
1

Computational Intelligence Algorithms
and DNA Microarrays

D.K. Tasoulis1, V.P. Plagianakos2, and M.N. Vrahatis2

1 Institute for Mathematical Sciences, Imperial College London,
South Kensington, London SW7 2PG, United Kingdom
d.tasoulis@imperial.ac.uk

2 Computational Intelligence Laboratory, Department of Mathematics,
University of Patras Artificial Intelligence Research Center (UPAIRC),
University of Patras, GR–26110 Patras, Greece
{vpp,vrahatis}@math.upatras.gr

Summary. In this chapter, we present Computational Intelligence algorithms, such as Neural
Network algorithms, Evolutionary Algorithms, and clustering algorithms and their application
to DNA microarray experimental data analysis. Additionally, dimension reduction techniques
are evaluated. Our aim is to study and compare various Computational Intelligence approaches
and demonstrate their applicability as well as their weaknesses and shortcomings to efficient
DNA microarray data analysis.

1.1 Introduction

The development of microarray technologies gives scientists the ability to examine,
discover and monitor the mRNA transcript levels of thousands of genes in a single
experiment. The development of technologies capable to simultaneously study the
expression of every gene in an organism has provided a wealth of biological insight.
Nevertheless, the tremendous amount of data that can be obtained from microarray
studies presents a challenge for data analysis.

This challenge is twofold. Primarily, discovering patterns hidden in the gene
expression microarray data across a number of samples that are correlated with a
specific condition is a tremendous opportunity and challenge for functional genomics
and proteomics [1–3]. Unfortunately, employing any kind of pattern recognition al-
gorithm to such data is hindered by the curse of dimensionality (limited number of
samples and very high feature dimensionality). This is the second challenge. Usu-
ally to address this, one has to preprocess the expression matrix using a dimension
reduction technique [4] and/or to find a subset of the genes that correctly character-
izes the samples. Note that this is not similar to “bi-clustering”, which refers to the
identification of genes that exhibit similar behavior across a subset of samples [5,6].
In this chapter we examine the application of various Computational Intelligence

D.K. Tasoulis et al.: Computational Intelligence Algorithms and DNA Microarrays, Studies in Computational Intelli-
gence (SCI) 94, 1–31 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

2 D.K. Tasoulis et al.

methodologies to face problems arising from the twofold nature of the microarray
data. We also examine various manners to combine and interact algorithms towards
a completely automated system.

To this end the rest of this chapter is structured as follows. Sections 1.2 and 1.3
are devoted to a brief presentation of Neural Networks as classification tools, Evo-
lutionary Algorithms that can be used for dimension reduction, and their synergy. In
Section 1.4 various feature selection and dimension reduction techniques are pre-
sented, starting from the Principal Component Analysis, continuing with several
clustering algorithms, and finally we analyze hybrid approaches. In Section 1.5 using
well known and publicly available DNA microarray problems, we study and exam-
ine feasible solutions to many implementation issues and report comparative results
of the presented algorithms and techniques. The chapter ends with a brief discussion
and some concluding remarks.

1.2 Neural Networks

Feedforward Neural Networks (FNNs) are parallel computational models comprised
of densely interconnected, simple, adaptive processing units, characterized by an
inherent propensity for storing experiential knowledge and rendering it available for
use. FNNs have been successfully applied in numerous application areas, including
DNA microarray data analysis [7].

To train an FNN, supervised training is probably the most frequently employed
technique. The training process is an incremental adaptation of connection weights
that propagate information between neurons. A finite set of arbitrarily ordered exam-
ples is presented at the input of the network and associated to appropriate references
through an error correction process. This can be viewed as the minimization of
an error measure, which is usually defined as the sum-of-squared-differences error
function E over the entire training set:

w∗ = min
w∈Rn

E(w), (1.1)

where w∗ = (w∗
1,w

∗
2, . . . ,w

∗
n) ∈ R

n is a minimizer of E . The rapid computation of
such a minimizer is a rather difficult task since, in general, the number of network
weights is high and the corresponding nonconvex error function possesses multitudes
of local minima and has broad flat regions adjoined with narrow steep ones.

Let us consider the family of gradient–based supervised learning algorithms
having the iterative form:

wk+1 = wk + ηkdk, k = 0,1,2, . . . (1.2)

where wk is the current weight vector, dk is a search direction, and ηk is a global
learning rate, i.e. the same learning rate is used to update all the weights of the
network. Various choices of the direction dk give rise to distinct algorithms. A broad
class of methods uses the search direction dk =−∇E(wk), where the gradient ∇E(w)

1 Computational Intelligence and Microarrays 3

can be obtained by means of back–propagation of the error through the layers of the
network [8]. The most popular training algorithm of this class, named batch Back–
Propagation (BP), minimizes the error function using the steepest descent method [9]
with constant, heuristically chosen, learning rate η . In practice, a small value for the
learning rate is chosen (0 < η < 1) in order to secure the convergence of the BP
training algorithm and to avoid oscillations in a direction where the error function is
steep. It is well known that this approach tends to be inefficient. This happens, for
example, when the search space contains long ravines that are characterized by sharp
curvature across them and a gently slopping floor.

Next, we give an overview of two neural network training algorithms: the Rprop
algorithm and the adaptive online algorithm. Both algorithms have been used on
DNA microarray problems. Rprop is one of the fastest and most effective training
algorithms. On the other hand, adaptive online seems more suitable for this kind of
problems, due to its ability to train FNNs using extremely large training sets.

1.2.1 The Rprop Neural Network Training Algorithm

The Resilient backpropagation (Rprop) [10] algorithm is a local adaptive learning
scheme performing supervised training of FNNs. To update each weight of the net-
work, Rprop exploits information concerning the sign of the partial derivative of
the error function. The size of the weight change, ∆wi j , is determined by a weight

specific update value, ∆ (t)
i j , given by the following formula:

∆w(t)
i j =

⎧⎪⎪⎨⎪⎪⎩
−∆ (t)

i j , if ∂E(t)

∂wi j
> 0,

+∆ (t)
i j , if ∂E(t)

∂wi j
< 0,

0, otherwise,

where ∂E(t)/∂wi j denotes the summed gradient information over all patterns of the
training set (batch training). The second step of the Rprop algorithm is to determine
the new update values, using the following formula:

∆ (t)
i j =

⎧⎪⎪⎨⎪⎪⎩
η+∆ (t−1)

i j , if ∂E(t−1)

∂wi j

∂E(t)

∂wi j
> 0,

η−∆ (t−1)
i j , if ∂E(t−1)

∂wi j

∂E(t)

∂wi j
< 0,

∆ (t−1)
i j , otherwise,

where 0 < η− < 1 < η+, i.e. each time the partial derivative with respect to wi j

changes its sign, which is an indication that the last update was too big and the

algorithm has possibly overshot a local minimizer, the update value ∆ (t)
i j is decreased

by η−. If the derivative retains its sign, the update value is slightly increased to
further accelerate convergence in shallow regions of the weight space.

In our experiments, the five parameters of the Rprop method were initialized
using values commonly encountered in the literature. More specifically, the increase
factor was set to η+ = 1.2; the decrease factor was set to η− = 0.5; the initial

4 D.K. Tasoulis et al.

update value is set to ∆0 = 0.07; the maximum step, which prevents the weights
from becoming too large, was ∆max = 50; and the minimum step, which is used to
avoid too small weight changes, was ∆min = 10−6.

1.2.2 The Adaptive Online Neural Network Training Algorithm

Despite the abundance of methods for learning from examples, there are only a few
that can be used effectively for on–line learning. For example, the classic batch
training algorithms cannot straightforwardly handle non–stationary data. Even when
some of them are used in on–line training there exists the problem of “catastrophic
interference”, in which training on new examples interferes excessively with previ-
ously learned examples, leading to saturation and slow convergence [11].

Methods suited to on–line learning are those that can efficiently handle non–
stationary and time–varying data, while at the same time, require relatively little
additional memory and computation to process one additional example. The Adap-
tive Online Backpropagation (AOBP) algorithm [12,13] belongs to this class and can
be used in on–line neural networks training. A high level description of the algorithm
is given in Algorithm 1.

In the algorithm model η is the learning rate, K is the meta–learning rate and
〈·, ·〉 stands for the usual inner product in R

n. As the termination condition the clas-
sification error, or an upper limit to the error function evaluations can be used. The
key features of this method are the low storage requirements and the inexpensive
computations. Moreover, in order to calculate the learning rate for the next iteration,
it uses information from the current, as well as, the previous iteration. This seems to
provide some kind of stabilization in the calculated values of the learning rate, and
previous experiments show that it helps the method to exhibit fast convergence and
high success rate.

THE TRAINING ALGORITHM

0: Initialize the weights w0, η0, and K.
1: Repeat
2: Set k = k +1
3: Randomly choose a pattern from the training set.
4: Using this pattern, calculate the error, E(wk)

and then the gradient, ∇E(wk).
5: Calculate the new weights using:

wk+1 = wk −ηk∇E(wk)
6: Calculate the new learning rate using:

ηk+1 = ηk +K
〈
∇E(wk−1),∇E(wk)

〉
7: Until the termination condition is met.
8: Return the final weights wk+1.

Algorithm 1: The Online Training Algorithm in Pseudocode

1 Computational Intelligence and Microarrays 5

1.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are stochastic search methods that mimic the
metaphor of natural biological evolution. They operate on a population of potential
solutions applying the principle of survival of the fittest to produce better and better
approximations to a solution. At each generation, a new set of approximations is
created by the process of selecting individuals according to their level of fitness in
the problem domain and breeding them together using operators borrowed from
natural genetics [14]. Many attempts have been made within the Artificial Intelli-
gence community to integrate EAs and ANNs. We examine the application of EAs
to microarray classification to determine the optimal, or near optimal, subset of
predictive genes on the complex and large spaces of possible gene sets. Next we
outline the Differential Evolution algorithm and its search operators.

The Differential Evolution Algorithm

Differential Evolution [15] is an optimization method, capable of handling non dif-
ferentiable, nonlinear and multimodal objective functions. To fulfill this requirement,
DE has been designed as a stochastic parallel direct search method, which utilizes
concepts borrowed from the broad class of evolutionary algorithms. The method
typically requires few, easily chosen, control parameters. Experimental results have
shown that DE has good convergence properties and outperforms other well known
evolutionary algorithms [15]. DE has been applied on numerous optimization tasks.
It has successfully solved many artificial benchmark problems [16], as well as, hard
real–world problems (see for example [17]). In [18] it was employed to train neural
networks and in [19, 20] we have proposed a method to efficiently train neural net-
works having arbitrary, as well as, constrained integer weights. The DE algorithm
has also been implemented on parallel and distributed computers [21, 22].

DE is a population–based stochastic algorithm that exploits a population of po-
tential solutions, individuals, to effectively probe the search space. The population
of the individuals is randomly initialized in the optimization domain with NP, n–
dimensional vectors, following a uniform probability distribution and is evolved over
time to explore the search space. NP is fixed throughout the training process. At
each iteration, called generation, new vectors are generated by the combination of
randomly chosen vectors from the current population. This operation in our con-
text is referred to as mutation. The resulting vectors are then mixed with another
predetermined vector – the target vector – and this operation is called recombina-
tion. This operation yields the so–called trial vector. The trial vector is accepted for
the next generation depending on the value of the fitness function. Otherwise, the
target vector is retained in the next generation. This last operator is referred to as
selection.

The search operators efficiently shuffle information among the individuals, en-
abling the search for an optimum to focus on the most promising regions of the
solution space. The first operator considered is mutation. For each individual xi

g,

6 D.K. Tasoulis et al.

i = 1, . . . ,NP, where g denotes the current generation, a new individual vi
g+1 (mutant

vector) is generated according to one of the following equations:

vi
g+1 = xbest

g + µ(xr1
g − xr2

g), (1.3)

vi
g+1 = xr1

g + µ(xr2
g − xr3

g), (1.4)

vi
g+1 = xi

g + µ(xbest
g − xi

g)+ µ(xr1
g − xr2

g), (1.5)

vi
g+1 = xbest

g + µ(xr1
g − xr2

g)+ µ(xr3
g − xr4

g), (1.6)

vi
g+1 = xr1

g + µ(xr2
g − xr3

g)+ µ(xr4
g − xr5

g), (1.7)

where xbest
g is the best member of the previous generation; µ > 0 is a real param-

eter, called mutation constant, which controls the amplification of the difference
between two individuals so as to avoid the stagnation of the search process;
and r1,r2,r3,r4,r5 ∈ {1,2, . . . , i− 1, i+ 1, . . . ,NP}, are random integers mutually
different.

Trying to rationalize the above equations, we observe that Equation (1.4) is sim-
ilar to the crossover operator used by some Genetic Algorithms and Equation (1.3)
derives from it, when the best member of the previous generation is employed.
Equations (1.5), (1.6) and (1.7) are modifications obtained by the combination of
Equations (1.3) and (1.4). It is clear that more such relations can be generated using
the above ones as building blocks.

The recombination operator is subsequently applied to further increase the diver-
sity of the mutant individuals. To this end, the resulting individuals are combined
with other predetermined individuals, called the target individuals. Specifically, for
each component l (l = 1,2, . . . ,n) of the mutant individual vi

g+1, we choose randomly
a real number r in the interval [0,1]. We then compare this number with the recombi-
nation constant, ρ . If r � ρ , we select, as the l–th component of the trial individual
ui

g+1, the l–th component of the mutant individual vi
g+1. Otherwise, the l–th compo-

nent of the target vector xi
g+1 becomes the l–th component of the trial vector. This

operation yields the trial individual. Finally, the trial individual is accepted for the
next generation only if it reduces the value of the objective function.

One problem when applying EAs, in general, is to find a set of control parameters
which optimally balances the exploration and exploitation capabilities of the algo-
rithm. There is always a trade off between the efficient exploration of the search space
and its effective exploitation. For example, if the recombination and mutation rates
are too high, much of the search space will be explored, but there is a high probability
of losing good solutions. In extreme cases the algorithm has difficulty to converge to
the global minimum due to the insufficient exploitation. Fortunately, the convergence
properties of DE typically do not depend heavily on its control parameters.

Although, DE performs stably across the space of possible parameter settings,
different operators may exhibit different convergence properties. More specifically,
DE operators that use the best individual as a starting point for the computation
of the mutant vector, constantly push the population closer to the location of the
best computed point. On the other hand, operators that utilize many randomly cho-
sen individuals for the computation of the mutant individual, greatly enhance the

1 Computational Intelligence and Microarrays 7

exploration capability of the algorithm. In [23] we present a detailed study and
experimental results on exploration vs. exploitation issues.

1.4 Feature Selection and Dimension Reduction Techniques

An important issue in any classification task is to define those features that signifi-
cantly contribute to the classification of interest, while at the same time discarding the
least significant and/or erroneous ones. This procedure is also referred to as dimen-
sion reduction. The problem of high dimensionality is often tackled by user specified
subspaces of interest. However, user–identification of the subspaces is error–prone,
especially when no prior domain knowledge is available. Another way to address
high dimensionality is to apply a dimensionality reduction method to the dataset.
Methods such as the Principal Component Analysis [24], optimally transform the
original data space into a lower dimensional space by forming dimensions that are
linear combinations of given attributes. The new space has the property that distances
between points remain approximately the same as before. Alternatively, one can ap-
ply a clustering algorithm to the data set in order to reduce the dimensionality of the
problem. To this end, the Principal Component Analysis, as well as several clustering
algorithms used for dimension reduction are presented below.

1.4.1 Principal Component Analysis

In general, the Principal Component Analysis (PCA) is a powerful multivariate
data analysis method [4]. Its main purpose is to reduce and summarize large and
high dimensional datasets by removing redundancies and identifying correlation
among a set of measurements or variables. It is a useful statistical technique that
has found many applications in different scientific fields such as face recognition,
image processing and compression, molecular dynamics, information retrieval, and
gene expression analysis. PCA is mainly used in gene expression analysis in order
to find an alternative representation of the data using a much smaller number of vari-
ables, as well as, to detect characteristic patterns in noisy data of high dimensionality.
More specifically, PCA is a way of identifying patterns in data and expressing the
data in such a way as to highlight their similarities and differences. Since patterns
in high dimensional data can be hard to find, PCA is a powerful tool of analysis,
especially when the visualization of the data is impossible.

Although PCA may succeed in reducing the dimensionality, the new dimensions
can be difficult to interpret. Moreover, to compute the new set of dimensions in-
formation from all the original dimensions is required. The selection of a subset
of attributes in the context of clustering is studied in [25, 26]. In the context of
classification, subset selection has also been studied [24].

1.4.2 Reducing the Dimensions Using Clustering

Clustering can be defined as the process of “grouping a collection of objects into
subsets or clusters, such that those within one cluster are more closely related to

8 D.K. Tasoulis et al.

each other than objects assigned to different clusters” [27]. Clustering is applied
in various fields including data mining [28], statistical data analysis and social sci-
ences [29], compression and vector quantization [30], global optimization [31, 32],
image analysis, and others. Clustering techniques have been successfully applied to
gene expression data [33–36] and have proved useful for identifying biologically
relevant groupings of genes and samples [37].

Cluster analysis is one key step in understanding how the activity of genes varies
during biological processes and is affected by disease states and cellular environ-
ments. In particular clustering can be used either to identify sets of genes according
to their expression in a set of samples [34, 38], or to cluster samples into homoge-
neous groups that may correspond to particular macroscopic phenotypes [39]. The
latter is in general more difficult, but is very valuable in clinical practice.

Identifying sets of genes that have a similar expression in a set of samples
can lead to a successful dimension reduction technique. Aiming to this, clustering
methodology can be applied to identify meaningful clusters of features (genes), and
subsequently feature selection can be accomplished by selecting one or more repre-
sentatives from each cluster. Such a selection can be based on the distance among the
feature values and the identified cluster center. The feature with the minimum such
distance from the cluster center can be a valid selection.

Although numerous clustering algorithms exist [40], mostly hierarchical clus-
tering methods have been applied to microarray data. Hierarchical clustering algo-
rithms construct hierarchies of clusters in a top–down (agglomerative) or bottom–up
(divisive) fashion. This kind of algorithms have proved to give high quality results.
One of the most representative hierarchical approaches is the one developed by
Eisen et al. [34]. In that work, the authors employed an agglomerative algorithm
and adopted a method for the graphical representation of the clustered dataset. This
method has been widely used by many biologists and has become the most widely
used tool in gene expression data analysis [33, 41, 42]. Nonetheless, the high sen-
sitivity of agglomerative methods to small variations of the inputs and the high
computational requirements, their usage is hindered in real applications, where the
number of samples and their dimensionality is expected to be high (the cost is
quadratic to the number of samples).

Partitioning clustering algorithms, start from an initial clustering (that may be
randomly formed) and create flat partitionings by iteratively adjusting the clusters
based on the distance of the data points from a representative member of the clus-
ter. The most commonly used partitioning clustering algorithm is k–means. This
algorithm initializes k centers and iteratively assigns each data point to the cluster
whose centroid has the minimum Euclidean distance from the data point. Although,
k–means type algorithms can yield satisfactory clustering results at a low cost, as
their running time is proportional to kn, where n is the number of samples, they
heavily depend on the initialization. Additionally, there is no automatic technique
able to select the number of clusters k, but most of the times this is achieved by
examining the results of successive re-executions of the algorithm.

Graph theoretical clustering approaches construct a proximity graph, in which
each data point corresponds to a vertex, and the edges among vertices model their

1 Computational Intelligence and Microarrays 9

proximity. Xing and Karp [43], developed a sample–based clustering algorithm
named CLIFF (CLustering via Iterative Feature Filtering), which iteratively employs
sample partitions as a reference to filter genes. The selection of genes through this
approach relies on the outcome of an NCut algorithm, which is not robust to noise
and outliers.

Another graph theoretical algorithm, CLICK (CLuster Identification via Connec-
tivity Kernels) [35], tries to recognize highly connected components in the proximity
graph as clusters. The authors demonstrated the superior performance of CLICK to
the approaches of Eisen et al. [34], and the Self Organizing Map [44] based clustering
approach. However, as claimed in [1], CLICK has little guarantee of not generating
highly unbalanced partitions. Furthermore, in gene expression data, two clusters of
co–expressed genes, C1 and C2, may be highly intersected with each other. In such
situations, C1 and C2 are not likely to be split by CLICK, but would be reported as
one highly connected component.

Finally, Alter et al. [45], by examining the projection of the data to a small
number of principal components obtained through a Principal Component Analy-
sis, attempt to capture the majority of gene variations. However, the large num-
ber of irrelevant genes does not guarantee that the discriminatory information will
be highlighted to the projected data. For an overview of the related literature see
[1–3, 46].

Below, we briefly describe five well–known clustering algorithms, namely, a) the
unsupervised k–windows clustering algorithm [47,48]. (UkW) b) the Density–Based
Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm [49],
c) the Principal Direction Divisive Partitioning (PDDP) clustering algorithm [50],
d) the fuzzy c–means (FCM) clustering algorithm [51], and e) the Growing Neural
Gas (GNG) [52]. Note that the UkW, DBSCAN and GNG, apart from identifying
the clusters, are also able to approximate the number of clusters present in the data
set; thus no special knowledge about the data is required. However, PDDP and FCM
need explicit determination of the cluster number. The PDDP, algorithm has also the
ability to endogenously handle the large dimensionality since it is based on the PCA
technique.

Unsupervised k–Windows Clustering Algorithm

One of the most important class of clustering algorithms are the density based
methods [53–55], especially for data of low attribute dimensionality [56–58]. These
methods operate by identifying regions of high density in dataset objects, surrounded
by regions of low density. One recently proposed technique in this class is the “Unsu-
pervised k–Windows” (UkW) [48], that utilizes hyperrectangles to discover clusters.
The algorithm makes use of techniques from computational geometry and encapsu-
lates clusters using linear containers in the shape of d–dimensional hyperrectangles
that are iteratively adjusted with movements and enlargements until a certain termi-
nation criterion is satisfied [48, 59]. Furthermore, with proper tuning, the algorithm
is able to detect clusters of arbitrary shapes [59].

10 D.K. Tasoulis et al.

E1
E2

(b)
M1

M4
M3

M2

M4

(a)

Fig. 1.1. (a) Sequential movements M2, M3, M4 of initial window M1. (b) Sequential
enlargements E1, E2 of window M4

W4

W2

W3(b)(a)
W1

W5

W6

(c)

Fig. 1.2. (a) W1 and W2 satisfy the similarity condition and W1 is deleted. (b) W3 and W4
satisfy the merge operation and are considered to belong to the same cluster. (c) W5 and W6
have a small overlap and capture two different clusters

UkW aims at capturing all objects that belong to one cluster within a d–
dimensional window. Windows are defined to be hyperrectangles (orthogonal
ranges) in d dimensions [48]. UkW employs two fundamental procedures: move-
ment and enlargement. The movement procedure aims at positioning each window
as close as possible to the center of a cluster. The enlargement process attempts to
enlarge the window so that it includes as many objects from the current cluster as
possible. The two steps are illustrated in Figure 1.1.

A fundamental issue in cluster analysis, independent of the particular clustering
technique applied, is the determination of the number of clusters present in a dataset.
For instance well–known and widely used iterative techniques, such as the k–means
algorithm [60] as well as the fuzzy c–means algorithm [51], require from the user to
specify the number of clusters present in the data prior to the execution of the algo-
rithm. UkW provides an estimate for the number of clusters that describe a dataset.
The key idea is to initialize a large number of windows. When the movement and
enlargement of all windows terminate, all overlapping windows are considered for
merging by considering their intersection. An example of this operation is exhibited
in Figure 1.2. For a detailed description of the algorithm see [59].

The DBSCAN Clustering Algorithm

The DBSCAN [49] clustering algorithm relies on a density–based notion of clus-
ters and is designed to discover clusters of arbitrary shape as well as to distinguish

1 Computational Intelligence and Microarrays 11

p and q are density connected

q is not density reachable from p
p is density reachable from q

p

q

qo

p

Fig. 1.3. An example of “Density–Reachable” and “Density Connected” points

noise. More specifically, the algorithm is based on the idea that in a neighborhood
of a given radius (Eps) for each point in a cluster at least a minimum number of
objects (MinPts) should be contained. Such points are called core points and each
point in their neighborhood is considered as “Directly Density–Reachable” from that.
Consequently the algorithm uses the notion of density reachable chains of objects;
i.e. a point q is “Density–Reachable” from a point p, if there is a chain of objects
p1, . . . , pk such that p1 = q, pk = p and pi+1 is “Directly Density–Reachable” from
pi for i = 1, . . . ,k. Finally, a point p is defined as “Density Connected” to a point q, if
there is a point o that both p,q are “Density–Reachable” from that. Fig 1.3, illustrates
an example of these definitions.

Using the above described definitions, the algorithms considers as a cluster the
subset of points from the dataset that are “Density–Reachable” from each other and
additionally each pair of points inside the cluster is “Density Connected”. Any point
of the dataset not in a cluster is considered as noise.

To discover the clusters the algorithm retrieves density–reachable points from
the data by iteratively collecting directly density–reachable objects. The algorithm
scans the eps, neighborhood of each point in the database. If that neighborhood
has more than MinPts points a new cluster C containing them is created. Then, the
neighborhood of all points q in C which have not yet been processed is checked. If the
points in neighborhood of q are more than MinPts, then those which are not already
contained in C are added to the cluster and their neighborhood will be checked in a
subsequent step. This procedure is iterated until no new point can be added to the
current cluster C. In Fig 1.4, an example of the result of the DBSCAN algorithm
is demonstrated, for three clusters of different sizes, with convex and non–convex
shape. Additionally, some of the neighborhoods are depicted, to better illustrate the
operation of the algorithm. For a detailed description of the algorithm see [54].

12 D.K. Tasoulis et al.

Cluster 1

Cluster 3

Cluster 2

Outliers (Noise)

Outliers (Noise)

Fig. 1.4. An example of the result of the DBSCAN algorithm

The Fuzzy c–Means Clustering Algorithm

The Fuzzy c–Means (FCM) algorithm [51], considers each cluster as a fuzzy set. It
firstly initializes a number of c prototype vectors (centroids) p j over the dataset.
The centroids represent the center of the clusters. Next it computes a degree of
membership for every data vector xi at each cluster using the membership function:

µ j(xi) =

(
c

∑
l=1

(‖xi − p j‖
‖xi − pl‖

)1/r−1
)−1

,

which takes values in the interval [0,1], where r ∈ (1,∞) determines the fuzziness of
the partition. If r tends to 1+, then the resulting partition asymptotically approaches
a crisp partition. On the other hand, if r tends to infinity, the partition becomes a
maximally fuzzy partition. Finally, the c prototypes are updated using the following
equation:

P j =
∑n

i=1

[
mj(xi)

]r
xi

∑n
i=1 [m j(xi)]r

.

This procedure is iteratively repeated until the measure of the distortion:

d =
c

∑
j=1

n

∑
i=1

[
mj(xi)

]r ‖xi − pl‖2,

changes less than a user defined threshold.

1.4.3 The PDDP Clustering Algorithm

The PDDP algorithm [50], is a divisive clustering algorithm. The key component in
this algorithm is the computation of the principal directions of the data. Starting with

1 Computational Intelligence and Microarrays 13

an initial cluster of all the data points, the algorithm iteratively splits the clusters. The
use of a distance or similarity measure is limited to deciding which cluster should
be split next, but the similarity measure is not used to perform the actual splitting.
In detail, all the data points are projected onto the leading eigenvector of the covari-
ance matrix of the data. Based on the sign of that projection the algorithm splits an
initial cluster into two. This fact enables the algorithm to operate on extremely high
dimensional spaces. PDDP, as well as PDDP(l) [61], which is a recent generalization
of PDDP, does not provide a direct estimation for the number of clusters. Proposed
methods that provide such estimations through these algorithms are based on scat-
tering of the data around their centroids. Nonetheless, they tend to overestimate the
true number of clusters resulting in rigid clustering [50, 61].

1.4.4 Growing Neural Gas

GNG [52] is an incremental neural network. It can be described as a graph consisting
of k nodes, each of which has an associated weight vector, wj, defining the node’s
position in the data space and a set of edges between the node and its neighbors.
During the clustering procedure, new nodes are introduced into the network until a
maximal number of nodes is reached. GNG starts with two nodes, randomly posi-
tioned in the data space, connected by an edge. Adaptation of weights, i.e. the nodes
position, is performed iteratively. For each data object the closest node (winner), s1,
and the closest neighbor of a winner, node s2, are determined. These two nodes are
connected by an edge.

An age variable is associated with each edge. At each learning step the ages of all
edges emanating from the winner are increased by 1. When the edge connecting s1

and s2 is created its age is set to 0. By tracing the changes of the age variable inactive
nodes are detected. Any nodes having no emanating edges and edges exceeding a
maximal age are removed.

The neighborhood of the winner is limited to its topological neighbors. The win-
ner and its topological neighbors are moved in the data space toward the presented
object by a constant fraction of the distance, defined separately for the winner and its
topological neighbors. There is no neighborhood function or ranking concept. Thus,
all topological neighbors are updated in the same manner.

1.4.5 A Hybrid Approach

The PCA technique optimally transforms the data set, with limited loss of informa-
tion, to a space of significantly lower dimension. However, it is a global technique in
the sense that does not deal with special characteristics that might exist in different
parts of the data space.

To deal with this it is possible to hybridize a clustering algorithm and PCA.
Firstly, the entire data set is partitioned into clusters of features, and next, each
feature cluster can be independently transformed to a lower dimension space through
the PCA technique. This application of the PCA is local and has the potential of better
adapting to the special characteristics that might exist in the data set.

14 D.K. Tasoulis et al.

The techniques reported in this section should not be confused with any kind of
bi-clustering approach [5,6]. In the latter case the aim is to find subsets of genes that
exhibit a similar behavior for a subset of samples. However the techniques reported
below aim to either organize the genes in groups and infer compact representation
for each group. Either they aim to recognize clusters of samples that have a physical
common character. Sometimes to achieve this the compact representations inferred
from the initial procedure are employed but this is quite different to the bi-clustering
point of view.

1.5 Experimental Analysis

In this Section we initially describe the microarray problems used in the remain-
ing of this chapter. Then, we perform an extensive evaluation of various clustering
algorithms for supervised as well as unsupervised classification of the data sets. Sub-
sequently, we implement and test FNN classifiers combined with clustering methods
and the PCA dimension reduction technique. Finally, we report results from a hybrid
approach that utilizes EAs for gene selections and FNNs for classification.

1.5.1 DNA Microarray Problems

The evaluation of all the Computational Intelligence algorithms presented in this
chapter is performed through the following well–known and publicly available data
sets:

(a) The ALL–AML data set [39]. This study examines mRNA expression profiles
from 72 leukemia patients to develop an expression–based classification method
for acute leukemia. In the data set each sample is measured over 7129 genes.
The first 38 samples were used for the clustering process (train set), while the
remaining 34 were used to evaluate the clustering result (test set). The initial
38 samples contained 27 acute myeloid leukemia (ALL) samples and 11 acute
lymphoblastic leukemia (AML) samples. The test set contained 20 ALL samples
and 14 AML samples. The data set is available at:
http://www.broad.mit.edu/cancer/pub/all_aml

(b) The COLON data set [33] consists of 40 tumor and 22 normal colon tissues. For
each sample there exist 2000 gene expression level measurements. The data set
is available at:
http://microarray.princeton.edu/oncology

(c) The PROSTATE data set [62] contains 52 prostate tumor samples and 50 non-
tumor prostate samples. For each sample there exist 6033 gene expression level
measurements. It is available at:
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

(d) The LYMPHOMA dataset [41] that contains 62 samples of the 3 lymphoid ma-
lignancies samples types. The samples are measured over 4026 gene expression
levels. This dataset is available at:
http://genome-www.stanford.edu/

1 Computational Intelligence and Microarrays 15

All the data sets contain a relatively large number of patients and have been well
characterized and studied. Notice that no additional preprocessing or alteration was
performed to the data, except for the application of the methods described in this
chapter.

1.5.2 Evaluation of the Clustering Algorithms

In the literature, both supervised and unsupervised classifiers have been used to build
classification models from microarray data. Supervised classifiers employ predefined
information about the class of the data to build the classification model. On the other
hand, no class information is necessary to the unsupervised methods.

To investigate the performance of the clustering algorithms on gene expression
microarray data we primarily employ the data set from the ALL–AML microarray
problem. We performed two independent sets of experiments. In the first set, the
clustering methodology was applied on two previously published gene subsets as
well as their union. The comparative results assess the comparative performance of
the clustering algorithms.

In the second set of experiments, we do not use class information for the gene
selection. To this end, to reduce the dimensionality of the problem we use the PCA
technique, as well as, dimension reduction through clustering. This second set of
experiments is closer to real life applications where no class information is a priori
known. Moreover, the hybridization of clustering and the PCA is evaluated. The
hybrid scheme seems also able to provide results equivalent to those obtained with
the supervised gene selection. Thus, this scheme is also applied on the remaining
three data sets for further evaluation.

Clustering Based on Supervised Gene Selection

Generally, in a typical biological system, it is often not known how many genes are
sufficient to characterize a macroscopic phenotype. In practice, a working mecha-
nistic hypothesis that is testable and largely captures the biological truth, seldom
involves more than a few dozens of genes. Therefore, identifying the relevant genes
is critical [43]. Initially, we intended to study the performance of the UkW clustering
algorithm, so we applied it over the complete ALL–AML train set. The algorithm
was applied to the measurements of the 7129 genes, as well as various randomly
selected gene subsets having from 10 to 2000 genes each. The algorithm produced
clusters that often contained both AML and ALL samples. Typically, at least 80%
of all the samples that were assigned to a cluster were characterized by the same
leukemia type.

To improve the quality of the clustering, it proved essential to identify sets of
genes that significantly contribute to the partition of interest. Clearly, there exist
many such sets and it is difficult to determine the best one. To this end, we tested the
UkW clustering algorithm on two previously discovered subsets of significant genes.
The first set has been published in the original paper of Golub et al. [39] (we call it
GeneSet1), while the second set was proposed by Thomas et al. [63] (GeneSet2).

16 D.K. Tasoulis et al.

Each dataset contains 50 genes. Furthermore, we tested the clustering algorithms on
the union of the above gene sets (GeneSet3), consisting of 72 genes.

In [39] GeneSet1 was constructed by electing 50 highly correlated genes with
the ALL–AML class distinction. Next, the authors used a Self Organizing Map [64]
based clustering approach, to discover clusters on the training set. SOM automati-
cally grouped the 38 samples into two classes, one containing 24 out of the 25 ALL
samples, and the other containing 10 out of the 13 AML samples.

Regarding the second set of genes (GeneSet2), the 50 most highly correlated
genes with the ALL–AML class distinction (top 25 differentially expressed probe
sets in either sample group) have been selected. More specifically, the selection ap-
proach is based on well–defined assumptions, uses rigorous and well–characterized
statistical measures, and tries to account for the heterogeneity and genomic com-
plexity of the data. The modelling approach uses known sample group membership
to focus on expression profiles of individual genes in a sensitive and robust man-
ner, and can be used to test statistical hypotheses about gene expression. For more
information see [63].

Applying the UkW algorithm on those 3 gene train sets, each produced 6 clusters
containing ALL or AML samples. Table 1.1 exhibits the results. More specifically,
the algorithm using GeneSet1 discovered 4 ALL clusters and 2 AML clusters (3
misclassifications), while using GeneSet2 discovered 4 clusters containing only ALL
samples and 2 clusters containing only AML samples (0 misclassifications). The
algorithm discovered 4 ALL clusters and 2 AML clusters (1 misclassification) when
applied to GeneSet3. GeneSet2 yielded the best results in the training set (followed
by GeneSet3).

Table 1.1. The performance of the UkW algorithm for the different train sets

Clustering result for the train set GeneSet1
ALL accuracy: 87.5% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 4 4 12 4 3 0
AML 0 0 0 0 4 7

Clustering result for the train set GeneSet2
ALL accuracy: 100.0% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 10 3 10 4 0 0
AML 0 0 0 0 8 3

Clustering result for the train set GeneSet3
ALL accuracy: 95.83% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 8 9 5 4 0 1
AML 0 0 0 0 7 4

1 Computational Intelligence and Microarrays 17

Table 1.2. The performance of the UkW algorithm for the different test sets

Clustering result for the test set GeneSet1
ALL accuracy: 60.00% — AML accuracy: 92.85%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 2 0 7 3 8 0
AML 1 0 0 0 8 5

Clustering result for the test set GeneSet2
ALL accuracy: 100% — AML accuracy: 78.57%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 8 0 9 3 0 0
AML 0 0 3 0 8 3

Clustering result for the test set GeneSet3
ALL accuracy: 90% — AML accuracy: 100%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 10 4 3 1 0 2
AML 0 0 0 0 5 9

Table 1.3. Comparative results for the test set GeneSet3

Misclassified samples Number of clusters Accuracy (%)
train set test set train set test set AML ALL

DBSCAN 1 3 4 4 78.5 100
FCM 1 2 4 4 85.7 100
GNG 1 3 3 3 78.5 100
PDDP 2 4 6 6 71.4 100
UkW 1 2 6 6 100.0 90.0

To further evaluate the clustering results each sample from each test set was as-
signed to one of the clusters discovered in the train set according to its distance
from the cluster center. Specifically, if an ALL (AML) sample from the test set was
assigned to an ALL (AML, respectively) cluster then that sample was considered
correctly classified. From the results exhibited in Table 1.2 it is evident that using
the clustering from GeneSet1 one AML and eight ALL samples from the test set
were misclassified, resulting in a 73.5% correct classification. The clusters discov-
ered using GeneSet2 resulted in three misclassified AML samples (91.2% correct
classification), while GeneSet3 clusters yielded the best performance with only two
misclassified ALL samples (94.1% correct classification).

In Table 1.3 we present comparative results from the test set GeneSet3 only,
as all the clustering algorithms exhibited improved classifications performance on
this dataset. The best performance was achieved by the UkW algorithm and the
FCM, followed by the DBSCAN and GNG algorithms. Notice that the FCM requires
from the user to supply the number of clusters (supervised clustering) and that the

18 D.K. Tasoulis et al.

DBSCAN algorithm did not classify seven samples of the train set and five samples
of the test set (all of them belonging in the AML class), since it characterized them
as outliers.

Although the PDDP algorithm exhibited the worst classification performance, it
must be noted that it was the only algorithm capable of using all the 7129 genes to
cluster the samples. Using the complete set of genes, the PDDP algorithm misclassi-
fied two training set samples and eight test set samples.

Clustering Based on Unsupervised Gene Selection

Not using the class information to perform gene selection, we have to resort to un-
supervised methods. We employ the UkW algorithm, for this task since it proved
quite successful in the previous set of experiments. More specifically, the UkW algo-
rithm was applied over the entire data set to select clusters of genes. Feature selection
was accomplished by extracting from each cluster one representative feature (gene),
based on the Euclidean distance among the feature values and the identified cluster
center. The feature with the minimum distance from the cluster center was selected.
This approach produced a new subset containing 293 genes (GeneSet4).

The UkW algorithm was then applied on GeneSet4 to group the samples. The
results are illustrated in Table 1.4. From this table it is evident that high classifica-
tion accuracy is possible even when class information is not known. Specifically,
UkW exhibited accuracy of 93.6% and 76% for the ALL and the AML samples,
respectively.

A second set of experiments is performed using the PCA technique for dimension
reduction. A common problem when using PCA is that there is no clear answer
to the question of how many factors should be retained for the new data set. A
rule of thumb is to inspect the scree plot, i.e. plot all the eigenvalues in decreasing
order. The plot looks like the side of a hill and “scree” refers to the debris fallen
from the top and lying at its base. The scree test suggests to stop analysis at the
point the mountain (signal) ends and the debris (error) begins. However, for the
considered problem the scree plot was indicative, but not decisive. The scree plot,
exhibited in Figure 1.5 (left), suggests that the contributions are relatively low after
approximately ten components. In our experiments, we tried all the subsets using
factors from 2 to 70. The classification accuracy is shown in Figure 1.5 (right). The
best performance was attained when 25 factors were used (84.72%).

Although, the PCA technique tries to limit the loss of information, the classifica-
tion accuracy is significantly lower, compared to the results obtained by supervised

Table 1.4. The performance of the UkW algorithm for the GeneSet4 data set

Clustering result for the set GeneSet4
ALL accuracy: 93.61% — AML accuracy: 76%

Leukemia type ALL Clusters AML Cluster
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 1

ALL 12 5 8 16 3 3
AML 2 0 3 0 1 19

1 Computational Intelligence and Microarrays 19

V
al

ue

Number of Eigenvalues

0 10 20 30 40 50 60 70

0.3

0.25

0.15

0.05

0

0.2

0.1 A
cc

ur
ac

y

Number of Factors

0 10 20 30 40 50 60 70

100

80

60

40

20

0

Fig. 1.5. Plot of the 70 first eigenvalues in decreasing order (left) and the corresponding
classification accuracies (right)

Table 1.5. The performance of the UkW algorithm for the GeneSet5 data set

Clustering result for the set GeneSet5
ALL accuracy: 97.87% — AML accuracy: 88%

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 7 14 14 11 1 0
AML 0 0 3 0 13 9

gene selection, Next, we study the hybridization of the clustering the PCA technique,
with the aim to obtain more informative representations of the data.

To this end, the entire data set is firstly partitioned into clusters of features using
the UkW algorithm. Next, each feature cluster is independently transformed to a
lower dimension space through the PCA technique. Regarding the number of factors
selected from each cluster many approaches could be followed. In our experiments
only two factors from each cluster were selected, resulting in GeneSet5. Experiments
conducted using scree plots exhibited identical results. Our experience is that the
number of selected factors from each cluster is not critical, since the entire data set
has already been partitioned to a specific cluster number determined by the algorithm
itself. Finally, the algorithm is again applied to group the samples into clusters and
the results are exhibited in Table 1.5. The UkW exhibited accuracy 97.87% and 88%
for the ALL and the AML samples, respectively.

Overall, the obtained experimental results regarding the various gene subsets
indicate that using GeneSet1 and GeneSet2, yields very satisfactory results. The
best results were obtained using the union of the genes in GeneSet1 and GeneSet2.
The drawback of this feature selection scheme is that it relies on human expertise
(GeneSet1) and requires class information (GeneSet2) to construct the final dataset
(GeneSet3). On the other hand, performing unsupervised gene selection using either
PCA or UkW may result in a lower classification accuracy.

The hybridization of the two approaches yielded results comparable to those
obtained through the first three gene sets. The main drawback of this approach is
that it requires information from all the genes.

20 D.K. Tasoulis et al.

0

 10

 20

 30

 40

 50

 60

 70

0 10 20 30 40 50 60

V
al

ue

Number of Eigenvalues

V
al

ue

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Number of Eigenvalues

V
al

ue

0

50

100

150

200

250

0 10 20 30 40 50 60

Number of Eigenvalues

Fig. 1.6. Plot of the first eigenvalues in decreasing order, for the COLON (left), PROSTATE
(middle) and the LYMPHOMA (right) datasets

0

 20

 40

 60

 80

100

A
cc

ur
ac

y

0 10 20 30 40 50 60
Number of Factors

0

 20

 40

 60

 80

 100
A

cc
ur

ac
y

0 20 40 60 80 100
Number of Factors

0

20

40

60

80

100

A
cc

ur
ac

y

Number of Factors
0 10 20 30 40 50 60

Fig. 1.7. Classification accuracy for all the factors, for the COLON (left), PROSTATE (middle)
and the LYMPHOMA (right) datasets

To further investigate the efficiency of the hybridization scheme we compare it
against the PCA dimension reduction technique on the COLON, the PROSTATE
and the LYMPHOMA microarray data sets. While the hybrid approach automati-
cally determines the number of reduced dimensions only the screen plot can provide
such an information for the PCA technique. Although the scree plots, reported in
Figure 1.6, provide an indication they are not conclusive. Generally, in all three cases
the contributions are relatively low after approximately twenty components.

In our experiments, we tried all available factors for each dataset and utilized the
UkW algorithm for the classification. The classification accuracy of the UkW clus-
tering algorithm for each of the three datasets and all the available factors is reported
in Figure 1.7. For the COLON dataset the best classification accuracy obtained was
80.64% employing 16 factors. For the PROSTATE dataset the best result was 82.35%
classification accuracy, using 71 factors. Finally, for the LYMPHOMA dataset the
best result was 98.38% classification accuracy using only 3 factors.

The results of the hybrid approach, for the three datasets, are presented in
Table 1.6. As it is evident, the classification accuracy of the resulting partitions
increases in all three cases. The high number of factors that the hybrid scheme
decides to use, does not impose a problem to the algorithm since they originate
in different clusters, and they are not correlated to each other. Furthermore, the
additional advantage of the automatic determination of the required factors, exhibits
a robust result that is not possible through the PCA technique. The classification
accuracies obtained are considered very high, in comparison to other previously
published approaches [65].

1 Computational Intelligence and Microarrays 21

Table 1.6. The performance of the hybrid approach for the COLON, PROSTATE and
LYMPHOMA datasets

Dataset Number of Factors Used Classification Accuracy (%)

COLON 229 82.25
PROSTATE 84 83.3
LYMPHOMA 103 99.01

1.5.3 Using Clustering and Feedforward Neural Networks Classifiers

Although the Feedforward Neural Networks (FNNs) trained using the PCA projec-
tion of the dataset can provide high classification accuracy, there is no straightfor-
ward interpretation of the new dimensions. Consequently, to compute features for a
new patient, information from all the genes is required. On the other hand, the cluster-
ing algorithms identify a subset of genes that significantly contribute to the partition
of interest. Thus, only the expression levels of the selected genes are needed for the
future operation of the system. Unfortunately, there exist many such subsets and it is
difficult for any clustering algorithm to determine the best one.

The first step towards the implementation of such a system is to apply a clus-
tering algorithm over the entire training sets. Dimension reduction is performed by
selecting a representative feature from each identified feature cluster, as usual. The
representative features will be used as input to the FNN classifier. To this end, the
(supervised) FCM and the (unsupervised) UkW clustering algorithms were applied
on the three data sets mentioned above. Since the number of clusters, c, present in
each data set is unknown, all possible values from 3 to 30 were tried for the FCM
algorithm. On the other hand, the UkW clustering algorithm was executed only once
and it provided 14 features for the COLON data set, 18 features for the PROSTATE
data set, and 22 features for the ALL–AML data set.

Consequently, an FNN having two hidden layers consisting of 5 neurons each,
was trained using the Rprop and the AOBP training algorithms to classify the features
of the data sets. In the experiments, we performed random splitting of the data into
learning and test sets. Specifically, the data was partitioned randomly into a learning
set consisting of two-thirds of the whole set and a test set consisting of the remaining
one-third. To reduce the variability, the splitting was repeated 50 times as in [65]. For
each splitting 50 independently initialized FNNs were trained, resulting in a total of
2500 experiments. The comparative results for the three problems considered here
are illustrated using boxplots in Figures 1.8, 1.9, and 1.10, respectively. Each boxplot
depicts the obtained values for the classification accuracy, in the 2500 experiments.
The box has lines at the lower quartile, median, and upper quartile values. The lines
extending from each end of the box (whiskers) indicate the range covered by the
remaining data. The outliers, i.e. the values that lie beyond the ends of the whiskers,
are represented with crosses. Notches represent a robust estimate of the uncertainty
about the median. From these figures it is evident that the UkW algorithm exhibited
the best performance. The mean classification success for each problem was 65.9%,
73.5%, and 69.2%, clearly above the mean classification success of FCM regardless

22 D.K. Tasoulis et al.

Fig. 1.8. COLON: Classification accuracy of FNNs incorporating the FCM and the UkW
clustering algorithms

Fig. 1.9. PROSTATE: Classification accuracy of FNNs incorporating the FCM and the UkW
clustering algorithms

Fig. 1.10. ALL–AML: Classification accuracy of FNNs incorporating the FCM and the UkW
clustering algorithms

the value of c. Moreover, FCM’s results were heavily dependent on the number of
features selected.

In spite of UkW algorithm’s good results, this first set of experiments revealed
the limitation of the direct application of any clustering algorithm, since even bet-
ter classification accuracy is possible (see for example [65]). As a next step, we
examine the classification accuracy on PCA derived features. Since for the for the
considered problems the scree plots were indicative, but not decisive (see Figure 1.6)
for the number of factors to use, we tried all of them from 3 to 30. As above, 50

1 Computational Intelligence and Microarrays 23

Fig. 1.11. COLON: Classification accuracy of FNNs incorporating the PCA technique and the
proposed UkWPCA scheme

Fig. 1.12. PROSTATE: Classification accuracy of FNNs incorporating the PCA technique and
the proposed UkWPCA scheme

Fig. 1.13. ALL–AML: Classification accuracy of FNNs incorporating the PCA technique and
the proposed UkWPCA scheme

random splittings of the data were performed and 50 independently initialized FNNs
were trained. The results from the 2500 experiments for each problem are illustrated
in Figures 1.11, 1.12, and 1.13, respectively. The results show that the classifica-
tion accuracy depends on the number of factors used and that the best results do
not exactly match the scree plot indication. Although, the FNNs trained using the
PCA projection of the data set, in general, provide high classification accuracy, there
is no straightforward way to select the right number of factors for each problem.
FNNs using features computed by the PCA technique exhibited mean classification

24 D.K. Tasoulis et al.

accuracy 79.1%, 86.5%, and 88.5%, for the optimal selection of the number of
factors.

The above discussion suggests that the UkW algorithm is capable of automati-
cally identifying meaningful groups of features, while the PCA technique optimally
transforms the data set, with limited loss of information, to a space of significantly
lower dimension. Since both properties are desirable for an automatic classification
system, we next examine the classification accuracy using the hybrid approach to
reduce the dimension.

As in the previous sets of experiments, we performed 50 random splittings of the
data set and consequently 50 independently initialized FNNs were trained using the
Rprop algorithm. The classification accuracy of the proposed system (UkWPCA)
is illustrated in the last column of Figures 1.11, 1.12, and 1.13, respectively. To
summarize, the UkW algorithm automatically provided a good approximation of the
number of clusters present in the data sets, while the PCA technique transformed
the discovered clusters resulting in the most informative features. FNNs trained
using these features had the highest classification accuracy and the most robust
performance. Specifically, the mean classification accuracies for the three problems
considered here were 80.3%, 87.1%, and 87.4%, respectively.

1.5.4 Using Evolutionary Algorithms and Feedforward Neural Networks
Classifiers

Here, we propose the application of EAs to microarray classification to determine
the optimal, or near optimal, subset of predictive genes on the complex and large
space of possible gene sets. Although a vast number of gene subsets are evaluated by
the EA, selecting the most informative genes is a non trivial task. Common problems
include the existence of: a) relevant genes that are not included in the final subset,
because of the insufficient exploration of the gene pool, b) significantly different
subsets of genes being the most informative as the evolution progresses, and c) many
subsets that perform equally well, as they all predict the test data satisfactorily. From
a practical point of view, the lack of a unique solution does not seem to present a
problem.

The EA approach we propose utilizes the DE algorithm and maintains a pop-
ulation of trial gene subsets, imposes random changes on the genes that compose
those subsets, and incorporates selection (driven by a neural network classifier) to
determine which are the most informative ones. Only those genes are maintained
in successive generations; the rest are removed from the trial pool. At each iteration,
every subset is given as input to an FNN classifier and the effectiveness of the trained
FNN determines the fitness of the subset of genes. The size of the population and the
number of features in each subset are parameters that we explore experimentally. For
the experiments reported in this chapter we employed Equation (1.3) as the main DE
search operator.

For the approach discussed above, each population member represents a subset
of genes, so a special representation and a custom fitness function must be designed.
When seeking subsets containing n genes, each individual consists of n integers. The

1 Computational Intelligence and Microarrays 25

first integer is the index of the first gene to be included in the subset, the second
integer denotes the number of genes to skip until the second gene to be included is
reached, the third integer component denotes the number of genes to skip until the
third included gene, and so on. This representation was necessary in order to avoid
multiple inclusion of the same gene. Moreover, a version of DE that uses integer
vectors has been proposed and thoroughly studied in previous studies [19, 20, 22].

Let us now focus on the custom fitness function. Initially, the k–nearest neighbors
(KNN) classifier was used as a fitness function to evaluate the fitness of each gene
subset. KNN classification is based on a distance function such as the Euclidean dis-
tance or Pearson’s correlation that is computed for pairs of samples in n–dimensional
space. Each sample is classified according to the class memberships of its k–nearest
neighbors, as these are determined by the distance function. KNN has the advantage
of simplicity and it usually performs well on data sets that are not linearly separable.
However, our preliminary experimental results indicated that although the evolution-
ary algorithm produces gene subsets that help the KNN classifier to achieve high
classification accuracy on the training samples, KNN fails to correctly classify the
test data.

Thus we decided to use FNNs instead of the KNN classifier. The utilization of
FNNs as fitness function greatly improved the classification accuracy of this ap-
proach. An FNN was trained using each subset of genes and the fitness of the subset
is scored by analyzing how well the FNN separates the training data into separate
classes. One third of the data set is used as a training set for the FNN and one third
is used to measure the classification accuracy of the FNN classifier. The remaining
patterns of the data set are kept to estimate the classification capability of the final
gene subset.

Below, we report the experimental results. We have tested and compared the per-
formance of the this approach on many publicly available microarray data sets. Here
we report results from the COLON and the PROSTATE data sets. Since the appro-
priate size of the most predictive gene set is unknown, DE was employed for various
gene set sizes ranging from 10 to 100 with a step of 10. The FNN used at the fitness
function consisted of two hidden layers with eight and seven neurons, respectively.
The input layer contained as many neurons as the size of the gene set. One output
neuron was used at the output layer whose value for each sample determined the
network classification decision. Since both problems had two different classes for
the patterns, a value lower than 0.5 regarded the pattern to belong to the first class;
otherwise regarded it to belong to the second class.

For each different gene set size the data were partitioned randomly into a learn-
ing set consisting of two–thirds of the whole set and a test set consisting of the
remaining one third, as already mentioned. The one third of the training set was used
by the Rprop and the AOBP algorithms to train the FNNs. The performance of the
respective gene set was measured according to the generalization of the trained FNN
on the rest of the training set. Both the Rprop and the AOBP training algorithms
exhibited stable performance and are suitable for this kind of tasks. Note that, the
test set was only used to evaluate the classification accuracy that can be obtained
using the final gene set discovered by the DE algorithm. To reduce the variability,

26 D.K. Tasoulis et al.

COLON
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y

20

30

40

50

60

70

80

90

100

Gene Set Size

908070605040302010 100

Gene Set Size

100908070605040302010

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

PROSTATE

30

40

50

60

70

80

90

100

Fig. 1.14. Classification accuracy obtained by FNNs trained using the DE selected gene set
for the COLON (left) and PROSTATE (right) datasets

the splitting was repeated 10 times and 10 independent runs were performed each
time, resulting in a total of 100 experiments, for gene set size.

The classification accuracy of the proposed system is illustrated using boxplots in
Figure 1.14. Each boxplot depicts the obtained values for the classification accuracy,
in the 100 experiments. As demonstrated, using a gene set size of 50–80 for the
COLON dataset the algorithm managed to achieve the best results. The same is
achieved for the PROSTATE dataset for a gene set size ranging from 40 to 60. The
experimental results are comparable to those obtained by other approaches [65, 66].

1.6 Concluding Remarks

Although the classification of the data obtained from microarray studies is very im-
portant in medical diagnosis of many diseases, it still presents a challenge for data
analysis. This is due to the tremendous amount of available data (typically several
Gigabytes of data), the redundant, erroneous or incomplete data sets, and the high
dimensionality. Thus, the application of techniques for dimension reduction and/or
selection of subsets of informative genes are essential to counter this very difficult
problem. The selection of gene subsets that retain high predictive accuracy for cer-
tain cell–type classification, poses a central problem in microarray data analysis. The
application and combination of various Computational Intelligence methods holds a
great promise for automated feature selection and classification.

To summarize, in this chapter we have presented, implemented and tested
supervised clustering algorithms, unsupervised clustering algorithms, the Principal
Component Analysis dimension reduction technique, Feedforward Artificial Neu-
ral Networks, Evolutionary Algorithms, and hybrid approaches. Our goal was to
evaluate and compare various approaches in an attempt to investigate their weak-
nesses and their shortcomings with respect to DNA microarray data analysis and
classification.

Neural Networks have traditionally been used by the research community due
their easiness of implementation and their high quality results. Their application
to the microarray data, needs the existence of a preprocessing phase that would

1 Computational Intelligence and Microarrays 27

reduce the dimension of the learning space. Using either Evolutionary techniques
in a supervised manner or unsupervised cluster analysis significant results can be
obtained. However, the unsupervised characteristics of the latter approach provide
an intuitive advantage. On the other hand, using cluster analysis directly to infer
knowledge without resorting to an external trainer as in the Neural Network case,
also seems quite promising.

Among the different clustering algorithms studied, the density based approaches
provided the best results. The experimental results of the DBSCAN, the UkW and
the GNG algorithms are indicative of how effective is their feature of automatic dis-
covery of the cluster number. However, in the case of GNG the numerous parameters
seem to deteriorate its clustering accuracy. All the above comments are true in the
case that user-defined information about the most important subset of genes is used.

In the case, that no such information is available our first resort is the PDDP
clustering algorithm, that can be directly applied to the original high dimensional
space. However, it results in low performance clustering, which can be attributed to
its crude splitting technique. Nevertheless, by borrowing the idea of PDDP, that is to
apply PCA to different parts of the data space, we can design a hybrid method that
is completely automated and does not require any kind of external steering. To this
end, we examined how the hybrid techniques can further improve the classification
accuracy of traditional classifiers such as Neural Networks. These results are not re-
strictive to FNNs, but can be straightforwardly extended to other types of classifiers,
such as Support Vector Machines, Probabilistic Neural Networks, etc.

Briefly, we can claim that the reported experimental results indicate that there
exists no unique and clear solution to this hard real–life problem. One must try
different approaches in order to gain insight and better analyze the DNA microarray
data. However, Computational Intelligence techniques are clearly capable of:

(a) exhibiting high classification success rates,
(b) having completely automatic operation,
(c) discovering the subsets of features that contribute significantly,
(d) constructing non–linear relationships between the input and the output.

Thus, even when compared against the best known alternative methods, Computa-
tional Intelligence techniques seem to prevail. Extensive experiments on publicly
available microarray datasets indicate that the approaches proposed and studied here
are fast, robust, effective and reliable. However, further testing on bigger data sets
from new microarray studies is necessary before we can establish a general, flexible
all-purpose methodology.

References

1. Jiang, D., Tang, C., Zhangi, A.: Cluster analysis for gene expression data: A survey. IEEE
Transactions on Knowledge and Data Engineering 16(11) (2004) 1370–1386

2. Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A.,
Armananzas, R., Santafe, G., Perez, A., Robles, V.: Machine learning in bioinformatics.
Briefings in Bioinformatics 7(1) (2006) 86–112

28 D.K. Tasoulis et al.

3. Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive
evaluation of multicategory classification methods for microarray gene expression cancer
diagnosis Bioinformatics 21(5) (2005) 631–643

4. Wall, M., Rechtsteiner, A., Rocha, L.: Singular value decomposition and principal com-
ponent analysis. In: A Practical Approach to Microarray Data Analysis. Kluwer (2003)
91–109

5. Van Mechelen, I., Bock, H.H., De Boeck, P.: Two-mode clustering methods:a structured
overview. Statistical Methods in Medical Research 13(5) (2004) 363–394

6. Kung, S.Y., Mak, M.W.: A Machine Learning Approach to DNA Microarray Biclustering
Analysis. In: Proceedings of the IEEE International Workshop on Machine Learning for
Signal Processing, (2005) 314–321

7. Wang, Z., Wang, Y., Xuan, J., Dong, Y., Bakay, M., Feng, Y., Clarke, R., Hoffman,
E.P.: Optimized multilayer perceptrons for molecular classification and diagnosis using
genomic data. Bioinformatics 22(6) (2006) 755–761

8. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error
propagation. MIT Press Cambridge, MA, USA (1986)

9. Gill, P., Murray, W., Wright, M.: Practical optimization. London: Academic Press, (1981)
10. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning:

The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural
Networks, San Francisco, CA. (1993) 586–591

11. Sutton, R., Whitehead, S.: Online learning with random representations. Proceedings of
the Tenth International Conference on Machine Learning (1993) 314–321

12. Magoulas, G., Plagianakos, V.P., Vrahatis, M.N.: Development and convergence analysis
of training algorithms with local learning rate adaptation. In: IEEE International Joint
Conference on Neural Networks (IJCNN’2000), 1 (2000) 21–26.

13. Plagianakos, V.P., Magoulas, G., Vrahatis, M.N.: Global learning rate adaptation in
on-line neural network training. In: Second International ICSC Symposium on Neural
Computation (NC’2000). (2000)

14. Bäck, T., Schwefel, H.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1(1) (1993) 1–23

15. Storn, R., Price, K.: Differential evolution – a simple and efficient adaptive scheme for
global optimization over continuous spaces. Journal of Global Optimization 11 (1997)
341–359

16. Storn, R., Price, K.: Minimizing the real functions of the icec’96 contest by differential
evolution. In: IEEE Conference on Evolutionary Computation. (1996) 842–844

17. DiSilvestro, M., Suh, J.K.: A cross-validation of the biphasic poroviscoelastic model of
articular cartilage in unconfined compression, indentation, and confined compression.
Journal of Biomechanics 34 (2001) 519–525

18. Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for
feed forward neural networks. Neural Processing Letters 17(1) (2003) 93–105

19. Plagianakos, V.P., Vrahatis, M.N.: Neural network training with constrained integer
weights. In Angeline, P., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., eds.:
Proceedings of the Congress of Evolutionary Computation (CEC’99). IEEE Press (1999)
2007–2013

20. Plagianakos, V.P., Vrahatis, M.N.: Training neural networks with 3–bit integer weights. In
Banzhaf, W., Daida, J., Eiben, A., Garzon, M., Honavar, V., Jakiela, M., Smith, R., eds.:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99).
Morgan Kaufmann (1999) 910–915

1 Computational Intelligence and Microarrays 29

21. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential
evolution. In: IEEE Congress on Evolutionary Computation (CEC 2004), 2 (2004) 2023–
2029

22. Plagianakos, V.P., Vrahatis, M.N.: Parallel evolutionary training algorithms for
‘hardware-friendly’ neural networks. Natural Computing 1 (2002) 307–322

23. Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Clustering in evolutionary algorithms
to efficiently compute simultaneously local and global minima. In: IEEE Congress on
Evolutionary Computation. Volume 2., Edinburgh, UK (2005) 1847–1854

24. John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In:
International Conference on Machine Learning. (1994) 121–129

25. Aggarwal, C., Wolf, J., Yu, P., Procopiuc, C., Park, J.: Fast algorithms for projected
clustering. In: 1999 ACM SIGMOD international conference on Management of data,
ACM Press (1999) 61–72

26. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of
high dimensional data for data mining applications. In: 1998 ACM SIGMOD international
conference on Management of data, ACM Press (1998) 94–105

27. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer-
Verlag (2001)

28. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Advances in Knowledge Discovery and
Data Mining. MIT Press (1996)

29. Aldenderfer, M., Blashfield, R.: Cluster Analysis. Volume 44 of Quantitative Applications
in the Social Sciences. SAGE Publications, London (1984)

30. Ramasubramanian, V., Paliwal, K.: Fast k-dimensional tree algorithms for nearest neigh-
bor search with application to vector quantization encoding. IEEE Transactions on Signal
Processing 40(3) (1992) 518–531

31. Becker, R., Lago, G.: A global optimization algorithm. In: Proceedings of the 8th Allerton
Conference on Circuits and Systems Theory. (1970) 3–12

32. Torn, A., Zilinskas, A.: Global Optimization. Springer-Verlag, Berlin (1989)
33. Alon, U., Barkai, N., Notterman, D., K.Gish, Ybarra, S., Mack, D., Levine, A.: Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide array. Proc. Natl. Acad. Sci. USA 96(12) (1999) 6745–
6750

34. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-
wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–14868

35. Shamir, R., Sharan, R.: Click: A clustering algorithm for gene expression analysis. In:
8th International Conference on Intelligent Systems for Molecular Biology (ISMB 00),
AAAI Press (2000)

36. Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G.: Systematic determination
of genetic network architecture. Nature Genetics volume 22 (1999) 281–285

37. Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Unsupervised clustering in mRNA
expression profiles. Computers in Biology and Medicine 36(10) (2006)

38. Wen, X., Fuhrman, S., Michaels, G., Carr, D., Smith, S., Barker, J., Somogyi, R.: Large-
scale temporal gene expression mapping of cns development. Proceedings of the National
Academy of Science USA 95 (1998) 334–339

39. Golub, T., Slomin, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H.,
Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification
of cancer: Class discovery and class prediction by gene expression monitoring. Science
286 (1999) 531–537

40. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Computing Surveys 31(3)
(1999) 264–323

30 D.K. Tasoulis et al.

41. Alizadeh, A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene
expression profiling. Nature 403(6769) (2000) 503–511

42. Perou, C., Jeffrey, S., de Rijn, M.V., Rees, C., Eisen, M., Ross, D., Pergamenschikov, A.,
Williams, C., Zhu, S., J.C. Lee, D.L., Shalon, D., Brown, P., Botstein, D.: Distinctive
gene expression patterns in human mammary epithelial cells and breast cancers. Proc.
Natl. Acad. Sci. USA 96 (1999) 9212–9217

43. Xing, E., Karp, R.: Cliff: Clustering of high–dimensional microarray data via iterative
feature filtering using normalized cuts. Bioinformatics Discovery Note 1 (2001) 1–9

44. Tamayo, P., Slonim, D., Mesirov, Q., Zhu, J., Kitareewan, S., Dmitrovsky, E., Lander, E.,
Golub, T.: Interpreting patterns of gene expression with self-organizing maps: Methods
and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96 (1999)
2907–2912

45. Alter, O., Brown, P., Bostein, D.: Singular value decomposition for genome-wide ex-
pression data processing and modeling. Proc. Natl. Acad. Sci. USA 97(18) (2000)
10101–10106

46. Szallasi, Z., Somogyi, R.: Genetic network analysis – the millennium opening version.
In: Pacific Symposium of BioComputing Tutorial. (2001)

47. Tasoulis, D.K., Vrahatis, M.N.: Unsupervised distributed clustering. In: Proceedings
of the IASTED International Conference on Parallel and Distributed Computing and
Networks, Innsbruck, Austria (2004) 347–351

48. Vrahatis, M.N., Boutsinas, B., Alevizos, P., Pavlides, G.: The new k-windows algorithm
for improving the k-means clustering algorithm. Journal of Complexity 18 (2002) 375–
391

49. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases:
The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2)
(1998) 169–194

50. Boley, D.: Principal direction divisive partitioning. Data Mining and Knowledge
Discovery 2(4) (1998) 325–344

51. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer
Academic Publishers (1981)

52. Fritzke, B.: Growing cell structures a self-organizing network for unsupervised and
supervised learning. Neural Netw. 7(9) (1994) 1441–1460

53. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to identify
the clustering structure. In: Proceedings of ACM-SIGMOD International Conference on
Management of Data. (1999)

54. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the 2nd Int. Conf. on
Knowledge Discovery and Data Mining. (1996) 226–231

55. Procopiuc, C., Jones, M., Agarwal, P., Murali, T.: A Monte Carlo algorithm for fast pro-
jective clustering. In: Proc. 2002 ACM SIGMOD, New York, NY, USA, ACM Press
(2002) 418–427

56. Berkhin, P.: A survey of clustering data mining techniques. In Kogan, J., Nicholas, C.,
Teboulle, M., eds.: Grouping Multidimensional Data: Recent Advances in Clustering.
Springer, Berlin (2006) 25–72

57. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys
31(3) (1999) 264–323

58. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addison-
Wesley, Boston (2005)

1 Computational Intelligence and Microarrays 31

59. Tasoulis, D.K., Vrahatis, M.N.: Novel approaches to unsupervised clustering through the
k-windows algorithm. In Sirmakessis, S., ed.: Knowledge Mining. Volume 185 of Studies
in Fuzziness and Soft Computing. Springer-Verlag (2005) 51–78

60. Hartigan, J., Wong, M.: A k-means clustering algorithm. Applied Statistics 28 (1979)
100–108

61. Zeimpekis, D., Gallopoulos, E.: PDDP(l): Towards a Flexing Principal Direction Divisive
Partitioning Clustering Algorithms. In Boley, D., Dhillon, I., Ghosh, J., Kogan, J., eds.:
Proc. IEEE ICDM ’03 Workshop on Clustering Large Data Sets, Melbourne, Florida
(2003) 26–35

62. Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer
Cell 1 (2002) 203–209

63. Thomas, J., Olson, J., Tapscott, S., Zhao, L.: An efficient and robust statistical modeling
approach to discover differentially expressed genes using genomic expression profiles.
Genome Research 11 (2001) 1227–1236

64. Kohonen, T.: Self–Organized Maps. Springer Verlag, New York, Berlin (1997)
65. Ye, J., Li, T., Xiong, T., Janardan, R.: Using uncorrelated discriminant analysis for tis-

sue classification with gene expression data. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 1(4) (2004) 181–190

66. Plagianakos, V.P., Tasoulis, D.K., Vrahatis, M.N.: Hybrid dimension reduction approach
for gene expression data classification. In: International Joint Conference on Neural Net-
works 2005, Post-Conference Workshop on Computational Intelligence Approaches for
the Analysis of Bioinformatics Data. (2005)

