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Abstract 
Correspondence analysis with fuzzy data has been proposed a few years ago 

and the mathematical foundation for fuzzy contingency tables as well as for the 
related fuzzy eigenvalue problem has been investigated. These approaches have 
been named correspondence analysis with fuzzy data. In the paper at hand, we 
enrich these theoretical results as well as the mathematical foundation on grey 
contingency table in the case where its entries-data are grey numbers. We name 
this approach correspondence analysis with grey data. The aim of the paper at 
hand is to show that the correspondence analysis can be enriched to tackle 
uncertainties caused by grey data. We investigate here mainly the grey eigenvalue 
problem. The proposed approach is validated by using data from a real-life 
application and the corresponding computational processes are explained in detail 
through a simple representative numerical example. Our experience is that the 
proposed procedures can be easily implemented computationally. Furthermore, 
although our results are comparable to those obtained using fuzzy numbers, the 
corresponding required computational burden is significantly reduced. 
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1. Introduction
Correspondence Analysis (CA) proposed by Hirschfeld[8] and later developed 

by Benzécri[3, 4] is a traditional multivariate geometrical statistical method that 
converts a two-way (and in general multi-way) contingency table into a particular 
type of graphical display, in which the matrix rows and matrix columns are 
exhibited as points simultaneously. CA is similar to Principal Component Analysis 
(PCA) and is applied to categorical (nonnegative on the same scale) data rather 
than continuous data. CA is a well-known and widely used statistical technique 
aiming to analyze a contingency table by losing relevant information as much as 
necessary. This can be achieved by the factorization of a certain matrix which is 
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based on the eigendecomposition. Such a matrix can be decomposed by the product 
of four matrices. By using this decomposition technique we are in a position to 
project the observed data onto a lower dimensional subspace.  

In many issues that arise in practice as well as in many applications of science 
and engineering, including among others, engineering control systems, psychology 
sentimental situations, economy price indices, opinion polls, medicine diagnostics, 
palaeontology classification of discoveries as well as linguistics structure of 
expressions, the usage of uncertain information becomes a “conditio sine qua non”. 
Thus, data of such issues can not be easily determined precisely and, in general, an 
estimate of the data is used. Therefore, inevitably approximate quantities enter into 
statistical analysis that usually can be handled by using classical real intervals. 

An interval of classical Mathematics, can be used in technological applications, 
as in the case of grey systems[2, 6, 7, 11, 12, 13, 15, 16] to determine an uncertain value. 
More specifically, assume that a variable with uncertain value, (that is, when the 
available information is insufficient and not precisely determinable), is estimated to 
lie between a minimum value 1a and a maximum value 2a then this variable can be 

handled by considering that it belongs in a real interval 1 2[ , ]a a . In this case, “grey 

quantities” are inevitably entered into the applications and the statistical treatments, 
as grey numbers, grey matrices, grey eigenvalue, etc., which, in general, can not be 
handled by the classical statistical methods. 

The paper at hand constitutes an enrichment to tackle uncertainties caused by 
grey data of a previous work[25], where the mathematical foundation and the 
algebraic treatment of the fuzzy eigenvalue problem of Correspondence Analysis 
with Fuzzy Data (CAFD) is investigated. Here, we implement these theoretical 
results to the application of Correspondence Analysis with Grey Data (CAGD). 
Furthermore, an objective of the paper at hand is to show how CAGD can work in 
practice. To this end, a numerical approach is provided and the used processes are 
explained through a simple representative example taken from real life applications. 
This example has been studied in detail in[25] and we use it in the study at hand for 
comparison purposes. 

Our experience is that the proposed procedures can be easily implemented 
computationally. Furthermore, although the obtained results using the proposed 
approach are comparable to those obtained using fuzzy numbers the corresponding 
required computational burden is significantly reduced.  

The paper is organized as follows. In Section 2, the basic formulation of the 
standard CA as well as the grey arithmetic are provided. The mathematical 
framework of CAGD is synopsized in Section 3. The substance of this work is in 
Section 4, where a representative numerical example is presented in details, in 
order to illustrate in practice the computational processes developed 
mathematically earlier. Finally, a synopsis and some concluding remarks are 
presented in Section 5. 

2. Background Material and Mathematical Formulation
2.1 Correspondence Analysis–CA 

The basic mathematical framework of the standard two-way CA (which must 
be distinguished from its multi-way extension called Multiple Correspondence 
Analysis (MCA)) has briefly the formulation presented below. For a basic 
bibliography on the standard CA we refer the interested reader to[3, 4, 5, 9, 22].  
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Let us assume that  K I J  is a two-way contingency table between two

finite sets I (rows) and J (columns), which is also denoted by the  n p  matrix 

, ( )j
n p iK k with nonnegative elements 0,j

ik  {1, , },i I n   {1, , }.j J p    
Then we consider the following matrices, which are generated by K: 

, ( ),j
n p iX x  (row stochastic-profiles matrix), (1) 

, diag( )n n iD m  and  

,

1
diagp p j

Q
m

 
  

 
. 

where: 

,
j

j i
i

i

k
x

k
 ,

j
ji

i

k k
m m

k k
 

, 

and 
1 1 1 1

, ,
p pn n

j j j j
i i i i

j i i j

k k k k k k
   

     .

We also consider the following sets-clouds: 

1

1

( , )  |  ,   ,  0, 1 ,

( , ) | ,  ,  0, 1 ,

n
p

I i i i i i
i

p
j j j n j j

J
j

N x m i I x m m

N y m j J y m m





 
     
 

 
     
 









(2) 

where:

           1( ) ( , , , , ) ,   (row-profile) and , ,
j

j j p p j i
i i i i i i

i

k
x x x x x x j J

k
      

1( ) ( , , , , ) ,    (column-profile) and ,
j

j j j j j n j i
i i n i j

k
y y y y y y i I

k
       . 

The distance d between two row-profiles ',i i Ix x  N , is a weighted Euclidean 

distance, and is given by the following relation: 

2 2 T
' ' ' '

1

1
( , ) ( ) ( ) ( )

p
j j

i i i i i i i ij
j

d x x x x x x Q x x
m

     . (3) 

The center of gravity of the set-cloud IN is the vector: 

1

1

( , , , , )
n

j p
I i i

i

g m x m m m


    . (4) 

 The formal algebraic treatment of CA, leads finally to the eigenvalue 
problem of the column-stochastic matrix:  

 T
, , , , , , ,   p p p p p p p n n n n p p pS V Q X D X Q  , (5) 

where p = rank(S), or, equivalently by diagonalization of the symmetric 
matrix:  

 1/2 T  1/2
, , , , , ,    p p p p p n n n n p p pA Q X D X Q , (6) 

where S and A have the same eigenvalues, whereas the eigenvectors u of S and 
w of A are related as follows: 

1/2  u Q w . 
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The eigenvalues  s of the matrix S or A satisfy, in general, the following

conditions: 

  0,1 , ( 1, 2, , )s s r    ,   with 

 1  2   1 0,  rank( ) min{ , }s r r S n p             ,

and 2
 

1

( )
n

s i s i
i

m x 


 , (7) 

where: 

 
T( ) proj ( ) ( )  ,     ( ) proj ( )   ,

ss i i i s u u ss sux x x Q u X X X Q u      (8) 

or 
1/2( ) proj ( )  w w ss s

X X X Q w     and 
1

( ) 0,
n

i s i
i

m x



1

1
n

i
i

m


 .

For each point-vector or row-profile 
 1( , , ,. , )j p p

i i i i Ix x x x N     , 

the new coordinates with respect to the system of factorial (or principal) axes 
su  are as follows: 

1 2 1 2
( ( ), ( ), , ( )) (proj ( ), proj ( ), , proj ( )) r

i i i r i u i u i u ir
x x x x x x x          (9) 

Thus, according to Eq. (7), we can consider the eigenvalue    s as the weighted

variance of the factor-function s
.

2.2 Grey Arithmetic 
A grey number is an indeterminate number that takes its possible value within 

an interval[10, 18]. In other words, a number whose probable range is known with 
clear upper and lower boundaries but which has an unknown position within the 
boundaries is called a grey number.  

A grey number A is expressed mathematically as follows: 

1 2 1 2[ , ] { }A a a x a x a      . 

Clearly, a grey number represents the range of the possible variance of the 
underlying number. In this sense, a grey number is the same as an interval value 
with the same limits[1]. That is, the algebra of grey numbers is very similar to 
interval arithmetic. 

However, compared with interval values, a grey number enriches its 
uncertainty representation with the whitenization function and the degree of 
greyness[13, 14, 19]. Thus, the arithmetic of grey numbers can be defined by the 
well-known and widely used arithmetic of the ordinary real intervals, (see e.g.[20,

21]). 

Therefore, if 1 2[ , ]A a a  and 1 2[ , ]B b b  are two grey numbers with 

corresponding interval values 

 1 2 1 2[ , ]a a x a x a       and  1 2 1 2[ , ]b b x b x b     , 

then generally we have, 

 1 2 1 2 1 2 1 2[ , ] [ , ] ,A B a a b b x y a x a b y b         , (10) 

where the symbol “ ” denotes any one of the four basic grey arithmetic ope- 
rations. 

More specifically for the basic grey arithmetic operations we have the 
following: 

Addition: 
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1 2 1 2 1 1 2 2[ , ] [ , ] [ , ]A B a a b b a b a b      , 

Subtraction:  

1 2 1 2 1 2 2 1[ , ] [ , ] [ , ]A B a a b b a b a b     , 

Multiplication: 

1 2 1 2 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2[ , ] [ , ] [min{ , , , }, max{ , , , }]A B a a b b a b a b a b a b a b a b a b a b    , 

Division: 

1 2 1 2 1 2 1 2

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

[ , ] [ , ] [ , ] [1 / ,1 / ]

[min{ / ,  / ,  / ,  / }, max{ / ,  / ,  / ,  / }],

A B a a b b a a b b

a b a b a b a b a b a b a b a b

   



 

where 1 20 [ , ].b b  

Furthermore, the additive inverse of 1 2[ , ]A a a is given by: 

2 1[ ,  ]A a a    , 

while its multiplicative inverse is given by: 
1

2 1[1 / ,  1/ ]A a a  . 

For scalar multiplication by a positive real number k, we obtain: 

1 2[ ,  ]k A ka ka  , 

while for exponents we have: 

1 2[ ,  ]k k kA a a . 

Algebraically, the set of all grey numbers forms a field, and the totality of all 
grey numbers constitutes a grey linear space. Any matrix containing grey entries 
will be referred to as a grey matrix.  

A grey number 1 2[ , ]A a a , with 1 2a a  is called a white number. When 

( , )A    then it is called a black number. Also, the technique to transfer a grey 

number 1 2[ , ]A a a into a white number ( )w A  is called whitenization. That is, 

( )w A  is the white number after the whitenization of the grey number A, which has 

the highest probability to be the representative real value of A.  
Whitening is a weight function which usually is defined as follows: 

 1 2( ) (1 ) ,  0,1w A a a      ,                      (11)

which is known as the equal weight whitenization. If 1/ 2,  the resultant 

whitenization is called equal-weight mean whitenization (often in practice, when 
the distribution of a grey number is unknown, the equal-weight mean whitenization 
is employed)[18, p.24].  

3. Mathematical Framework of CAGD
Let us assume that K is a two-way ( )n p  contingency table, where some or 

all of its elements ( )j
ik are grey nonnegative numbers (note that a real number is a 

special case of a grey number 1 2[ , ]A a a , if 1 2a a ). 

In accordance to a previous work[25], we transform here the initial grey matrix 
K  to the grey matrix of row-profiles X and we calculate the associated grey 
matrices Q  and D . Thus, by using the grey arithmetic operations, we find the 

grey ( )p p  nonnegative matrix: 
T

,  ,p pS X D X Q   

where for simplicity we consider the following case: 
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rank( ) min{ , }.p S n p 

The entries  ( ), , 1,2,...,j
is i j p of S are clearly nonnegative grey numbers, 

because all the grey matrices ,X Q  and D are in the nonnegative real line .  
Thus, this grey extension of CA (Correspondence Analysis for Grey Data CAGD) 
leads finally to the grey eigenvalue problem of the grey matrix S . Therefore, the 
grey eigenvalues of S are the grey numbers , which are the solutions of the grey 
characteristic equation:  

 ,S u u  (12) 
where: 

T
, ( ) [( ) ,( ) ] 0j j j

p p i i i rS X D X Q s s s       , 
T

1( ) ( , , , , )j j pu u u u u    , 

and  , ju are grey numbers, or, equivalently, according to the grey arithmetic we 

obtain: 
1
1 1 1 1 1

1

1

    

    

      

    

   

j p

j p
i i i j j

j p
p pp p p

s s s u u

s s s u u

u us s s

     
     
     
       
     
     
     

         

 

    

 

    

 

, 

which is equivalent to the following system of equations: 
1

1( ) ( ) ( ) ( ), ( , 1,2, , ).j p
i i j i p js u s u s u u i j p             

Thus, the algebraic foundations of CAGD lead to the grey eigenvalue problem, 
i.e., to the solution of the above grey equations (12).

Similarly to the two-step method introduced in the paper[25], for 0,a   in the 

case of CAGD we can determine the grey eigenvalues of the grey matrix ,S as 

follows: 
1) At the first step, we write the CA-grey matrix S as an interval matrix,

which its entries are closed, bounded and nonnegative real intervals, 

( ) [( ) , ( ) ] [ , ].j
i

j j
i i r rS s s s S S   

2) At the second step the interval matrix S  is represented by a line-segment

[ , ]rS S of the matrix vector space ( )p  . In order to find the ordinary 

eigenvalues  of ( )j
iS s  and  r of ( )j

r i rS s the line-segment [ , ]rS S of the 

vector space ( )p   is transformed into the line-segment   [ , ]r     
of the 

vector space  . 
Therefore, the grey eigenvalue problem is equivalently reduced to equations 

(12), as follows: 

[ , ] [ , ] [ , ] [ , ]r r rrS S u u u u       ,                   (13) 

Each entry-interval [( ) , ( ) ] ( )j
i

j j
i i rs s s of the matrix S  can be expressed 

as a convex combination of its boundaries ( )j
is  and ( )j

i rs . More specifically we 

write  

 [( ) , ( ) ] (1 )( ) ( ) 0,1j j j j
i i r i is s s s        , , 
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or   [ , ] ( ) / (1 ) , 0,1r rS S S S S        , (14)

where S  and rS  are the crisp matrices of left-end and right-end points, 

respectively. Relation (14) is just a line-segment in ( )p
   that expresses in 

matrix form the entries of S . 

Thus, by using the two-step method for the eigenvalue problem of a ( )p p  

CAGD-grey matrix S , similarly as it has been proved in the paper [25], and for the 
case 0a   especially, the proofs of the following theoretical results are evident:  

Proposition 1 The process of obtaining any ordinary eigenvalue )   of the 

crisp matrix ( )S   can be expressed by the eigenvalue function-transformation 

E , 

:  ( ) ( ) ( ( )) ( ),pE S E S        / /     (15) 

where: 

 { ( ) / ( ) (1 ) , 0,1}rS S S S         , (16) 

is a family of crisp matrices with nonnegative real elements constituting a 
convex polytope.  

Remark 1 The eigenvalue function transformation E can also be considered 

as a linear functional on a convex polyhedron. 
Theorem 1 (Linearity of the eigenvalue function-transformation). Let S  be 

a ( )p p  CA-grey matrix. Then the eigenvalue function-transformation E is 

linear; that is, by setting 

( )E S    and ( )r rE S  , 

we have: 

((1 ) ) (1 ) ( ) ( ) (1 )r r rE S S E S E S                  .   (17)

Corollary 1 The eigenvalue function transformation 

: / /  ( ) ( )E S       ,

is uniformly continuous and increasing, for each eigenvalue of the ( )p p

matrix  ( ),  0,1S   

Theorem 2 Every point 

 ) (1 ) , 0,1 ,r         

in the interval [ , ]r    provided by the two-step method, satisfies the 

corresponding characteristic equation; that is, for every  0,1   we have,

( ) ( ) ( ) ( )S u u     , 

since ( ), ( )S u   and ( )  are crisp data. 

Theorem 3 Any ( )p p  
CAGD-grey matrix S  has grey eigenvalues 1,

2 , , ,p 
 

that are nonnegative grey (interval) numbers, solution of the grey 

characteristic equation (12). 

4. Practical Application and Defuzzified – Geometrical Display of
CAGD  
4.1 A representative numerical example 

The main ideas of our approach are illustrated in the following representative 
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example taken from real life applications. This example has been studied in detail 
in[25] and we use it here for comparison purposes. 

Consider three groups of candidate-students who are preparing to enter 
university, where each group represents a different geographical community, 
indicated as, Stud-1, Stud-2 and Stud-3. In order to succeed in university, the 
students should choose to participate at exactly one from a choice of three 
directions-departments of the university, indicated as Mathematics (MATH), 
Physics (PHYS) and Literature (LITR). Education experts make an approximate 
estimation (using grey numbers) for how many candidates from each “student 
group-community” will succeed at each “department”, which is exhibited in Table 
1.  

Table 1 Grey contingency table that provides “the success of candidates” with respect to “student 
groups-communities” and to “departments” 

Name MATH PHYS LITR 
Stud-1 [6, 10] [20, 26] [12, 24] 
Stud-2 [15, 25] [30, 50] [17, 17] 
Stud-3 [1, 3] [5, 5] [7, 9] 

Therefore, in this case, we have a 3 by 3 grey nonnegative matrix (grey 
contingency table) that provides “the success of candidates” with respect to 
“student groups–communities” and to “departments”, i.e., the occurrences of two 
qualitative variables I, J, where the rows (I) are the “student groups– communities”, 
Stud-1, Stud-2 and Stud-3, and the columns (J) are the “departments” of the 
university, MATH, PHYS and LITR. 

For this simple representative problem, we can obtain the initial grey 
contingency table K according to CAGD. More specifically we obtain the following 
grey matrix:

1 2 3
1 1 1

1 2 3
3,3 2 2 2

1 2 3
3 3 3

,

[6,10]   [20,26] [12,24]

[15,25]   [30,50] [17,17]

[1,3]  [5,5] [7,9]

k k k

K k k k

k k k

   
 

    
 
   

where the entries of the 3×3
 

grey initial matrix K are considered as 
nonnegative grey numbers. 
4.2 The two-step method for computing the grey eigenvalues of CAGD  

Using INTLAB[23], and according to the process of the standard CA[24, 25], we 
get the associated to K grey (interval) matrices:  

1 2 3
1 1 1

1 2 3
3,3 2 2 2

1 2 3
3 3 3

[0.1,0.26]  [0.33,0.68] [0.2,0.63]

[0.16,0.4]  [0.33,0.81] [0.18,0.27]

[0.06,0.23]  [0.29,0.38] [0.41,0.69]

x x x

X x x x

x x x

   
 

    
 
   

, 

3,3 ,

[0.23,0.53]  0 0

  0 [0.37,0.82] 0

0 0 [0.08,0.15]

D

 
 
 
 
  



and 3,3 .

[2.97,7.69]  0 0

  0 [1.39,2.75] 0

0 0 [2.26,4.7]

Q

 
 
 
 
  



Then, we get the nonnegative interval matrix, 

, , , , ,   T
p p p n n n n p p pS X D X Q , 

which is associated to K: 
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T
3,3

1 2 3
1 1 1

1 2 3
2 2 2

1 2 3
3 3 3

( )

[0.04,1.36]   s [0.04,1.15] [0.04,0.95]

[0.08,2.88]    s [0.10,2.46] [0.11,2.11]

[0.05,1.56]  s [0.06,1.38] [

[( ) ,  ( ) ] [ ,  S ]j j j
i i i r rX D X Q s

s s

s s

s s

S s s S

  

  

  

     



 

.

0.08,1.62]

 
 
 
 
 
 

From where we get the ordinary square matrices: 
0.04  0.04 0.04

0.08    0.10 0.11

0.05  0.06 0.08

( )j
iS s

 
 

   
 
 

 

and 

1.36  1.15 0.95

2.88   2.46 2.11

1.56  1.38 1.62

( )j
r i rS s

 
 

   
 
 

. 

Thus, according to the two-step method, we have, 

  ( ) ( ) | ( ) (1 ) , 0,1[( ) ,  ( ) ] [ ,  S ]j
i

j
i rr r

j
S si S S S Ss s S             , 

from where we can get the corresponding interval (or grey) eigenvalues 

  [ , ] ( ) | ( ) (1 ) , 0,1 .r r                

Equivalently, we can take the same eigenvalues by diagonalization of the 
corresponding to S grey symmetric matrix (cf. Eq. (6)), 

1/2 T 1/2
, , , , ,,p p p p p n n p p pn n

DA Q X X Q    , 

which, for this example, using the grey (or interval) arithmetic is calculated as 
follows: 

1/2 T 1/2
3,3 3,3 3,3 3,3 3,33,3

  

[1.72,2.77]  0 0

 0 [1.18,1.66] 0

0 0 [1.5,2.17]

[0.1,0.26]   [0.33,0.68] [0.2,0.63]

[0.16,0.4] [0.33,0.81] [0.18,0.27

 

 
 
 
 
  

   





 



DA Q X X Q

T

]

[0.06,0.23] [0.29,0.38] [0.41,0.69]

[0.23,0.53]  0 0

 0 [0.37,0.82] 0

0 0 [0.08,0.15]

[0.1,0.26]    [0.33,0.68] [0.2,0.63]

[0.16,0.4]        [0.33,

 
 
 
 
  

 
 
 
 
  



 



.

0.81] [0.18,0.27]

[0.06,0.23]     [0.29,0.38] [0.41,0.69]

[1.72,2.77] 0 0

 0 [1.18,1.66] 0

0 0 [1.5,2.17]

 
 
 
 
  

 
 
 
 
  





Grey 
Eigenvalue 

Problem 
100 



Philippos D. Alevizos et al./ The Journal of Grey System 2017 (29) 

Thus, we obtain 
1 2 3
1 1 1

1 2 3
2 2 23,3

1 2 3
3 3 3

[0.04,1.34]   [0.06,1.71] [0.04,1.2]

[0.06,1.71]   [0.1,2.22] [0.08,1.6]

[0.04,1.2]  [0.08,1.6] [0.08,1.6]

a a a

a a a

a a a

A

   
 
   
 
   
 

 . 

Therefore, we have 
0.04 0.06 0.04

0.06 0.1  0.08 ,  

0.04 0.08 0.08

( )j
iA a

 
  
 
 

 

and 
1.34 1.71 1.2

1.71 2.22 1.6

1.2 1.6 1.6

( )j
ir rA a

 
  
 
 

. 

Consequently, according to the two-step method, we obtain, 

 ,

( ) [( ) ,  ( ) ] [ ,  A ]

 ( ) | ( ) (1 ) , 0,1

j j
i i

j
i

r

r rA a a a A

A A A A    

 

  

 

    

 

from where we can get the corresponding interval (or grey) eigenvalues: 

      [ , ] ( ) | ( ) (1 ) , 0,1 .r r                  

The respective ordinary arithmetical matrices ( )A   from the family 

    ( ) | ( ) (1 ) , 0,1 ,rA A A A A        

for various values of  0,1 and with the corresponding eigenvalues- 

eigenvectors are as follows:  

   

0.04 0.06 0.04

( 0) 0.06 0.1 0.08 ,  

0.04 0.08 0.08

(1 ) ( )j
irA A A A a  

 
    
 
 

    

with the corresponding eigenvalues-eigenvectors: 

1( 0)  1 1( 0)

2( 0) 2 2( 0)

30
3( 0)  3 3( 0)

0.4041

( ) 0.2022  0.6991 ,

0.5899

  0.6263

( ) 0.0178    0.2586 ,

0.7354

  0.6667

( ) 4.9009 10 0  0.6667

  0.3333

 

 


 

 
      
 
 

 
      
  



      







 

w

w

w

 

 

 

 

 

  ,


 
 
 



and    

1.34 1.71 1.2

( 1) 1.71 2.22 1.6 ,

1.2 1.6 1.6

(1 ) ( )j
ir r rA A A A a  

 
    
 
 

    

with the corresponding eigenvalues-eigenvectors: 

Grey 
Eigenvalue 

Problem 
101 



Philippos D. Alevizos et al./ The Journal of Grey System 2017 (29) 

1( 1) 1 1( 1)

2( 1) 2 2( 1)

3( 1) 3 3( 1)

0.5166

( ) 4.7967  w 0.6721 ,

0.5303

  0.3873

( ) 0.3512    0.3689 ,

0.8448

  0.7635

( ) 0.0121  0.6419 ,

  0.0698

 

 

 

 
 

     
 
 

 
 

     
  

 
 

     
 
 

r

r

r

w

w

 

 

 

 

 

 

as well as 

1 1 1

2 2 2

0.04 0.06 0.04 1.34 1.71 1.2
1 1

0.06 0.1 0.08 1.71 2.22 1.6
2 2

0.04 0.08 0.08 1.2  1.6 1.6

0.69 0.88 0.62

 =  0.88 1.16 0.84

0.62 0.84 0.8

(1 ) 
   

 

   
        
      

    r rA A A A A  

,

4

 
 
 
  

with the corresponding eigenvalues-eigenvectors: 

1( 1/2) 1( 1/2)

2( 1/2) 2( 1/2)

3( 1/2) 3( 1/2)

0.5117

2.4945  0.6733 ,

0.5336

  0.4023

0.1831     0.3609 ,

0.8413

  0.7591

0.0124  0.6452 .  

  0.0861

 

 

 

 
 

    
 
 

 
 

    
  

 
 

    
 
 

w

w

w

 

 

 







Also, the ordinary eigenvalues-eigenvectors that have been provided from 
initial matrix K for the mean of each grey entry, (that is for the corresponding 
classical CA), are as follows: Grey 
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1 1

2 2

3 3  

1   ,

0.05  ,

0.006  ,

0.46

0.69

0.55

  0.48

  0.33

0.81

  0.75

0.64

  0.18

w

w

w









 

 

 
 

   
 
 

 
 
  
  

 
 
  
 
 

where
1
,w 2w  and 3w  are the classical eingenvectors of the ordinary symmetric 

matrix meanA which are pairwise orthogonal. 

Therefore, the grey eigenvalues 1, 2 and 3 of the CAGD-matrix A (or 

equivalently of S) are grey numbers, as follows: 

1 1 1 1 1[( ) , ( ) )] [ ( 0), ( 1)] [0.2022, 4.7967] ,      r     

2 2 2 2 2[( ) , ( ) )] [ ( 0), ( 1)] [0.0178, 0.3512] ,      r     

3 3 3 3 3[( ) , ( ) )] [ ( 0), ( 1)] [0.0, 0.0121] .      r       

In comparison to the standard CA, the following inequalities-relations hold: 

Left limits of grey-interval eigenvalues of CAGD: 

1 2 3( ) 0.2022 ( ) 0.0178 ( ) 0.0.          

The crisp eigenvalues of standard CA: 

1 2 31 0.05 0.006.       

Right limits of grey-interval eigenvalues of CAGD: 

1 2 3( ) 4.7967 ( ) 0.3512 ( ) 0.0121.    r r r    

5. Synopsis and Concluding Remarks
In the paper at hand, we give an enrichment to tackle uncertainties caused by 

grey data of a previous work[25], where the mathematical foundation and the 
algebraic treatment of the fuzzy eigenvalue problem of correspondence analysis 
with fuzzy data have been investigated. 

More specifically, we enrich here these theoretical results as well as the 
mathematical foundation on grey contingency table in the case where its 
entries-data are grey numbers. We name this approach correspondence analysis 
with grey data. 

In the paper at hand, we mainly focus on the grey eigenvalue problem and we 
show that the correspondence analysis can be enriched to tackle uncertainties 
caused by grey data. 

Furthermore, the proposed approach is validated by using data from a real-life 
application and the corresponding computational processes are explained in detail 
through a simple representative numerical example.  

Our experience is that the proposed procedures can be easily implemented 
computationally. Moreover, although the obtained results using the proposed 
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approach are comparable to those obtained using fuzzy numbers the corresponding 
required computational burden is significantly reduced. 
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