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Abstract. A new method for the computation of the global minimum of a continu-
ously differentiable real–valued function f of n variables is presented. This method,
which is composed of two parts, is based on the combinatorial topology concept of
the degree of a mapping associated with an oriented polyhedron. In the first part,
interval arithmetic is implemented for a “rough” isolation of all the stationary points
of f . In the second part, the isolated stationary points are characterized as minima,
maxima or saddle points and the global minimum is determined among the mini-
ma. The described algorithm can be successfully applied to problems with imprecise
function and gradient values. The algorithm has been implemented and tested. It is
primarily useful for small dimensions (n ≤ 10).
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1. Introduction

Several methods for finding the extrema of a function f :D ⊂ IRn → IR,
where D is open and bounded, have been proposed with many appli-
cations in different scientific fields (mathematics, physics, engineering,
computer science etc.). Most of them require precise function and gra-
dient values. In many applications though, precise values are either
impossible or time consuming to obtain. For example, when the func-
tion and gradient values depend on the results of numerical simulations,
then it may be difficult or impossible to get very precise values. Or, in
other cases, it may be necessary to integrate numerically a system of
differential equations in order to obtain a function value, so that the
precision of the computed value is limited [29, 48]. On the other hand,
it is necessary, in many applications, to use methods which do not
require precise values [48, 24], as for example in neural network training
[31, 32, 30]. Furthermore, in many problems the values of the function
to be minimized are computationally expensive [23]. Such problems are
common in real life applications as in the optimization of parameters in
chemical experiments or finite element calculations, where a single mea-
surement (function evaluation) takes several hours or even days. With
such applications in mind, we ask for robust methods which make good
progress with the fewest possible number of function evaluations, while
the work to select new evaluation points can be neglected.

Developments in Global Optimization, I.M. Bomze, T. Csendes, R. Horst and P.M. Pardalos (eds.), 
Chapter 3, pp.37-54, Kluwer Academic Publishers (Nonconvex Optimization and Its Applications 
series, vol.18), Dordrecht, The Netherlands, 1997 [ISBN: 0-7923-4351-4].



38 M.N. Vrahatis et al.

In this contribution a new method is presented for the computation
of the global minimum x∗ of an n–dimensional real valued function f .
The proposed algorithm makes use of interval arithmetic techniques
[2, 34, 19] in order to isolate “roughly” the stationary points of f .
Next, a criterion [54] is used to characterize the isolated stationary
points as minima, maxima, or saddle points. This criterion implements
topological degree theory and especially the concept and properties of
the characteristic n–polyhedron [51, 44, 47], by which all calculations
concerning the exact value of the topological degree are avoided, and,
therefore, it can be applied to problems with imprecise values. Finally,
the localized minima are computed and the global one is decided.

In Section 2 we give a discussion of optimization of noisy functions as
well as a simulation of the influence of noise (proportional to a Gaussian
distributed random number with zero mean and various variances). In
Section 3 a detailed description of the new method and a model algo-
rithm are presented, while in Section 4 numerical results are presented
in tabular form. We finally end, in Section 5, with some concluding
remarks and a short discussion for further research.

2. Optimization of noisy functions

The problem of optimization of noisy or imprecise (not exactly known)
functions occurs in various applications, as for instance, in the task of
experimental optimization. Also, the problem of locating local maxi-
ma and minima of a function from approximate measurement results
is vital for many physical applications: In spectral analysis, chemi-
cal species are identified by locating local maxima of the spectra. In
radioastronomy, sources of celestial radio emission and their subcompo-
nents are identified by locating local maxima of the measured brightness
of the radio sky. Elementary particles are identified by locating local
maxima of the experimental curves [43].

The theory of local optimization provides a large variety of effi-
cient and effective methods for the computation of an optimizer of
a smooth function f . For example, Newton–type and quasi–Newton
methods show superlinear convergence in the vicinity of a nondegener-
ate optimizer. However, these methods require the gradient or the Hes-
sian, respectively, in contrast to other optimization procedures, like the
simplex method [40, 33] or the direction set method of Powell (see [11,
pp. 87–92]). Nevertheless, it is believed that a quasi–Newton method
using a finite–difference approximation for the gradient is the most
efficient one for the task of optimizing smooth functions when only
function values are available.
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In some applications, however, the function to be minimized is only
known within some (often unknown and low) precision. This might
be due to the fact that evaluation of the function means measuring
some physical or chemical quantity or performing an (expensive) finite
element calculation in order to solve partial differential equations. The
function values obtained are corrupted by noise, namely stochastic mea-
surement errors or discretization errors. This means that, although the
underlying function is smooth, the function values available show a
discontinuous behavior. Moreover, no gradient information is available.

For small variations in a neighborhood of a point the correspond-
ing function values reflect the local behavior of the noise rather than
that of the function. Thus, a finite–difference procedure to estimate the
gradient, needed for a quasi–Newton method, fails.

The traditional method for optimizing noisy functions is the simplex
or polytope method, originally given by Spendley, Hext and Himsworth,
[40] and later developed by Nelder and Mead [33] (cf. [35, p.202], [11,
p.18], [37, p.230]). This method surpasses other well–known optimiza-
tion methods when dealing with the large noise case. However, this is
not valid in the noiseless case [12, p.92]. The ability of this method to
cope with noise is due to the fact that it proceeds solely by comparing
the relative size of the function values. It does not use a local mod-
el of the function f and works without the assumption of continuity.
Although this method has poor convergence properties (for a conver-
gence proof of a modified version see [41]), yet it has been proved to be
a useful method in many applications. The simplex method is assumed
to have converged whenever the standard deviation of the function at
the vertices of the current simplex is smaller than some prescribed small
quantity. Deficiency of this method can occur when the current simplex
is very “flat”. This can be avoided by suitable variants (see for example
[12, 41]). More sophisticated methods in this direction are discussed by
Powell [38]. Also, a method which combines a simplex technique, sim-
ilar to the method of Nelder and Mead, with the use of occasional
quadratic models, estimated by some kind of finite differences, is given
by Dixon [8].

Although a smooth function corrupted by noise is effectively dis-
continuous, one may use the smoothness of the underlying function
and try to separate it from the added noise. A method of this type
was suggested by Glad and Goldstein [13] who repeatedly estimated
quadratic models by the method of least squares using O(n2) points
in a fixed scaled pattern around the best point. Although this allows
them to prove convergence of their algorithm, it makes each iteration
unduly expensive. Instead of using extra function evaluations at points
arranged in a fixed pattern, Karidis and Turns [23] suggested a method
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based on using the previous function evaluations for the least square
fit, thus improving an approach of Winfield [55], who uses interpolation
(which is sensitive to noise).

Recently, an effective method which is comparable to quasi– New-
ton methods in the noiseless case and is much more robust than the
method of Nelder and Mead in the noisy case, has be given by Elster
and Neumaier [10]. It is based on the use of quadratic models and the
restriction of the evaluation points to successively refined grids. This
algorithm is particularly suitable for cases where the obtained func-
tion values are corrupted by (deterministic or stochastic) noise and the
underlying function is smooth.

Another approach to handle noisy cases is to employ methods that
require only the least amount of information regarding the function
values, namely their signs. Recently, we have begun to study rootfind-
ing and optimization methods which can be applied to problems with
imprecise function and gradient values. To this end we have proposed
methods for which the only computable information required is the
algebraic signs of the considered functions [51, 44, 45, 14, 15, 16, 17]. For
the unconstrained optimization case we have proposed a method based
on a modified one–dimensional bisection rootfinding method which
actually requires only the signs of the function values to be correct
[48]. Also, we have proposed a method named dimension reducing for
the computation of a local minimum [18]. This method can be applied
to problems with imprecise function and gradient values and incorpo-
rates the advantages of Newton and nonlinear SOR algorithms. Specif-
ically, although this method uses reduction to simpler one–dimensional
nonlinear equations, it quadratically minimizes general functions.

To study the influence of the imprecise information (regarding the
values of the objective function and the gradient), we simulate impreci-
sions with the following approach. Information about f(x) is obtained
in the form of fσ(x), where fσ(x) is an approximation to the true
function value f(x), contaminated by a small amount of noise η such
as:

|fσ(x)− f(x)| ≤ δ. (1)

Specifically, the function values are obtained as:

fσ(x) = f(x)(1 + η), η ∼ N(0, σ2), (2)

where N(0, σ2) denotes a Gaussian distributed random number with
zero mean and variance σ2, i.e., relative stochastic errors are used for
the test problems. To obtain η we apply the method of Box and Muller
[6] using various variances σ.

As it is generally known and many times confirmed, in the noisy
case (with σ = 0.01), a quasi–Newton approach, using the standard
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finite difference approximation for the gradient, breaks down [10]. For
the behavior of optimization methods applied to noisy functions as well
as studies of the performance of optimization methods by visualization
see [3, 4].

3. Locating, characterizing and computing the stationary
points of a function

The proposed method computes the global minimum x∗ (and all the
global minimizers) of a real–valued function f of n variables in the box
X such that:

f(x∗) = min
x∈X

f(x), (3)

where the objective function f : IRn → IR has continuous first and
second derivatives and X ∈ IIn is an n–dimensional interval.

Our method distinguishes the minima among all the stationary points
by applying a new characterization criterion. The stationary points of
a function f(x) in the box X0 are the zeros of the set of equations:

g(x) = ∇f(x) = O = (0, 0, . . . , 0), (4)

where ∇f =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
denotes the gradient of f . Of course, Equa-

tion (4) is fullfiled for the global minimum as well as for local minima,
maxima and saddle points.

Our algorithm isolates and characterizes one by one all the station-
ary points. In cases where a stationary point is characterized as a min-
imum the algorithm computes it by applying a real valued generalized
bisection method [51, 44, 47]. This bisection method is a global con-
vergent method and can be applied for any box of arbitrary size which
includes a stationary point. Thus, we only require a “rough” isolation
of the stationary points. So, in order to roughly isolate these points we
use an interval–Newton method which serves as an existence as well
as a uniqueness test [26, 19]. We wish to avoid wasteful iterations of
the interval–Newton method to isolate a stationary point of f which is
not the global minimum. Since the interval–Newton method is costly
in computational effort (it requires evaluation of the Jacobian of g(x)
and various algebraic procedures), we first apply a simple monotonicity
test which may preclude the need of the above method. Specifically, if
X is a sub–box of X0, we evaluate the components of g over X and,
if the resulting interval vector does not include O, then we conclude
that there is no stationary point of f in X. If the test of the gradient
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is unsuccessful in deleting X, we apply the interval–Newton method.
Then System (4) is linearized to the form:

g′(Xk)(Xk − X̌k) = −g(X̌k), (5)

where g′(Xk) represents an appropriate interval extension of the Jaco-
bian matrix of g over the box Xk and X̌k is the midpoint of the interval
vector Xk.

To simplify the above notations we denote Xk by X = (x1,x2, . . . ,
xn), and set A = {Ai,j}ni,j=1 with Ai,j to be the interval in the ith
row and jth column of A = g′(X), g(X̌k) = g = (g1,g2, . . . ,gn) and
X̌k = M = (m1,m2, . . . ,mn). With these notations Equation (5) can
be written in the following form:

A(Xk −M) = −g. (6)

Then, applying an interval version of the Gauss–Seidel method, [27, 34],
with starting guess Xk is a competitive way to compute the components
of Xk on a row–by–row basis according to the relation:

xi = mi −

gi +
n∑

j=1
j 6=i

Aij(xj −mj)

 /
Aii. (7)

The interval Gauss–Seidel linear solver possesses properties which
allow it to function as an existence and uniqueness test and to couple
the interval–Newton method to a bisection procedure [28]. These desir-
able characteristics of the Gauss–Seidel iteration follow from a proof
presented in [34]. Applying the Gauss–Seidel linear solver we are able
to obtain a root inclusion test to each sub–box by assigning the val-
ues “true”, “false” or “unknown” as follows: The value true is assigned
if, after applying Relation (7), it holds that Xk ⊆ Xk, which means
that System (4) has a unique solution in Xk. If, on the other hand,
xi ∩ xi = ∅ for any i, then there are no solutions to System (4) in Xk,
and the Gauss–Seidel method, acting as a root inclusion test, returns
the value “false”. Finally, if the Gauss–Seidel method returns neither
“true” nor “false”, then the root inclusion test is inconclusive, and
the procedure returns the value “unknown”. When the Gauss–Seidel
method returns “unknown” either the value of Xk is set equal to that
of Xk and another Gauss–Seidel iteration is performed, or one of the
coordinate intervals of Xk is bisected to form two sub–boxes. In this
way, a bisection process enables an interval–Newton method to isolate
all the stationary points of f in the initial interval X0, (for more details
see [26]).
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Using the above way we are able to maintain two kinds of lists: a
list L of boxes X to be processed and a list U of boxes for which this
stage of the algorithm cannot decide whether they contain a unique
stationary point. These boxes will be processed at the next stage of the
algorithm.

In the second phase of the algorithm, the isolated stationary points
are characterized as minima, maxima or saddle points [54]. This pro-
cedure is based on the concept and properties of the characteristic
n–polyhedron (CP) [51, 44, 47].

First, we give some preliminary concepts and theoretical background
necessary for the description of the characterization procedure. Let us
define a characteristic n–polyhedron by constructing the 2n×n matrix
Mn whose rows are formed by all possible combinations of −1, 1, which
is called n–complete matrix. Let Πn = 〈υ1, υ2, . . . , υ2n〉 be an oriented
n–polyhedron in IRn with 2n vertices. The matrix of signs associated
with ∇f and Πn, denoted by S(∇f ; Πn), is the 2n × n matrix whose
entries in the kth row are the corresponding coordinates of the vector:

sgn∇f(υk) =
(
sgn∇f1(υk), sgn∇f2(υk), . . . , sgn∇fn(υk)

)
, (8)

where sgn defines the well–known sign function. Then the n–polyhedron
Πn = 〈υ1, υ2, . . . , υ2n〉 in IRn is a characteristic polyhedron (CP) rela-
tive to ∇f if the matrix S(∇f ; Πn) is identical with the n–complete
matrixMn [51]. In other words, the signs of the components of ∇f at
the 2n vertices of Πn yield every combination of ±1.

If Πn is a CP then, under suitable assumptions on the boundary
of Πn, the value of the topological degree of ∇f at O relative to Πn

is nonzero which implies the existence of a stationary point inside Πn

(CP–criterion) [44, 45, 51]. It is important to note that the CP–criterion
avoids all calculations concerning the topological degree since it requires
not its exact value but only its nonzero value.

Next, we proceed with the description of the characterization proce-
dure. From the first part of the algorithm we have a list of boxes each
of which contains a unique stationary point xst of f and so forms a
characteristic n–polyhedron (CP), according to the CP–criterion. Each
stationary point can be characterized according to the orientation of
the vertices of the CP [54] by following the procedure outlined below.

First, the oriented CP = 〈υ1, υ2, . . . , υ2n〉 is transformed so that its n
proper 1–simplexes with a common vertex are edges of the polyhedron
with vertices formed by the rows of the following defined 2n×n matrix
R: If

xmin
j = min{υ1

j , υ
2
j , . . . , υ

2n

j }, xmax
j = max{υ1

j , υ
2
j , . . . , υ

2n

j } (9)
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are the minimum and maximum of all the jth components υi
j of the CP

vertices υi, i = 1, 2, . . . , 2n, respectively, G is the rank–1 2n × n matrix
with elements in the jth column the value xmin

j and B is the n × n

diagonal matrix having as ith element the difference hi = xmax
i − xmin

i ,
then we define the matrix R = G +M∗

nB. For example for n = 2 we
have:

R = G+M∗
2B =


xmin

1 xmin
2

xmin
1 xmin

2

xmin
1 xmin

2

xmin
1 xmin

2

+


0 0
0 1
1 0
1 1

·[ h1 0
0 h2

]
=


xmin

1 xmin
2

xmin
1 xmax

2

xmax
1 xmin

2

xmax
1 xmax

2


In the sequel, the matrix S(∇f ; R) is constructed and the following

cases can be distinguished:

i) If 2n−1 rows of S(∇f ; R) with the same sign in one of their columns
are identical with the corresponding rows ofMn, then xst is char-
acterized as a local minimum.

ii) If 2n−1 rows of S(∇f ; R) with the same sign in one of their columns
are identical with the corresponding rows of −Mn, then xst is
characterized as a local maximum.

iii) Otherwise, if these rows are not identical either with the corre-
sponding rows ofMn or −Mn, then xst is characterized as a saddle
point.

This procedure makes use only of the algebraic sign of ∇f , while
derivatives of ∇f or approximations of them are not required. Thus it
can be applied to problems with imprecise values.

Next, the algorithm chooses those points characterized as minima
and computes all of them within a given accuracy to obtain the global
minimum. To this end, it uses a generalized bisection method which
requires only the signs of the gradient values to be correct and thus it
can be applied to imprecise problems. Also, it is a globally convergent
method and can be applied to non–differentiable continuous functions
[44, 45, 51]. Furthermore, this method has been successfully applied to
imprecise and difficult problems (see for example [9, 46, 49, 50, 52]).

This generalized bisection method, used in combination with the
CP–criterion outlined above, bisects a CP in such a way that the
new refined n–polyhedron is also a CP. To do this, one computes the
midpoint of a proper 1–simplex (edge) of Πn and uses it to replace
that vertex of Πn for which the vector of their signs are identical (see
[44, 45, 51, 47] for details and extensions). Finally, the number B of
characteristic bisections of the edges of a Πn required to obtain a new
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refined CP, Πn
? , whose longest edge length, ∆(Πn

? ), satisfies ∆(Πn
? ) ≤ ε,

for some ε ∈ (0, 1), is given by:

B =
⌈
log2

(
∆(Πn) ε−1

)⌉
, (10)

where the notation d·e refers to the smallest integer, which is not less
than the real number quoted (see [44] for a proof).

Using the above procedures we propose the following model algo-
rithm:

Algorithm 1. (Locating, characterizing and computing the stationary
points of a function)

1. Initialize list L by placing the initial search region X0 into it.

2. Do while L 6= ∅;

2.1 Remove the first box X from L;
2.2 Do one of the following:

(a) Reject X (when the range of ∇f over X does not contain
zero);

(b) Use an interval–Newton method to do one of the following:
i) reduce the size of X ( X← X ∩X) ;
ii) discard X (X ∩X = ∅);
iii) verify that a unique stationary point exists in X (X ⊆

X);
(c) If a unique stationary point is isolated, then characterize

it. If it is characterized as a minimum then compute it
within the accuracy ε, otherwise discard the box X. Get
the next box from the list L;

(d) In the case where the root inclusion test is inconclusive
then subdivide X to make it more likely to succeed at
rejecting, reducing, or verifying uniqueness and put the
corresponding sub–boxes into list L;

end{while}

end{algorithm}

4. Numerical Applications

The above procedures were implemented using a new portable Fortran
program named IMINBIS, which has been applied to several test func-
tions. For the rough isolation of the stationary points we have applied
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the interval–Newton/bisection package INTBIS due to Kearfott and
Novoa [28].

IMINBIS was tested on a HP–715 workstation as well as on a PC
IBM compatible. Our experience is that the algorithm behaves pre-
dictably and reliably. The results were satisfactory without any redun-
dant function evaluations. Some typical computational results are given
below. For the following problems, the reported parameters are:

— n dimension,

— X0 starting box,

— σ the value of the variance of the simulated noise,

— xst an n–dimensional stationary point,

— IFC the total number of interval function calls to determine the
range of the function,

— IJC the total number of interval Jacobian calls,

— IFNC the total number of interval function calls to do the interval–
Newton method,

— RFE1 the total number of real function evaluations for the local-
ization portion of our algorithm,

— RFE2 the total number of real function evaluations for the charac-
terization portion of our algorithm,

— RFE3 the total number of real function evaluations for the com-
putation of the minima within the accuracy ε = 10−8.

Here we exhibit results from the following test cases.

Example 1. Himmelblau function, [20]. In this case f is given by:

f(x) =
(
x2

1 + x2 − 11
)2

+
(
x1 + x2

2 − 7
)2

.

This function has the following stationary points:

a) four global minima

xst
1 = (3, 2),

xst
2 = (3.584428340330,−1.848126526964),

xst
3 = (−3.779310253378,−3.283185991286),

xst
4 = (−2.805118086953, 3.131312518250),

b) one maximum xst
5 = (−0.270844590667, −0.923038556480), and
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Table I. Himmelblau function, n = 2.

xst
i RFE1 RFE2 RFE3 Characterization

xst
1 4 2 58 minimum

xst
2 4 2 66 minimum

xst
3 4 2 45 minimum

xst
4 4 2 63 minimum

xst
5 4 2 0 maximum

xst
6 4 1 0 saddle

xst
7 4 1 0 saddle

xst
8 4 1 0 saddle

xst
9 4 1 0 saddle

σ = 0.01, IFC = 107, IJC = 89, IFNC = 89

c) four saddle points

xst
6 = (0.086677504555, 2.884254701175),

xst
7 = (−3.073025750764,−0.081353044288),

xst
8 = (3.385154183607, 0.073851879838),

xst
9 = (−0.127961346731,−1.953714980244).

Executing the implemented program with the initial box X0 = [−5, 5]×
[−5, 5], one characterizes all the above stationary points and computes
the four minima xst

1 , . . . , xst
4 , all of which have the same function value.

For this example the elapsed CPU time on a HP–715 was 0.33 seconds.
In Table I we exhibit the corresponding results obtained by IMINBIS.

Example 2. Kearfott function, [25]. The objective function f is given
by:

f(x) =
(
x2

1 + x2
2 − 2

)2
+

(
x2

1 − x2
2 − 1

)2
.

This function has the following nine stationary points:

a) four global minima xst
1 = (−

√
1.5, −

√
0.5), xst

2 = (−
√

1.5,
√

0.5),
xst

3 = (
√

1.5,
√

0.5), xst
4 = (

√
1.5, −

√
0.5),

b) one maximum xst
5 = (0, 0), and

c) four saddle points xst
6 = (

√
1.5, 0), xst

7 = (−
√

1.5, 0), xst
8 = (0,√

0.5), xst
9 = (0, −

√
0.5).
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Table II. Kearfott function, n = 2.

xst
i RFE1 RFE2 RFE3 Characterization

xst
1 4 2 58 minimum

xst
2 4 2 57 minimum

xst
3 4 2 51 minimum

xst
4 4 2 52 minimum

xst
5 4 2 0 maximum

xst
6 4 1 0 saddle

xst
7 4 1 0 saddle

xst
8 4 1 0 saddle

xst
9 4 1 0 saddle

σ = 0.01, IFC = 38, IJC = 32, IFNC = 32

Running IMINBIS with the initial box X0 = [−2, 2]× [−2, 2], we char-
acterize all the above stationary points and compute the four global
minima xst

1 , . . . , xst
4 . In Table II we exhibit the obtained results.

Example 3. Extended Kearfott function, [25, 44]. In this case f is given
by

f(x) =
n∑

i=1

f2
i (x),

where:

fi(x1, x2, . . . , xn) = xi
2 − xi+1, i = 1, 2, . . . , n− 1,

fn(x1, x2, . . . , xn) = xn
2 − x1.

This function, for n = 4, has the following stationary points:

a) two global minima xst
1 = (0, 0, 0, 0), xst

2 = (1, 1, 1, 1), and

b) one saddle point xst
3 = (0.5, 0.5, 0.5, 0.5),

Executing the implemented program with the initial box X0 = [−2, 2]4,
one characterizes all the above stationary points and computes the two
global minima after 2.32 seconds of CPU time on an HP–715. In Table
III we exhibit the corresponding results obtained by IMINBIS.

Example 4. Quadratic function, [48]. The objective function f is given
by:

f(x1, x2, . . . , xn) = x2
1 + x2

2 + · · ·+ x2
n − r,
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Table III. Extended Kearfott function, n = 4.

xst
i RFE1 RFE2 RFE3 Characterization

xst
1 16 8 739 minimum

xst
2 16 8 781 minimum

xst
3 16 1 0 saddle

σ = 0.01, IFC = 2610, IJC = 1627, IFNC = 1627

with f(x∗) = −r at the global minimum x∗ = (0, . . . , 0). In Table IV
we exhibit the results obtained for Example 4 starting with the box
X0 = [−99.99, 100]n for various dimensions and variances.

From the above results we observe that our method is independent
of the value of the variance σ. This is also true for all of the considered
examples.

5. Concluding remarks

A new method for the computation of the global minimum of an n–
dimensional real valued function f is presented. Our method computes
all the stationary points if required. In the case of the computation of
the global minimum it avoids the redundant computation effort needed
for various other stationary points by using a new characterization
criterion.

The proposed algorithm makes use of interval arithmetic techniques
in order to isolate the stationary points of f “roughly”. Next, the
characterization criterion is used in order to characterize these isolat-
ed points as minima, maxima, or saddle points. This criterion can be
applied to problems with imprecise values. Finally, the localized min-
ima are computed by using a generalized bisection method and the
global minimizers are determined. The only computable information
which is required by this bisection method is the algebraic signs of the
function values and, thus, it can be applied to imprecise problems.

Certainly it is known that the number of stationary points can be
large (in fact it is shown in [36] that it can be exponential in the
problem dimension). There exist, however, interesting cases where the
number of stationary points is small or moderately large where our
method performs very well. Nevertheless, the same restriction holds
for any other method which globally optimizes through the discovery
of all the stationary points. The advantage of our method compared
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Table IV. Quadratic function.

n σ RFE1 RFE2 RFE3

3 0.01 8 4 21

0.05 8 4 21

0.10 8 4 20

4 0.01 16 8 21

0.05 16 8 21

0.10 16 8 20

5 0.01 32 16 21

0.05 32 16 21

0.10 32 16 20

6 0.01 64 32 21

0.05 64 32 21

0.10 64 32 20

7 0.01 128 64 21

0.05 128 64 21

0.10 128 64 20

8 0.01 256 128 21

0.05 256 128 21

0.10 256 128 20

9 0.01 512 256 21

0.05 512 256 21

0.10 512 256 20

10 0.01 1024 512 21

0.05 1024 512 21

0.10 1024 512 20

11 0.01 2048 1024 21

0.05 2048 1024 21

0.10 2048 1024 20

12 0.01 4096 2048 21

0.05 4096 2048 21

0.01 4096 2048 20

IFC = 1, IJC = 1, IFNC = 1

to those, is of course the better performance in case of noisy functions
and the characterizing process which is clearly more efficient than the
traditional methods. More issues on the complexity of these and related
problems can be found in [21, 22, 36, 42].

To study the influence of the imprecise information regarding the
values of the objective function and gradient, we simulated imprecisions
by taking approximations to the true function and gradient values by
contaminating them with a small amount of noise. We took this noise
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to be proportional to a Gaussian distributed random number with zero
mean and various specific variances.

In the case of the computation of global minimizers our algorithm
can be more accelerated by parallel techniques [5] and/or using several
special tests such as cut–off test, concavity test, local search procedures,
as well as special subdivision direction rules [7, 39].

When the total number of the stationary points of f is a priori
known, our algorithm can be more efficient. One way to estimate this
number is the usage of degree computational techniques [25]. For this
purpose one can apply Picard’s theorem and compute the value of the
topological degree of the extended Picard’s function [24]. For the com-
putation of this value Aberth’s method [1], which is an adaptation of
Kearfott’s method [28], can be utilized. Thus, by using the information
about the total number of the stationary points of f as an upper bound
to the number of sub–boxes to be investigated, the initial box is divided
into smaller sub–boxes. In this way, the given region is covered by a
set of small boxes where the range of values of f(x) is more precise.
An analysis and results for these approaches will appear in a future
publication.

Furthermore, preliminary investigations suggest that our techniques
can be efficiently applied to the “clustering problem” by solving the cor-
responding system of nonlinear algebraic and/or transcendental equa-
tions, which have several nearly equal, but distinct zeros. Results on
this direction will be reported in [53].
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