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Summary. The extraction of meaningful information from large collections of data
is a fundamental issues in science. To this end, clustering algorithms are typically
employed to identify groups (clusters) of similar objects. A critical issue for any
clustering algorithm is the determination of the number of clusters present in a
dataset. In this contribution we present a clustering algorithm that in addition to
partitioning the data into clusters, it approximates the number of clusters during its
execution. We further present modifications of this algorithm for different distributed
environments, and dynamic databases. Finally, we present a modification of the
algorithm that exploits the fractal dimension of the data to partition the dataset.

1 Introduction

Clustering is a fundamental field of explanatory data analysis that aims at dis-
covering hidden structure in datasets. More specifically, clustering partitions a
set of objects in groups (clusters) such that objects within the same group bear
a closer similarity to each other, than objects in different groups. Clustering
techniques have a very broad application domain including data mining [22],
statistical data analysis [2], compression and vector quantization [40], global
optimization [8, 54], web personalization [41] and text mining [19, 45].

The first comprehensive foundations of these methods was published in
1939 [55], but the earliest references date back to the fourth century B.C. by
Aristotle and Theophrastos and in the 18th century to Linnaeus [30].

Following [1], to define more formally the clustering problem firstly, we
assume that S is a set of n points in a d–dimensional metric space (Rd, �).
A k-clustering of S for an integer k � n is defined as a partition Σ of S
into k subsets S1, . . . , Sk, each one representing a different cluster. The size

of a cluster Si is defined as the maximum distance, under the � metric, be-
tween a fixed point ci, called the center of the cluster, and any other point of
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Si. Similarly, the size of a k-clustering Σ, is defined as the maximum clus-
ter size among all the clusters in Σ [1]. The k-center problem is defined as
the computation of a k-clustering of the smallest possible size. The k-center
problem can also be formulated as covering S by congruent disks of the small-
est possible size. Sometimes the centers of the clusters are required to be a
subset of S. This requirement defines the discrete k-center problem. In some
applications the number of points in each cluster is also important. Thus, if
we define, for an integer L > 0, the L-capacitized k-clustering of S to be a
partition Σ of S in k clusters with no cluster containing more than L points;
then the L-capacitized k-center problem is defined as the computation of the
L-capacitized k-clustering having the smallest possible size [1].

Clustering is a difficult scientific problem, since even the simplest clustering
problems are known to be NP-Hard [1]. The Euclidean k-center problem in
the plane is NP-Hard [33]. In fact, it is NP-Hard to approximate the two-
dimensional k-center problem even under the L∞-metric [23].

Irrespectively of the method used, a fundamental issue in cluster analysis
is the determination of the number of clusters present in a dataset. This issue
remains an open problem in cluster analysis. For instance well–known and
widely used iterative techniques, such as the k-means algorithm [24], require
from the user the a priori designation of the number of clusters present in the
data.

To this end, we present the unsupervised k–windows clustering algorithm.
This algorithm, by employing windowing techniques, attempts not only to
discover the clusters but also their number, in a single execution. Assuming
that the dataset lies in d dimensions, the algorithm initializes a number of
d–dimensional windows (boxes), over the dataset. Subsequently, it iteratively
moves and enlarges these windows in order to cover the existing clusters.

The approximation of the number of clusters is based on the idea of con-
sidering a large number of initial windows. The windowing technique of the
k-windows algorithm allows for a large number of initial windows to be exam-
ined, without a significant overhead in time complexity. Once movement and
enlargement of all windows terminate, all overlapping windows are considered
for merging. The merge operation determines whether two windows belong to
same cluster by examining the proportion of points in the overlapping area to
the total number of points in each window. Thus, the algorithm is capable of
providing an approximation to the actual number of clusters.

Database technology has enabled organizations to collect data at a con-
stantly increasing rate. The development of algorithms that can extract knowl-
edge in the form of clustering rules from such distributed databases has be-
come a necessity. Distributed clustering algorithms attempt to merge compu-
tation with communication and explore all facets of the distributed clustering
problem. The k-windows algorithm can be extended to a distributed environ-
ment.

Considering a non-stationary environment where update operations on the
database are allowed, maintaining a cluster result at a low computational cost
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becomes important. Utilizing a recently proposed dynamic data structure, we
present an extension of the k-windows algorithm suitable for cluster mainte-
nance.

An important property that describes the complexity of a dataset is its
fractal dimension. Incorporating estimates of the fractal dimension in the
workings of the k-windows algorithm, allows it to extract qualitative informa-
tion for the underlying clusters.

The rest of the paper is organized as follows. The details of the unsuper-
vised k-windows are described in Section 2. Next, in Section 3 two distributed
versions of the algorithm are presented. Section 4 presents an extension of the
algorithm to non-stationary environments. A modification of the algorithm
that uses the fractal dimension is presented in Section 5. In Section 6 compu-
tational experiments are presented that demonstrate the applicability of the
algorithm, on various datasets. The paper ends with concluding remarks in
Section 7.

2 The unsupervised k-windows clustering algorithm

The k-windows clustering algorithm aims at capturing all the patterns that be-
long to one cluster within a d–dimensional window [56]. To this end, it employs
two fundamental procedures: movement and enlargement. The movement pro-
cedure aims at positioning each window as close as possible to the center of
a cluster. During this procedure each window is centered at the mean of the
patterns that are included in it. The movement procedure is iteratively exe-
cuted as long as the distance between the new and the previous center exceeds
the user–defined variability threshold, θv. On the other hand, the enlargement
process tries to augment the window to include as many patterns from the
current cluster as possible. Thus, the range of each window, for each coordi-
nate separately is enlarged by a proportion θe/l, where θe is user–defined and l
stands for the number of previous valid enlargements. Valid enlargements are
those that cause a proportional increase in the number of patterns included
in the window, exceeding the user–defined coverage threshold, θc. Further,
before each enlargement is examined for validity the movement procedure is
invoked. If an enlargement for coordinate c′ � 2, is considered valid, then all
coordinates c′′, such that c′′ < c′, undergo enlargement assuming as initial
position the current position of the window. Otherwise, the enlargement and
movement steps are rejected and the position and size of the d–range are re-
verted to their prior to enlargement values. In Fig. 1 the two processes are
illustrated.

As previously mentioned, a critical issue in cluster analysis, is the deter-
mination of the number of clusters that best describe a dataset. The unsu-
pervised k-windows algorithm has the ability to provide an approximation
to this number. The key idea is to initialize a large number of windows. Af-
ter movement and enlargement of all windows terminates, all overlapping
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Fig. 1. (a) Sequential movements M2, M3, M4 of initial window M1. (b) Sequential
enlargements E1, E2 of window M4.

windows are considered for merging. During this operation, for each pair of
overlapping windows, the number of patterns that lie in their intersection is
computed. Next, the proportion of this number to the total number of pat-
terns included in each window is calculated. If this proportion exceeds a user
defined threshold, θs, the two windows are considered to be identical and the
one containing the smaller number of points is disregarded. Otherwise, if the
mean exceeds a second user defined threshold, θm, the windows are considered
to have captured portions of the same cluster and are merged. An example of
this operation is exhibited in Fig. 2; the extent of overlapping of windows W1
and W2 exceeds the θs threshold, and W1 is deleted. On the other hand, win-
dows W3 and W4 are considered both to belong to the same cluster. Finally,
windows W5 and W6, are considered to capture two different clusters.

An example of the overall workings of the algorithm is presented in Fig. 3;
In Fig. 3(a) a dataset that consists of three clusters is shown, along with six
initial windows. In Fig. 3(b) after the merging operation the algorithm has
correctly identified the three clusters.

The computationally demanding step of the k-windows clustering algo-
rithm is the determination of the points that lie in a specific window. This is
the well studied orthogonal range search problem [38]. Formally this problem
can be defined as follows:

W4

W2

W3(b)(a)
W1

W5

W6

(c)

Fig. 2. (a) W1 and W2 satisfy the similarity condition and W1 is deleted. (b)
W3 and W4 satisfy the merge operation and are considered to belong to the same
cluster. (c) W5 and W6 have a small overlapment and capture two different clusters.
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Fig. 3. An example of the application of the k-windows algorithm.

Input:
{
(a) V = {p1, . . . , pn} is a set of n points in R

d.
(b) A d-range query Q= [a1, b1] × [a2, b2] × · · · × [ad, bd]

specified by (a1, . . . , ad) and (b1, . . . , bd), with aj � bj .
}

Output:
{
Report all points of V that lie within the d-range Q.

}
Numerous Computational Geometry techniques have been proposed to ad-
dress this problem. All these techniques implicate a preprocessing stage at
which they construct a data structure storing the patterns. This data struc-
ture allows them to answer range queries fast. In Table 1 the computational
complexity of various such approaches is summarized. In detail, for applica-
tions of very high dimensionality, data structures like the Multidimensional
Binary Tree [38], and Bentley and Maurer [10] seem more suitable. On the
other hand, for low dimensional data with a large number of points the ap-
proach of Alevizos [3] appears more attractive.

Preprocessing
Method Time Space Query time

Multidim. Binary Tree [38] θ (dn log n) θ (dn) O

“
s + dn

1−1/d
”

Range Tree [38] O
`
n logd−1

n
´

O
`
n logd−1

n
´

O
`
s + logd

n
´

Wilard and Lueeker [38] O
`
n logd−1

n
´

O
`
n logd−1

n
´

O
`
s + logd−1

n
´

Chazelle [15] O
`
n logd−1

n
´

O

“
n

logd−1 n
log log n

”
O

`
s + logd−1

n
´

Chazelle and Guibas [16] O
`
n logd+1

n
´

O
`
n logd

n
´

O
`
s + logd−2

n
´

Alevizos [3] O
`
n logd−1

n
´

O
`
n logd−1

n
´

O
`
s + logd−2

n
´

Bentley and Maurer [10] O
`
n

2d−1
´

O
`
n

2d−1
´

O (s + d log n)

Bentley and Maurer [10] O
`
n

1+ε
´

O
`
n

1+ε
´

O (s + log n)

Bentley and Maurer [10] O (n log n) O (n) O (nε)

Table 1. Methods for orthogonal range search with the corresponding time and
space complexity (n is the number of points, d is their dimension and s is the result
of the query).
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Based on the above discussion we propose the following high level descrip-
tion of the algorithm:

Unsupervised k-windows clustering algorithm
(
a, θe, θm, θc, θv,k

) {
execute W=DetermineInitialWindows(k,a)
for each d–range wj in W do

repeat
execute movement(θv,wj)
execute enlargement(θe,θc,θv,wj)

until the center and size of wj remain unchanged
execute merging(θm,θs,W )
Output

{
clusters cl1, cl2, . . . such as: cli = {i : i ∈ wj , label(wj) = li}

}}
function DetermineInitialWindows(k,a)

{
initialize k d–ranges wm1, . . . , wmk each of size a
select k random points from the dataset and

center the d-ranges at these points
return a set W of the k d–ranges}

function movement(θv, a d–range w)
{

repeat
find the patterns that lie within the d–range w
calculate the mean m of these patterns
set the center of w equal to m

until the distance between m and the previous center of w is less than θv}
function enlargement(θe,θc,θv,a d–range w)

{
repeat

foreach coordinate di do
repeat

enlarge w across di for θe%
execute movement(θv,w)

until increase in number of patterns across di is less than θc%
until increase in number of patterns is less than θc% across every di}

function merging(θm,θs,a set W of d–ranges)
{

for each d–range wj in W not marked do
mark wj with label wj

if ∃ wi �= wj in W , that overlaps with wj

compute the number of points n that lie in the window overlapment
if n/|wi| � θs and |wi| < |wj |

disregard wi

if 0.5 (n/|wj| + n/|wi) � θm

mark all wi labeled d–ranges in W with label wj}
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3 Distributing the clustering process

The ability to collect, store and retrieve data has been constantly increas-
ing throughout the past decades. This fact has rendered the development of
algorithms that can extract knowledge in the form of clustering rules from
various databases simultaneously, a necessity. This trend has been embraced
by distributed clustering algorithms, that attempt to merge computation with
communication and explore all facets of the distributed clustering problems.

Although several approaches have been introduced for parallel and dis-
tributed Data Mining [13, 25, 28], parallel and distributed clustering algo-
rithms have not been extensively studied. In [58] a parallel version of DB-
SCAN [43] and in [18] a parallel version of k-means [24] were introduced.
Both algorithms start with the complete data set residing in one central server
and then distribute the data among the different clients. For instance, in the
case of parallel DBSCAN, data is organized at the server site within an R*-
tree [9]. The preprocessed data are then distributed among the clients, which
communicate with each other via messages.

Typically, in a distributed computing environment the dataset is spread
over a number of different sites. Thus, let us assume that the entire dataset
X is distributed among m sites each one storing Xi for i = 1, . . . , m, so:

X =
⋃

i=1,...,m

Xi.

Furthermore let us assume that there is a central site, C, that will hold the
final clustering results.

At this point, different assumptions can be considered for the nature of
communication among the sites. Primarily we can consider that the sites are
connected through a high speed network, and data disclosure is allowed. On
the other hand, a different assumption would enforce minimal communica-
tion among the sites. This could be due to privacy issues, or very slow and
expensive network connections.

In the following paragraphs two version of the k-windows algorithm will
be presented for the two opposing assumptions. Each version takes under con-
sideration the underlying restrictions of the environment, and tries to provide
efficient and effective clustering results.

3.1 Distributed clustering for minimal communication
environments

Assuming an environment that enforces minimal communication, it is possible
to modify the k-windows algorithm to distribute locally the whole clustering
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procedure. In more detail, at each site i, the k-windows algorithm is executed
over the Xi dataset. This step results in a set of d–ranges (windows) Wi

for each site. To obtain the final clustering result over the whole dataset
X , all the final windows from each site are collected to the central node C.
The central node is responsible for the final merging of the windows and the
construction of the final results. As it has already been mentioned in Section 2,
all overlapping windows are considered for merging. The merge operation is
based on the number of patterns that lie in the intersection of the windows.

This version of the algorithm assumes that the determination of the num-
ber of patterns at each intersection between two windows may be impossible.
For example each site might not want to disclose this kind of information about
its data. Alternatively, the exchange of data might be over a very slow network
that restricts the continuous exchange of information. Under this constraint,
the proposed implementation always considers two overlapping windows to
belong to the same cluster, irrespective of the number of overlapping points.
The θm and θs parameters become irrelevant. A high level description of the
proposed algorithmic scheme follows:

Minimal communication distributed k-windows
for each site i, with i = 1, . . . , m
execute the k-windows algorithm over Xi

send Wi to the central node C.
At the central node C

for each site i
get the resulting set of d–ranges Wi

set W ← W ∪ Wi

{comment: d–range merging}
for each d–range wj not marked do

mark wj with label wj

if ∃wi �= wj , that overlaps with wj

then mark wi with label wj

3.2 Distributed clustering over a fast communication network

Assuming that the sites involved in the distributing environment are con-
nected through a fast network infrastructure, the algorithm can be modified
to distribute the computational cost without imposing any restriction to its
efficiency. More specifically, it is possible to distribute the computational effort
of the k-windows algorithm by only parallelizing the range queries. In detail,
assume again m computer nodes are available, each one having a portion of
the dataset Vi where i = 1, . . . , m. Firstly at each node, i, a multidimensional
binary tree [38] Ti is constructed, which stores the points of the set Vi. Then
parallel search for a range query Q is performed as follows:
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Parallel range search procedure
set A ←− ∅
for each node i do in parallel

set Ai ←− ∅
find the points from the local database that are included in Q
insert the recovered points in Ai

send Ai to the server node
set A←− A ∪ {A1, . . . , Am}

The algorithm at a preprocessing step constructs a multidimensional bi-
nary tree for each node holding data known only to that node. Then a server
node is used to execute the k-windows algorithm. From that point onwards,
the algorithm continues to work as in the original version. When a range search
is to be executed, the server executes the range query over all the nodes and
computes the union of the results.

To analyze the algorithms complexity, we assume that the multidimen-
sional binary tree, is used as a data structure [38]. Then, the algorithmic
complexity for the preprocessing step for n points in d dimensions is reduced
to θ((dn log n)/m) from θ(dn log n) of the single node version. Furthermore
the storage requirements at each node come up to θ(dn/m) while for the
single node they remain θ(dn). Since the orthogonal range search algorithm
has a complexity of O(dn1−1/d + s) [38], the parallel orthogonal range search
algorithm has a complexity of O(d (n/m)1−1/d + s + ε(d, m)), where s is the
total number of points included in the range search and ε(d, m) is a function
that represents the time required for the communication between the master
and the nodes. It should be noted that the only information that needs to
be transmitted from each slave is the number of points found and their mean
value as a d-dimensional vector. So the total communication comes to a broad-
cast message from the server about the range, and m messages of an integer
and a d-dimensional vector from each slave. Taking these parameters under
consideration, ε(d, m) can be computed for a specific network interface and a
specified number of nodes. For the parallel algorithm to achieve an execution
time speedup the following relation must hold:

O

⎛
⎝d

(
n
m

)1− 1

d + s + ε(d, m)

dn1− 1

d + s

⎞
⎠ � 1,

which comes to [46]:

O(ε(d, m)) � O

(
d

(
n1− 1

d −
( n

m

)1− 1

d

))
.

As long the above inequality holds, the parallel version of the algorithm is
faster than the single node version. In all other cases the network infrastruc-
ture presents a bottleneck to the system. In that case, the parallel version
advantage is limited to storage space requirements.
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4 Clustering on dynamic databases

Most clustering algorithms rely on the assumption that the input data con-
stitute a random sample drawn from a stationary distribution. As data is
collected over time the underlying process that generates them can change.
In a non–stationary environment new data are inserted and existing data are
deleted. Cluster maintenance deals with the issues of when to to update the
clustering result and how to achieve this with low computational cost. In the
literature there are few maintenance algorithms, most of which are developed
for growing databases. The application domain of these algorithms includes
database re–organization [59], web usage user profiling [34] as well as, docu-
ment clustering [57].

From the broader field of data mining, a technique for maintaining as-
sociation rules in databases that undergo insertions and deletions has been
developed in [17]. A generalization algorithm for incremental summarization
has been proposed in [21]. An incremental document clustering algorithm that
attempts to maintain clusters of small diameter as new points are inserted in
the database has been proposed in [14]. Another on-line star-algorithm for
document clustering has been proposed in [6]. A desirable feature of the lat-
ter algorithm is that it imposes no constraints on the number of clusters. An
incremental extension to the GDBSCAN algorithm [43] has been proposed
in [20]. Using a similar technique an incremental version of the OPTICS algo-
rithm [5] has been proposed in [27]. The speedup achieved by this incremental
algorithm [27] is significantly lower than that of [20]. This is attributed to the
higher complexity of OPTICS, but [27] claim that the incremental version of
OPTICS is suitable for a broader range of applications.

In the following paragraphs we present an extension of the unsupervised k-
windows clustering algorithm [51, 53] that can efficiently mine clustering rules
from databases that undergo insertion and deletion operations over time. The
proposed extension incorporates the Bkd-tree structure [39]. The Bkd-tree can
efficiently index objects under a significant load of updates, and also provides
a mechanism that determines the timing of the updates.

4.1 The Bkd-tree

Considering databases that undergo a significant load of updates, the problem
of indexing the data arises. In detail, an efficient index should be character-
ized by the properties of high space utilization and small processing time of
queries under a continuous updating process. Moreover, the processing time
of the updates must be fast. To this end, we employ the Bkd-tree structure
proposed in [39], that maintains its high space utilization and excellent query
and update performance, regardless of the number of updates performed.

The Bkd-tree is based on a well-known extension of the kd-tree (called
the K-D-B-tree [42]) and on the so-called logarithmic method for making a
static structure dynamic. Extensive experimental studies [39] have shown that
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the Bkd-tree is able to achieve almost 100% space utilization and also the fast
query processing of a static K-D-B-tree. However, unlike the K-D-B-tree, these
properties are maintained under a massive load of updates.

Instead of maintaining one tree and dynamically re-balancing it after each
insertion, the Bkd-tree structure maintains a set of log2(n/M) static K-D-B-
trees and updates are performed by rebuilding a carefully chosen set of struc-
tures at regular intervals (M stands for the capacity of the memory buffer,
in terms of number of points). To answer a range query using the Bkd-tree,
all the log2(n/M) trees have to be queried. Despite this fact, the worst–case
behavior of the query time is still of the order O(dn1−1/d + s) (s is the num-
ber of retrieved points). Using an optimal O(n logm(n) bulk loading algorithm
an insertion is performed in O(logm(n) log2(n/M)). A deletion operation is
executed by simply querying each of the trees to find the tree Ti containing
the point and delete it from Ti. Since there are at most log2(n/M) trees, the
number of operations performed by a deletion is log(n) log2(n/M) [39].

Insertions are handled completely differently. Most insertions ((M − 1)
out of M consecutive ones) take place on the T0 tree structure. Whenever T0

reaches the maximum number of points it can store (M points) the smallest j
is found such that Tj is an empty kd-tree. Then all points from T0 and Ti for
0 � i < j are extracted and bulk loaded in the Tj structure. In other words,
points are inserted in the T0 structure and periodically reorganized towards
larger kd-trees by merging small kd-trees into one large kd-tree. The larger
the kd-tree, the less frequently it needs to be reorganized.

Extensive experimentation [39] has shown that the range query perfor-
mance of the Bkd-tree is on par with that of existing data structures. Thus,
without sacrificing range query performance, the Bkd-tree makes significant
improvements in insertion performance and space utilization; insertions are
up to 100 times faster than K-D-B-tree insertions and space utilization is close
to a perfect 100%, even under a massive load of insertions.

4.2 Unsupervised k-windows on dynamic databases

The proposed dynamic version of the unsupervised k–windows algorithm is
based on the utilization of the Bkd–tree data organization structure. The
Bkd–tree primarily enables the fast processing of range queries, and secondly
provides a criterion for the timing of the update operations on the clustering
result. The following schema outlines the dynamic algorithm:

(a) Assume an execution of the algorithm on the initial database has been
performed yielding a set of windows that describe the clustering result.

(b)At specified periods execute the following steps:
(1) Treatment of insertion operations.
(2) Treatment of deletion operations.

(c) After each of the above steps is completed update the set of windows.
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This schema describes a dynamic algorithm that is able to adapt a clus-
tering model to the changes in the database. In the following paragraphs after
analyzing the workings of the algorithms for each possible update operation,
a total high level description of the overall procedure is presented.

Treatment of insertions:

Insertion operations is the first update operation in a dynamic environment.
Throughout this paragraph it is assumed that the static unsupervised k-
windows algorithm has been applied on the initial database, producing a set
of windows that describe the clustering result.

As insertion operations take place, the T0 structure of the Bkd–tree reaches
the maximum number of points it can store (M). At this point a number of
windows are initialized over these points. Subsequently, the movement and
enlargement procedures of the unsupervised k–windows algorithm are applied
on these windows just as in the static case. When the movement and enlarge-
ment of the new windows terminate they are considered for similarity and
merging with all the existing windows. Thus the algorithm is able to retain
only the most representative windows, thereby restraining the clustering re-
sult to a relatively small size. An example of this procedure is demonstrated
in Fig. 4. The filled circles represent the initial points while the empty cir-
cles represent the inserted points. The W1 and W2 windows are assumed to
have been finalized from the initial run of the algorithm. On the other hand
windows W3 and W4 are initialized over the inserted points (empty circles).
After the completion of movement and enlargement operations for W3 and
W4, they are considered for similarity and merging. This step yields that win-
dows W1 and W3 belong to the same cluster, since they satisfy the merge
operation, while, window W2 is ignored as it satisfies the similarity operation
with window W4.

W4

W2

W3

W1

Fig. 4. The application of the k-windows algorithm over the inserted points.

Treatment of deletions:

The deletion update operations are addressed by maintaining a second Bkd-
tree structure. Each time a point is deleted, it is removed from the main data
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structure and is inserted in the second Bkd-tree. A number of windows are
initialized over the points of the second Bkd-tree, when it reaches its max-
imum size. These windows are subjected to the movement and enlargement
procedures of the k-windows algorithm, that operates only on the second data
structure. When these operations terminate, the windows are considered for
similarity with the windows that have been already processed. If a processed
window is found to be similar with a window that contains deleted points, the
former window is ignored. If the processed window that is ignored contained a
large number of points new windows are initialized over these points and they
are processed as new windows. After this procedure terminates, the Bkd-tree
that stores the deleted points is emptied. An example of the deletion process
is illustrated in Fig. 5. The filled circles represent the points that remain in
the database, while the empty circles represent the deleted points. Window
W1 is assumed to have been finalized from the initial run of the algorithm.
Windows W2 and W3 are initialized over the deleted points (empty circles).
After movement and enlargement, they are considered for similarity with the
initial window, W1. Window W1 satisfies the similarity condition with W2
and W3 and thus it is ignored. Since window W1 contained a large num-
ber of points four windows are initialized over these points (Fig. 5(b)). The
movement and enlargement operations on these yield windows W4, W5, W6
and W7. These windows are considered for merging and similarity. Windows
W4 and W7 satisfy the similarity operation and thus window W7 is ignored.
Windows W5 and W6 satisfy the merge operation thus they are considered
to enclose points belonging to the same cluster.

W1

W2

W3

W5

W6W4

(a) (b)

W7

Fig. 5. (a) The application of the k-windows algorithm over the deleted points. (b)
The application of the k-windows algorithm over the non-deleted points contained
in initial window W1.

Performing the clustering operation on the deleted points the dynamic
algorithm aims at identifying the windows that need to be re-organized in the
initial results. Thus, the speedup that can be achieved depends not only on
the size of the updates, but also on the change they impose on the clustering
result.
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Proposed algorithm:

Based on the procedures previously described, we propose the following high
level algorithmic scheme:

Dynamic unsupervised k-windows
Set {the input parameters of k-windows algorithm}.
Initialize an empty set W of d–ranges.
Each time the T0 tree of the Bkd-tree structure is full:
Initialize a set I of k d–ranges, over the T0 tree.
Perform movements and enlargements of the d–ranges in I.
Update W to contain the resulting d–ranges.
Perform merging and similarity operations of the d–ranges in W .

If a large enough number of deletions has been performed:
Initialize a set D of k d–ranges over the deleted points.
Apply k-windows on the d–ranges in D.
If any windows in D satisfy the similarity condition
with windows in W :

Then delete those windows from W and
If the deleted windows from W contained any not deleted points,
apply k-windows over them.

Report the groups of d–ranges that comprise the final clusters.

The above schema’s execution is crucially affected by the size, M , of the T0

component of Bkd-tree structure. The value of this parameter determines the
timing of the update operation of the database [39], which in turn triggers the
update of the clustering result. Therefore its value must be set according to the
available computational power, the desired update intervals of the clustering
result, as well as, the size of the application at hand.

5 Unsupervised clustering using fractal dimension

It is evident by a plain examination of the objects that surround us that most
of them are very complex and erratic in nature [36, 44]. Mandelbrot [32], by
introducing the concept of “fractal”, was the first to try to address the need
for a model that has the ability to describe such erratic behavior. A set is
called fractal if its Hausdorff-Besicovitch dimension is strictly greater than its
topological dimension. A characteristic for a fractal set is its fractal dimension,
that measures its complexity. The box counting method [29], is an established
approach to compute the fractal dimension of a set. In detail, for a set of n
points in R

d, and a partition of the space in grid cells of length lb, the fractal
dimension Db is given by:

Db = − lim
lb→0

log10 nb(lb)
log10 lb

,
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where nb(lb) represents the number of cells occupied by at least one point. Db

corresponds to the slope of the plot log10 nb(lb) versus log10 lb.
The fractal dimension has been utilized for clustering purposes in the

past. A grid based clustering algorithm, that uses fractal dimension to cluster
datasets, has been proposed by Barbarä and Chen [7]. The algorithm, uses a
heuristic based algorithm at the initialization stage to form the initial clusters
and then it incrementally adds points to a cluster, as long as, the fractal
dimension remains constant. Another approach for two dimensions has been
proposed by Prasad et al. [37]. Both algorithms require from the user to
provide an a priori estimation of the number of clusters present in the dataset.

Next, we present a modification of the unsupervised k-windows clustering
algorithm, that guides the procedures of movement, enlargement and merging
using the fractal dimension of the points included in the window [52].

In detail, the movement and enlargement of a window is considered valid
only if the associated change of the fractal dimension is not significant. It is
also possible to guide the merging procedure by using the fractal dimension
by allowing two windows to merge only if the estimated fractal dimensions
are almost equal. Thus, the merging of windows that capture regions of a
cluster with different fractal dimension is discouraged. Such clusters appear
in datasets where the density of points in the neighborhood of the cluster
center is significantly higher than that of areas located further away from
the center. Thus, the algorithm discovers the cluster center more efficiently
and moreover it identifies regions with qualitative differences within a single
cluster. Consider for example the case exhibited in Fig. 6. The enlargement
and movement procedures restrain window W3 from enclosing the right part
of the cluster since the fractal dimension of this region is much higher (see
Fig. 6(b)). Similarly, window W4 is restrained from capturing the left part
of the cluster. The proposed modification of the algorithm also recognizes
that although the windows have many points in common (see Fig. 6(a)), the
difference in the value of the fractal dimension between them is sufficiently
large so as to consider them as two distinct regions of the same cluster.

(a) (b)
W1 W3

W4

W2

Fig. 6. Clusters with regions of different density. The proposed algorithm is able to
discover the different sections of the same clusters.
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6 Presentation of experiments

To evaluate the results of the unsupervised k-windows clustering algorithm
we employ artificial datasets as well as real world ones. The first two datasets
Dset1 and Dset2 are 2 dimensional, containing 1600 and 10000 points respec-
tively. In Dset1 the points are organized in 4 different clusters, of different
sizes. On the other hand, Dset2 contains 100 clusters of the same size (1000
points each). The centers of each cluster for this dataset are aligned over
a grid in [10, 200]2, and the corresponding points are drawn from a normal
distribution with standard deviation along each dimension a random number
between 1 and 2. The algorithm was applied on these two datasets with 12 and
256 initial windows respectively. The values of the parameters {θe, θm, θc, θv}
were set to {0.8, 0.1, 0.2, 0.02} in both cases. k-windows was able to identify
all the clusters correctly in both datasets. The datasets, as well as, the results
obtained are illustrated in Fig. 7.

(a) (b)

Fig. 7. (a) Results of the k-windows algorithm for Dset1. (b) Results of the k-
windows algorithm for Dset2.

The next dataset Dset3 is 3–dimensional, and is generated by uniformly
sampling 20 cluster centers in the [10, 200]3 range. Around each cluster center
100 points are sampled from a normal distribution with standard deviation
along each dimension a random number between 1 and 3. DSet4 is generated
in a similar manner, but it lies in 50 dimensions. In both cases the algorithm
initialized 128 windows while all other parameters were assigned to the same
values as in the first two cases. In both cases the algorithm correctly identified
the 20 clusters. This result is illustrated in Fig. 8.

The final two artificial datasets Dset5 and Dset6 consist of 319 and 3651
points respectively. Both of them contain 4 non-convex irregularly shaped
clusters with uniformly scattered points. The application of the k-windows
algorithm on them with the same initial values and 32 and 256 initial windows,
is exhibited in Fig. 9. From this figure it is obvious that the algorithm is also
able to discover clusters of irregular shapes as long as enough windows are
initialized over the datasets.
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(a) (b)

Fig. 8. (a) The result of the k-windows algorithm for Dset3. (b) Results of the
k-windows algorithm on a 3-dimensional projection of Dset4

(a) (b)

Fig. 9. (a) Results of the k-windows algorithm for Dset5. (b) Results of the k-
windows algorithm for Dset6.

The real world dataset Dset7 was part of the KDD 1999 Cup data set [26].
This dataset was generated by the 1998 DARPA Intrusion Detection Evalu-
ation Program that was prepared and managed by MIT Lincoln Labs. The
objective was to survey and evaluate research in intrusion detection. A stan-
dard set of data to be audited was provided, which includes a wide variety
of intrusions simulated in a military network environment. The 1999 KDD
intrusion detection contest uses a version of this dataset. For the purposes of
this paper the 100000 first records of KDD 1999 Cup train dataset were used.
This part of the data set contains 77888 of patterns of normal connections and
22112 of denial of service (DoS) attacks. Over the 42 features the 37 numeric
ones were selected. When the algorithm is applied over this dataset with 16
initial windows it results in seven clusters out of which one contains 22087
DoS patterns. The other six clusters contain normal patterns exclusively, with
the exception of one cluster that also contains 24 DoS patterns. These results
point out that the discovered clusters are meaningful, and thus the clustering
result can be considered accurate.

To test the efficiency of the distributed k-windows clustering algorithm for
minimal communication environments described in Subsection 3.1, we resort
to experiments that produce results that can be readily visualized. Thus, a two
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dimensional dataset Dsetd consisting of 10241 points was constructed. This
dataset contains 5 clusters of different sizes, and a number of outlier points
some of which connect two clusters. At a next step the dataset was randomly
permuted and was distributed over 4, 8 and 16 sites. The k-windows clustering
algorithm was applied to this dataset with 256, 64, 32 and 16 initial windows
for the 1, 4, 8 and 16 sites respectively. The dataset, along with the clustering
result, when the whole dataset resides in one single site and is distributed in
4 sites, is illustrated in Fig. 10. In Fig. 11 the results of the algorithm for 8
and 16 sites, respectively, are exhibited. As it is obvious from the figures that
the results are correct in all three cases. It should be noted that for the cases
of 8 and 16 sites a different extra cluster is identified by the algorithm, but
it is not considered important since in both cases it holds a small amount of
points and does not affect the correct identification of the 5 main clusters.

The next experimental results involve the measurement of the speedup
that can be achieved through the distributed k-windows algoritm over a fast
communication network, described in Subsection 3.2. To this end, we em-

(a) (b)

Fig. 10. (a) Results of the k-windows algorithm for Dsetd. (b) Results of the k-
windows algorithm for Dsetd for 4 sites and 64 initial windows per site.

(a) (b)

Fig. 11. (a) Results of the k-windows algorithm for Dsetd for 8 sites and 32 initial
windows per site. (b) Results of the k-windows algorithm for Dsetd for 16 sites and
16 initial windows per site.
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ploy the PVM parallel programming interface. PVM was selected, among its
competitors because any algorithmic implementation is quite simple, since it
does not require any special knowledge apart from the usage of functions and
setting up the PVM process to all personal computers. Thus, the k-windows
clustering algorithm was developed under the Linux operating system using
the C++ programming language and its PVM extensions.

The hardware used for our purposes consisted of 16 Pentium III 900MHz
personal computers with 32MB of RAM and 4GB of hard disk availability
each. A Pentium 4 1.8GHz personal computer with 256MB of RAM and 20GB
of hard disk availability was used as the server for the algorithm. The nodes
were connected through a Fast Ethernet 100MBit/s network switch.

Furthermore, we constructed an artificial dataset Dsetp using a mixture
of Gaussian random distributions. The dataset contained 21000 points with
50 numerical attributes. As it is exhibited in Fig. 12, for this dataset the
algorithm achieves almost 9 times smaller running time when using 16 CPUs.
On the other hand, at every node only the 1/16 of the total storage space
is required. From Fig. 12, we also observe an abrupt slow–down in speedup
when moving from 8 to 16 nodes. This behavior is due to the larger number
of messages that must be exchanged during the operation of the algorithm,
which results to increased network utilization.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10  12  14  16

Sp
ee

du
p

Number of Computer Nodes

Fig. 12. Speedup for the different number of CPUs.

To evaluate the performance of the proposed dynamic k-windows algo-
rithm we will use Dset1. As previously mentioned, this dataset contains 1600
points organized in four clusters of different sizes. The dataset was split into
four parts each part containing 400 points. The parts of the dataset were
gradually presented to the algorithm. Each time a part was presented, the
algorithm initialized a set of 32 windows over the new points. These windows
were processed through the algorithmic procedure described above, and the
clustering results for each step are presented in Fig. 13. In detail, in Fig. 13(a)
and Fig. 13(b), seven clusters are identified, an outcome that appears to be
reasonable by means of visual inspection. In Fig. 13(c) the algorithm detects
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five clusters by correctly identifying the top right and bottom left clusters. The
bottom right cluster is still divided into two clusters. Finally, in Fig. 13(d) all
the clusters are correctly identified, by seven windows.

(a) (b)

(c) (d)

Fig. 13. Applying k-windows into four consecutive instances of Dset1.

For comparative purposes with the work of [27, 43], we also calculated the
speedup achieved by the dynamic version of the algorithm. To this end, we
constructed a 10–dimensional dataset, Dsetonline, by uniformly sampling 100
cluster centers in the [10, 200]10 range. Around each cluster center 1000 points
were sampled from a normal distribution with standard deviation along each
dimension a random number in the interval [1, 3]. To measure the speedup
we computed the CPU time that the static algorithm requires when it is re-
executed over the updated database with respect to the CPU time consumed
by the dynamic version. The results are exhibited in Figs. 14, and 15. For the
insertions case (Fig. 14) the dynamic version manages to achieve a speedup
factor of 906.96 when 100 insertion operations occur in database of original
size 90000. For a larger number of insertion operations 1000 the speedup
obtained although smaller 92.414 appears to be analogous to the ratio of the
number of updates to the total size of the database.

For the case of deletions (Fig. 15) the speedup factors obtained are larger.
For example when the size of the database is 900100 the speedup reaches
2445.23 and 148.934 for 100 and 1000 random deletions, respectively. It is
important to note that in the case of deletions the speedup does not increase
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Fig. 14. Speedup achieved by the dynamic algorithm for insertion operations for
Dsetonline.
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Fig. 15. Speedup achieved by the dynamic algorithm for deletions operations for
Dsetonline.

monotonously with the difference between the size of the database and the
number of updates because the time complexity of the algorithm also depends
on the impact deletions impose on the clustering result.

The final benchmark problem considered, Dseteq, is a two dimensional
dataset of the longitudes and latitudes of the earthquakes with a magnitude
greater than 4, in the Richter earthquake scale, that occurred in the period
1983 to 2003 in Greece. The dataset was obtained from the Institute of Geo-
dynamics of the National observatory of Athens [12]. This dataset is employed
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(a)

(b)

Fig. 16. (a) Results of the k-windows algorithm for Dseteq. (b) Results of the
k-windows algorithm using fractal dimension for Dseteq .

not to obtain a further insight with respect to the earthquake phenomenon,

72



Novel Approaches to Unsupervised Clustering

but rather to study the applicability of the proposed algorithm to a real world
dataset.

Fig. 16(a) illustrates the results of the unsupervised k–windows algorithm
for Dseteq. In Fig. 16(b) illustrates the results of the same dataset of the k-
windows algorithm that uses fractal dimension. The modified algorithm sepa-
rates regions characterized by different fractal dimension, that were assigned
to a single cluster by the original algorithm. In Fig. 16(b) characteristic ex-
amples of clusters that were separated by the modified algorithm are enclosed
in black squares.

This is a preliminary investigation of the application of clustering algo-
rithms to earthquake data. An exhaustive investigation requires the inclusion
of additional parameters like magnitude, depth, and time.

7 Concluding remarks

The unsupervised k-windows algorithm is an iterative clustering technique,
that attempts to address efficiently the problem of determining the clusters
present in a given dataset, as well as, their number. Our experience indicates
that the algorithm’s performance appears to be robust. With the incorporation
of computational geometry techniques the algorithm achieves a comparatively
low time complexity. The algorithm has been successfully applied in numerous
applications including bioinformatics [47, 48], medical diagnosis [31, 49], time
series prediction [35] and web personalization [41].

Given that the development of efficient distributed clustering algorithms
has attracted considerable attention in the past few years, the k-windows
algorithm has been designed to be easily extended in distributed comput-
ing environments, taking under consideration privacy issues and very slow
network connections [50]. For the same kind of distributed computing envi-
ronments, but under the assumption of a high speed underlying network, a
parallel version of the algorithm was investigated [4]. This version is able to
achieve considerable speedup in execution time and at the same time attain a
linear decrease on the storage space requirements with respect to the number
of computer nodes used.

For databases that undergo update operations, a technique was presented
that is capable of tracking changes in the cluster model [51]. This technique
incorporates a dynamic tree data structure (Bkd-tree) that maintains high
space utilization, and excellent query and update performance regardless of
the number of updates performed. The experimental results suggest that the
algorithm is able to identify the changes in the datasets considered, by only
updating its cluster model.

Finally, a modification of the k-windows algorithm was presented that
uses the fractal dimension of the underlying clusters in order to partition the
dataset [52]. This approach enables the identification of regions with different
fractal dimension even within a single cluster. The design and development of
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algorithms that can detect clusters within clusters is particularly attractive
in numerous applications where further qualitative information is valuable.
Examples include time–series analysis, image analysis, medical applications,
and signal processing.

References

1. P.K. Agarwal and C.M. Procopiuc. Exact and approximation algorithms for
clustering (extended abstract). In Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 658–667, San Francisco, California, U.S.A., 1998.

2. M.S. Aldenderfer and R.K. Blashfield. Cluster Analysis, volume 44 of Quanti-
tative Applications in the Social Sciences. SAGE Publications, London, 1984.

3. P. Alevizos. An algorithm for orthogonal range search in d � 3 dimensions.
In Proceedings of the 14th European Workshop on Computational Geometry.
Barcelona, 1998.

4. P. Alevizos, D.K. Tasoulis, and M.N. Vrahatis. Parallelizing the unsupervised
k-windows clustering algorithm. In R. Wyrzykowski, editor, Lecture Notes in
Computer Science, volume 3019, pages 225–232. Springer-Verlag, 2004.

5. M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to
identify the clustering structure. In ACM SIGMOD Int. Conf. on Management
of Data, pages 49–60, 1999.

6. J. Aslam, K. Pelekhov, and D. Rus. A practical clustering algorithm for static
and dynamic information organization. In ACM-SIAM Symposium on Discrete
Algorithms, pages 51–60, 1999.
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