X ∗ ω) ; 1

where ω is the first countable ordinal and 1 denotes the one-element linear order, are
finitary functors and they both preserve extremal monos.

Our main result on compact modules is the following one.

Theorem 5.15. Suppose that M is a compact module. Then the Weak Solvability
Condition implies the Strong one.

Proof. We know that Complex(M) is nonempty. We have to construct a cone for every
diagram D : D −→ Complex(M) with D finite nonempty.

Form the corresponding chain

. . . // PD
n+1

pn+1
n // PD

n

pn
n−1

// . . .
p1
0 // PD

0
(5.12)

of preorders and monotone maps. We will verify first that it satisfies Conditions (1)
and (2) of Theorem 5.6.

(1) Each PD
n contains a nonempty finite final subset since the module M is assumed to

be compact.
(2) The image of every upward-closed set under the monotone map pn+1

n is upward-closed.
Denote the value of D : D −→ Complex(M) by

Dd

Dδ

��

=

. . . �
md

3 // ad
2

δ2

��

�
md

2 // ad
1

δ1

��

�
md

1 // ad
0

δ0

��

Dd′ . . . �
md′

3

// ad′

2
�

md′
2

// ad′

1
�

md′
1

// ad′

0

Then the value of prn ·D : D −→ Complexn(M) is given by

prn ·Dd

prn·Dδ

��

=

ad
n �

md
n //

δn

��

. . . �
md

3 // ad
2

δ2

��

�
md

2 // ad
1

δ1

��

�
md

1 // ad
0

δ0

��

prn ·Dd′ ad′

n
�

md′
n

// . . . �
md′

3

// ad′

2
�

md′
2

// ad′

1
�

md′
1

// ad′

0

for every n ≥ 0.
Choose an upward-closed set S ⊆ PD

n+1. Every s ∈ S is a cone for the above diagram
prn+1 ·D and we denote this cone by

s =

sn+1

σd
n+1

��

�
ms

n+1
// . . . �

ms
3 // s2

σd
2

��

�
ms

2 // s1

σd
1

��

�
ms

1 // s0

σd
0

��

ad
n+1 �

md
n+1

// . . . �
md

3

// ad
2 �

md
2

// ad
1 �

md
1

// ad
0
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Choose any s in S and consider b in PD
n such that pn+1

n (s) vn b holds. We need to
find s vn+1 t such that pn+1

n (t) = b.
In our notation, b has the form

b =

bn

βd
n

��

�
mb

n // . . . �
mb

3 // b2

βd
2

��

�
mb

2 // b1

βd
1

��

�
mb

1 // b0

βd
0

��

ad
n �

md
n

// . . . �
md

3

// ad
2 �

md
2

// ad
1 �

md
1

// ad
0

The inequality pn+1
n (s) vn b means that there exists a diagram of the form

sn

gn

��

�
ms

n // . . . �
ms

3 // s2

g2

��

�
ms

2 // s1

g1

��

�
ms

1 // s0

g0

��

bn

βd
n

��

�
mb

n // . . . �
mb

3 // b2

βd
2

��

�
mb

2 // b1

βd
1

��

�
mb

1 // b0

βd
0

��

ad
n �

md
n

// . . . �
md

3

// ad
2 �

md
2

// ad
1 �

md
1

// ad
0

where the equalities βd
i · gi = σd

i hold for every i ∈ {0, . . . , n}.
Consider the following diagram:

sn+1 �
ms

n+1
// sn

gn

��

�
ms

n // . . . �
ms

3 // s2

g2

��

�
ms

2 // s1

g1

��

�
ms

1 // s0

g0

��
sn+1

βd
n+1

��

�
gn@ms

n+1
// bn

βd
n

��

�
mb

n // . . . �
mb

3 // b2

βd
2

��

�
mb

2 // b1

βd
1

��

�
mb

1 // b0

βd
0

��

ad
n+1 �

md
n+1

// ad
n �

md
n

// . . . �
md

3

// ad
2 �

md
2

// ad
1 �

md
1

// ad
0

Thus, the desired t has the form

sn+1

βd
n+1

��

�
gn@ms

n+1
// bn

βd
n

��

�
mb

n // . . . �
mb

3 // b2

βd
2

��

�
mb

2 // b1

βd
1

��

�
mb

1 // b0

βd
0

��

ad
n+1 �

md
n+1

// ad
n �

md
n

// . . . �
md

3

// ad
2 �

md
2

// ad
1 �

md
1

// ad
0

Hence the image of every upward-closed set under the monotone map pn+1
n : PD

n+1 −→
PD

n is upward-closed.

Therefore, by Theorem 5.6, we have an element (xn) of the limit limPD
n .
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Denote every xn as follows:

xn =

xn
n

χn,d
n

��

�
mxn

n // . . . �
mxn

3 // xn
2

χn,d
2

��

�
mxn

2 // xn
1

χn,d
1

��

�
mxn

1 // xn
0

χn,d
0

��

ad
n �

md
n

// . . . �
md

3

// ad
2 �

md
2

// ad
1 �

md
1

// ad
0

From that we can define a complex

. . . �
m

x4
4 // x3

3 �
m

x3
3 // x2

2 �
m

x2
2 // x1

1 �
m

x1
1 // x0

0

that is obviously a vertex of a cone for D : D −→ Complex(M).

Corollary 5.16. Every compact module satisfying the Weak Solvability Condition has
a final coalgebra.

Corollary 5.17. Every finitary endofunctor of the category of linear orders and order-
preserving maps has a final coalgebra.

Example 5.18. Recall from Example 5.14 that the modules corresponding to the finitary
endofunctors

X 7→ X ∗ ω, X 7→ (X ∗ ω) ; 1

of the category Lin are compact. Since Lin satisfies the Weak Solvability Conditions, the
above two functors have final coalgebras by the above corollary. The linear orders of
these coalgebras are the continuum and Cantor space, respectively, see (Pavlović and
Pratt (2002)) for a proof.

Remark 5.19. T. Leinster studies final coalgebras on categories that are formed of
objects that (when represented as set-valued functors) are sums of flat functors. Such
categories are precisely the iterated cocompletions Fam(IndA ), first under filtered colim-
its, then under sums of small categories. We know from (Makkai and Paré (1989)), 5.3.2,
that such categories are equivalent to Ind(famA ), cocompletions of small categories un-
der first (finite) coproducts, then filtered colimits. Moreover the functors on them that
are studied in (Leinster (2011)) preserve all connected colimits, in particular the filtered
ones. Hence the framework of T. Leinster is subsumed under ours.

Remark 5.20. Our results can be extended to finitary endofunctors on categories that
are “continuous” in the sense of (Johnstone and Joyal (1982)), with a small, full, dense
and suitably filtered subcategory. Such categories E arise as retracts, by filtered colimit
preserving functors, of finitely accessible ones:

E
ι

// Ind(C )
ρ

oo

Then the existence of a final coalgebra for a finitary endofunctor Φ on E can be reduced
to the existence of a final coalgebra for ι ·Φ · ρ on the finitely accessible category Ind(C ).
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6. What the Existence of a Final Coalgebra Entails

We show in this section that the existence of final coalgebras entails the Weak Solvability
Condition, provided the module is pointed. As a corollary, we derive a necessary condition
on the category A so that the identity functor on Flat(A ,Set) admits a final coalgebra,
see Corollary 6.4.

Assumption 6.1. We assume in this section that M is pointed , i.e., that M is equipped
with a module morphism c : A −→ M .

Of course, the assumption is clearly satisfied if and only if, when passing from M to
the finitary endofunctor Φ, there exists a natural transformation η: Id −→ Φ. This is
the case when Φ arises as Φ = G · F , where F is a left adjoint, G is a right adjoint
preserving filtered colimits and η is the unit of the adjunction. For example, consider the
endofunctor Φ on Pos0,1 that assigns to a poset with distinct endpoints (X, 0, 1) the set
of finitely based lower sets ({↓(x1, ..., xn)|xi ∈ X}, {0}, ↓(1)) ordered by inclusion. This
functor takes really values in the category of join-semilattices with distinct endpoints, so
Φ as an endofunctor of Pos0,1 arises as a composite with the forgetful functor from join-
semilattices with distinct endpoints. This endofunctor does not admit a final coalgebra
and this is not coincidental as the next Theorem shows.

Remark 6.2. From Assumption 6.1 it follows that every representable functor A (a,−)
admits a coalgebra structure

ca : A (a,−) −→ M(a,−)

for M ⊗− (we used that
(
M ⊗A

)
(a,−) ∼= M(a,−) holds). This of course entails that

Complex(M) is nonempty, see Proposition 3.6.
Moreover, for every f : a −→ a′, the natural transformation A (f,−) : A (a′,−) −→

A (a,−) is a coalgebra morphism, i.e., the square

A (a′,−)
ca′ //

A (f,−)

��

M(a′,−)

M(f,−)

��

A (a,−)
ca

// M(a,−)

(6.13)

commutes.

Theorem 6.3. Suppose that M is pointed and suppose that a final coalgebra for M⊗−
exists. Then pr0 is cofiltering, i.e., the Weak Solvability Condition holds.

Proof. Let us denote by j : J −→ M ⊗ J the final coalgebra for M ⊗−.
Denote by c†a : A (a,−) −→ J the unique coalgebra morphism such that the square

A (a,−)
ca //

c†a

��

M ⊗A (a,−)

M◦c†a
��

J
j

// M ⊗ J
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commutes.
Then the following triangle

A (a′,−)
c†

a′

''OOOOOOO

A (f,−)

��

J

A (a,−)
c†a

77ooooooo

commutes by finality of j : J −→ M ⊗ J and the square (6.13).
Recall that, in any case, one can form a colimit I of the diagram(

Complex(M)
)op prop0 // A op Y // [A ,Set]

We do not claim that I : A −→ Set is flat. In fact, we will just use the fact that I is a
colimit. For observe that so far we have proved that the collection of morphisms

c†
prop0 (a•,m•)

: A (a0,−) −→ J

forms a cocone for the diagram Y · prop0 . Hence there exists a natural transformation

β : I −→ J

The natural transformation β induces a functor F : Complex(M) −→ elts(J) by putting

(a•,m•) 7→ x ∈ Ja0

where the element x ∈ Ja0 corresponds to the natural transformation c†
prop0 (a•,m•)

:
A (a0,−) −→ J by Yoneda Lemma.

Then the diagram

Complex(M) F //

pr0
%%KKKKKKKKKK

elts(J)

proj
{{xxxxxxxx

A

commutes. Since J is a flat functor, the category elts(J) is cofiltered. Hence pr0 = proj ·F
is a cofiltering functor.

Corollary 6.4. If the identity functor on the category Flat(A ,Set) has a final coalgebra,
then the category A must be cofiltered.

Remark 6.5. The above Corollary shows that the identity endofunctor of a Scott com-
plete category K , see Example 2.4((6)), canot have a final coalgebra unless the category
K is in fact locally finitely presentable.

What we have proved so far, allows us to go in full circle:

Corollary 6.6. Suppose that M : A � // A is a pointed, compact module. Then the
following are equivalent:

(1) The self-similarity system (A ,M) satisfies the Weak Solvability Condition.
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(2) The self-similarity system (A ,M) satisfies the Strong Solvability Condition.
(3) The colimit of the diagram(

Complex(M)
)op prop0 // A op Y // [A ,Set]

is a flat functor.
(4) The final coalgebra for M ⊗− exists.

7. Conclusions and Future Research

We have provided a new uniform way of constructing final coalgebras for finitary endo-
functors of locally finitely presentable categories. We have argued about the necessity of
expanding these results to the case of finitely accessible categories. To that end we have
formulated general conditions that are sufficient for the existence of a final coalgebra.
We expect that our conditions can be exploited for finding new interesting examples of
final coalgebras in accessible categories.

In many concrete examples where the final coalgebra cannot exist for cardinality rea-
sons (e.g., the categories where all maps are injections) we expect that suitable modifi-
cations of our results will provide coalgebras of “rational terms”. This means coalgebras
comprising of solutions of finitary recursive systems, see (Adámek, Milius and Velebil
(2006)).

A further extension of our work, based on a suitable modification of the key-notion
of complex, is expected to yield results about the existence of cofree coalgebras in the
environment of finitely accessible categories.
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