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Abstract

This paper introduces a new class of sign-based training algorithms for neural networks that combine the sign-based

updates of the Rprop algorithm with the composite nonlinear Jacobi method. The theoretical foundations of the class

are described and a heuristic Rprop-based Jacobi algorithm is empirically investigated through simulation experiments

in benchmark pattern classification problems. Numerical evidence shows that this new modification of the Rprop algo-

rithm exhibits improved learning speed in all cases tested, and compares favorably against the Rprop and a recently

proposed modification, the improved Rprop.
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1. Introduction

Gradient descent is the most widely used class

of algorithms for supervised learning of neural net-

works. The most popular training algorithm of
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this category is the batch backpropagation (BP)
(Rumelhart and McClellend, 1986). This is a

first-order method that minimizes the error func-

tion by updating the weights using the steepest

descent method (Battiti, 1992):

wðtþ1Þ ¼ wðtÞ � grEðtÞ; ð1Þ

where E is the batch error measure defined as the

sum of squared differences error function (SSE)

over the entire training set; $E(t) is the vector of

partial derivatives with respect to all weights.
ed.
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The parameter g is a heuristic, called learning rate.

Proper learning rate values help to avoid conver-

gence to a saddle point or a maximum. In order

to secure the convergence of the BP training algo-

rithm and avoid oscillations in a steep direction of
the error surface a small learning rate is chosen

(0 < g < 1). However, it is well known that this

approach tends to be inefficient.

One problem inherent with gradient descent

methods relates to convergence to local minima.

These techniques use only gradient information,

e.g. the partial derivative of the error with respect

to the weights, to perform adaptation. While some
local minima can provide acceptable solutions,

they often result in poor performance. This prob-

lem can be overcome through the use of global

optimization. Various algorithms of this category

have been employed, including simulated anneal-

ing (SA) (Fang and Li, 1990), evolutionary meth-

ods (Fogel et al., 1990), random methods, and

deterministic searches (Tang and Koehler, 1994).
Global optimization, however, is considered com-

putationally expensive, which could be a signifi-

cant problem particularly for large networks

(Treadgold and Gedeon, 1998).

Adaptive gradient-based algorithms with indi-

vidual step-sizes try to overcome the inherent diffi-

culty of choosing the right learning rates for each

region of the search space depending on the appli-
cation (Magoulas et al., 1997, 1999). This is done

by controlling the weight update of each weight

in order to minimize oscillations and maximize

the length of the step-size. One of the best algo-

rithms of this class, in terms of convergence speed,

accuracy and robustness with respect to its para-

meters, is the Resilient backpropagation (Rprop)

algorithm introduced by Riedmiller and Braun
(Riedmiller and Braun, 1993; Riedmiller, 1994).

Recently a modification of the Rprop, the so-called

improved Rprop (iRprop) has been proposed.

Empirical evaluations of iRprop gave good results,

showing that iRprop outperforms in several cases

the quickprop and conjugate gradient algorithms

(Igel and Husken, 2003; Husken and Stagge, 2003).

In this paper, we introduce a new class of sign-
based algorithms that are based on nonlinear iter-

ative methods. These algorithms combine the

computationally cheap information of the sign of
the gradient along each weight direction, like the

Rprop algorithm does, with the ‘‘global’’ informa-

tion of the overall batch error, in order to improve

the learning speed. This paper is organized as fol-

lows. First, we give a brief outline of the Rprop
algorithm and discuss its parameters. Next, the

new class is described and one of its algorithms

is presented. Then we conduct an empirical evalu-

ation of the new algorithm by comparing it with

the classic Rprop, the recently proposed modifica-

tion iRprop, and with two second-order training

algorithms, namely the BFGS quasi-Newton

method (BFGS) and the scaled conjugate gradient
(SCG) algorithm. Finally our results are discussed

and conclusions are drawn.
2. Sign-based training with the Rprop algorithm

The basic principle of Rprop is to eliminate the

harmful influence of the size of the partial deriva-
tive on the weight step. As a consequence, only the

sign of the derivative is considered to indicate

the direction of the weight update. The size of

the weight change is exclusively determined by a

weight-specific ‘‘update-value’’

DwðtÞ
ij ¼

�DijðtÞ; if
oEðtÞ
owij

> 0;

þDijðtÞ; if
oEðtÞ
owij

< 0;

0 otherwise;

8>>>>><
>>>>>:

where oE(t)/owij denotes the partial derivative of E
with respect to wij where E is summed over all pat-

terns of the training set. The second step of Rprop

learning is to determine the new update-values.

DijðtÞ ¼

gþ � Dijðt � 1Þ; if
oEðt � 1Þ

owij
� oEðtÞ
owij

> 0;

g� � Dijðt � 1Þ; if
oEðt � 1Þ

owij
� oEðtÞ
owij

< 0;

Dijðt � 1Þ otherwise;

8>>>>><
>>>>>:

where 0 < g� < 1 < g+.
Thus every time the partial derivative of E with

respect to weight wðtÞ
ij changes its sign, which

indicates that the last update was too big and the

algorithm has jumped over the local minimum,
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the update-value Dij(t) is decreased by the factor

g�. If the derivative retains its sign, the update-

value is slightly increased in order to accelerate

convergence in shallow regions. Additionally, in

case of a change in sign, there should be no adap-
tation in the succeeding learning step. In practice

this can be achieved by setting oE(t)/owij = 0 in the

adaptation rule. Finally the weight update and

the adaptation are performed after the gradient

information of the whole pattern set is computed.

Rprop is based on the assumption that a change

of sign of the partial derivative implies a jump over

a local minimum along the direction that corre-
sponds to the weight wðtÞ

ij , but does not take into

account whether the weight update has caused an

increase or decrease of the error. Notice that a

change of sign of the partial derivative could also

imply a jump over a local maximum. Also in

Rprop, if the derivatives retain their signs, the up-

date-value is slightly increased in order to acceler-

ate convergence in shallow regions. This strategy
helps to speed up convergence when the derivative

is negative but may be inefficient when the two

derivatives are positive, as in this case the weight

updates may lead the weight trajectory far away

from the minimum or in regions with higher error

function values. In an attempt to alleviate these sit-

uations Rprop employs a heuristic parameter

Dmax, which constraints the size of the update step.
In fact the Rprop algorithm requires setting the

following parameters: (i) the increase factor is set

to g+ = 1.2; (ii) the decrease factor is set to

g� = 0.5; (iii) the initial update-value is set to

D0 = 0.1; (iv) the maximum weight step, which is

used in order to prevent the weights from becom-

ing too large, is Dmax = 50, and the minimum

step-size is constantly fixed to Dmin = 10�6 (Ried-
miller and Braun, 1993; Riedmiller, 1994).

A high level description of the weight update

procedure, which shows the kernel of the Rprop

adaptation and learning process, is described

below. The minimum/maximum operator is

supposed to deliver the minimum/maximum of

two numbers; the sign operator returns +1, when

the argument is positive; �1, when the argument
is negative and 0 otherwise, as suggested by Ried-

miller and Braun (Riedmiller and Braun, 1993,

Riedmiller, 1994).
Rprop weight update procedure:

repeat
compute the gradient vector $E(t)
for all weights and biases

if oEðt�1Þ
owij

� oEðtÞ
owij

> 0 then

Dij(t) = min{Dij(t � 1) Æ g+, Dmax}

DwðtÞ
ij ¼ �sign oEðtÞ

owij
� DijðtÞ

wðtþ1Þ
ij ¼ wðtÞ

ij þ DwðtÞ
ij

oEðt�1Þ
owij

¼ oEðtÞ
owij
else if oEðt�1Þ
owij

� oEðtÞ
owij

< 0 then

Dij(t) = max{Dij(t � 1) Æ g�, Dmin}
oEðt�1Þ
owij

¼ 0
else if oEðt�1Þ
owij

� oEðtÞ
owij

¼ 0 then

DwðtÞ
ij ¼ �sign oEðtÞ

owij
� DijðtÞ

wðtþ1Þ
ij ¼ wðtÞ

ij þ DwðtÞ
ij

oEðt�1Þ
owij

¼ oEðtÞ
owij
end if
until termination criterion is met

where sign defines the well known triple valued

sign function.

Recently, Igel and Husken (2003) proposed a

modification of the Rprop, named iRprop. Their

method takes under consideration the change of

the error for the special case of a derivative�s
change of sign.
3. A class of nonlinear Jacobi methods

In this section, first-order algorithms with an

adaptive learning rate for each weight are analyzed

as composite nonlinear Jacobi methods applied to
the gradient of the error function. The class of

nonlinear Jacobi methods is widely used for the

solution of a system of nonlinear equations:

F ðx1; x2; . . . ; xnÞ ¼ Hn � ð0; 0; . . . ; 0Þ; ð2Þ

where F ¼ ðf1; f2; . . . ; fnÞ: D � Rn ! Rn.

Along this line, in a function minimization
problem all local minima x� ¼ ðx�1; x�2; . . . ; x�nÞ of a

continuous differentiable function f should satisfy

the necessary conditions:
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rf ðx�Þ ¼ Hn. ð3Þ
Eq. (3) represents a set of n nonlinear equations
which must be solved to obtain x*. Therefore,

one approach to the minimization of the function

f is to seek the solutions of the set of Eq. (3) by

including a provision to ensure that the solution

found does, indeed, correspond to a local mini-

mizer. Solving Eq. (3) is equivalent to solving the

following system of equations:

o1f ðx1; x2; . . . ; xnÞ ¼ 0;

o2f ðx1; x2; . . . ; xnÞ ¼ 0;

..

.

onf ðx1; x2; . . . ; xnÞ ¼ 0;

ð4Þ

where oi f(x1, . . . ,xi, . . . ,xn) denotes the partial

derivative of f with respect to the ith coordinate.

3.1. The composite nonlinear Jacobi

The nonlinear Jacobi process applies a parallel

update of the variables (Ortega and Rheinboldt,

1970). Starting from an arbitrary initial vector

x0 2 D, one can subminimize at the kth iteration

the function:

f ðxk1; . . . ; xki�1; xi; x
k
iþ1; . . . ; x

k
nÞ; ð5Þ

along the ith direction and obtain the correspond-

ing subminimizer x̂i. Obviously for the submini-

mizer x̂i

oif ðxk1; . . . ; xki�1; x̂i; x
k
iþ1; . . . ; x

k
nÞ ¼ 0. ð6Þ

This is a one-dimensional subminimization be-
cause all the components of the vector xk, except

from the ith component, are kept constant. Then

the ith component is updated according to the

equation:

xkþ1
i ¼ xki þ skðx̂i � xki Þ; ð7Þ
for some relaxation factor sk. The objective func-

tion in (5) is subminimized in parallel for all i.

When exact one-dimensional submimization is ap-

plied and sk = 1 for all k the following result is

available for strictly convex functions.

Theorem 1 (Brewster and Kannan, 1984). Sup-

pose that the objective function f : D � Rn ! R is

twice continuously differentiable on a convex
domain D and that f is a strictly convex function.

Assume that there exists c 2 R such that

Sc ¼ fx 2 D: f ðxÞ 6 cg is nonempty and compact

and that o2iif ðyÞ 6¼ 0 for i = 1,2, . . . , n and y 2 Sc,

unless y is the point at which f attains its minimum,
where o2ijf ðyÞ denotes the hij element of the Hessian

matrix of f at y, H = [hij]. Suppose further, that

from any point x0 ¼ ðx01; x02; . . . ; x0nÞ 2 Sc a sequence

fxkg1k¼0 is generated:

xkþ1
j ¼ xkj ; j 6¼ ik and

xkþ1
ik

is the solution of

oik f ðxk1; . . . ; xkik�1; xik ; x
k
ikþ1; . . . ; x

k
nÞ ¼ 0;

where ik is any one of the integers 1,2, . . . , n. Such a

sequence fxkg1k¼0 is uniquely defined and converges

to x*, the unique global minimizer of f, provided that
in the above iterative process every coordinate direc-

tion i is chosen an infinite number of times.

Various composite nonlinear Jacobi training

algorithms can be obtained depending on the
one-dimensional minimization method applied.

In case an inexact one-dimensional subminimiza-

tion is applied, the number of the iterations or

steps of the subminimization method is related to

the requested accuracy in obtaining the sub-

minimizer approximations. Thus, significant com-

putational effort is needed in order to find very

accurate approximations of the subminimizer
along each variable direction at each iteration.

Moreover, this computational effort is increased

for problems with a high number of variables, as

for example when training neural networks with

several hundred weights. Taking into account that

training neural networks involves minimizing non-

convex functions, it is not certain that this large

computational effort speeds up the minimization
process for nonconvex functions when far from a

minimizer x*. Similar situations can also occur in

the iterative solution of nonlinear equations

(Ortega and Rheinboldt, 1970).

3.2. The Jacobi-bisection method

In this section we synthesize a composite
Jacobi method that is inspired from the Rprop

algorithm. The method, named JRprop, combines
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‘‘individual’’ information about the error surface,

i.e. the sign of the partial derivative of the error

function with respect to each one of the weights,

with more ‘‘global’’ information, i.e. the magni-

tude of the network�s learning error at each epoch
t, in order to decide for each weight individually

whether or not to revert/reduce a step.

Following the nonlinear Jacobi prescription,

one-dimensional subminimization is applied along

each weight direction. Let us assume that along a

weight�s direction an interval is knownwhich brack-
ets a local minimum ŵij. When the gradient of the

error function is available at the endpoints of the
interval of uncertainty along this weight direction,

it is necessary to evaluate function information at

an interior point in order to reduce this interval.

This is because it is possible to decide if between

two successive epochs (t) and (t � 1) the corre-

sponding interval brackets a local minimum simply

by looking the function values E(t � 1), E(t) and

gradient values oE(t � 1)/owij, oE(t)/owij at the end-
points of the considered interval (see Scales, 1985,

for a general discussion on the problem).

The conditions that have to be satisfied (Scales,

1985) are:

ðaÞ oEðV 1Þ
owij

< 0 and
oEðV 2Þ
owij

> 0;

ðbÞ oEðV 1Þ
owij

< 0 and EðV 1Þ < EðV 2Þ;

ðcÞ oEðV 1Þ
owij

> 0 and
oEðV 2Þ
owij

> 0 and

EðV 1Þ > EðV 2Þ;

ð8Þ

where V1 and V2 determine the sets of weights for

which the coordinate that corresponds to the

weight wij is replaced by ai ¼ min wðt�1Þ
ij ;wðtÞ

ij

n o
,

and bi ¼ max wðt�1Þ
ij ;wðtÞ

ij

n o
correspondingly. No-

tice that, at this instance, between two successive

epochs (t � 1) and (t) all the other coordinates
remain the same (this is because we follow the

nonlinear Jacobi prescription). The above three

conditions lead to the conclusion that the interval

[ai,bi] includes a local subminimizer along the

direction of weight wij. A robust method of inter-

val reduction called bisection can now be used.

By computing the midpoint mi ¼ 1
2
ðai þ biÞ of the
interval [ai,bi] we take as the next interval which-

ever of [ai,mi] and [mi,bi] that still brackets a min-

imizer according to the criteria mentioned above.

For the case of the first condition of (8) we will

consider here the bisection method which has been
modified to the following version described in

(Vrahatis, 1988a,b):

wpþ1
i ¼ wp

i þ hi signoiEðwpÞ=2pþ1; ð9Þ

where p = 0,1, . . . is the number of subminimiza-

tion steps and w0
i ¼ ai; hi = signoiE(w

0)(bi � ai);

w0 determines the set of weights at the (t � 1)

epoch while w p is obtained by replacing the coor-

dinate of w0 that corresponds to the weight wij by
w p

i . Of course, the iterations (9) converge to

ŵi 2 ðai; biÞ if for some w p
i ; p ¼ 1; 2; . . ., the first

one of the conditions (8) holds. In this case, the

bisection method always converges with certainty

within the given interval [ai,bi].

The reason for choosing the bisection method is

that it always converges within the given interval

(ai,bi) and it is a globally convergent method.
Also, the number of steps of the bisection method

that are required for the attainment of an approx-

imate minimizer ŵi of (7) within the interval [ai,bi]

to a predetermined accuracy e is known before-

hand and is given by

m ¼ dlog2½ðbi � aiÞe�1�e. ð10Þ
Moreover it has a great advantage since it is worst-

case optimal, i.e. it possesses asymptotically the

best possible rate of convergence in the worst-case

(Sikorski, 1982, 2001). This means that it is guar-
anteed to converge within the predefined number

of iterations and moreover, no other method has

this property. Therefore, using the relation (10) it

is easy to have beforehand the number of itera-

tions that are required for the attainment of an

approximate minimizer ŵi to a predetermined

accuracy. Finally, it requires the algebraic signs

of the values of the gradient to be computed.

3.2.1. Theoretical approach of the JRprop

Next, we give a theoretical result that ensures

the composite Jacobi method that uses a multi-

step bisection method for reducing the intervals

of uncertainty converges to a solution. In particu-

lar this result shows that there is a neighborhood
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of a minimizer of the objective function for which

convergence to the local minimizer can be guaran-

teed. Notice that this result does not require exact

one-dimensional subminimization but only an

approximation of the local minimizer.

Corollary 1. Let E: D � Rn ! R be twice contin-

uously differentiable in an open neighborhood

S0 � D of a point w� 2 D for which $E(w*) = Hn

and the Hessian, H(w*) is positive definite with the
property Ap. Then there exists an open ball

S ¼ Sðw�; rÞ in S0 (where Sðw�; rÞ denotes the

open ball centered at w* with radius r), such that

any sequence fwkg1k¼0 generated by the nonlinear

Jacobi process converges to w* which minimizes E.

The proof of the corollary originates from the

application of Theorem 1, derived in (Vrahatis

et al., 2003), on the error function. As mentioned

above Corollary 1 guarantees only local conver-

gence, and naturally imposes some conditions on

the Hessian matrix. Clearly, the necessary and suf-
ficient conditions for the point w* to be a local

minimizer of the function E are satisfied by the

hypothesis $E(w*) = Hn and the assumption of

positive definitiveness of the Hessian at w*. Find-

ing such a point is equivalent to minimizing the

nonlinear function (5) by applying the nonlinear

Jacobi process and employing any one-dimen-

sional method for the subminimization process.
Consider the decomposition of H(w*) into its

diagonal, strictly lower-triangular and strictly

upper-triangular parts:

Hðw�Þ ¼ Dðw�Þ � Lðw�Þ � L>ðw�Þ. ð11Þ

Since, H(w*) is symmetric and positive definite,

then D(w*) is positive definite (Varga, 2000).

Moreover, since H(w*) has the property Ap, the

eigenvalues of

Uðw�Þ ¼ Dðw�Þ�1 Lðw�Þ þ L>ðw�Þ
� �

; ð12Þ

are real and q(U(w*)) < 1 (Axelsson, 1996) (where
q(A) indicates the spectral radius of the matrix A);

then there exists an open ball S ¼ Sðw�; rÞ in S0,

such that, for any initial vector w0 2 S, there is a

sequence fwkg1k¼0 � S which satisfies the nonlin-

ear Jacobi process such that limk!1wk = w* (Ort-

ega and Rheinboldt, 1970).
Remark 1. The Property A: Young (1954) has

discovered a class of matrices described as having

property A that can be partitioned into block

tridiagonal form, possibly after a suitable permu-

tation (Axelsson, 1996). An algorithmic procedure
for transforming a symmetric matrix to a tridiag-

onal form is presented in (Stewart, 1973).
3.2.2. Implementation of the JRprop

Based on the above theoretical discussion below

we will consider obtaining ŵi by minimizing the

function (5) with one-step of a subminimization

method. In particular, we propose an Rprop-based

heuristic scheme that uses one-step of the bisection

method to locate an approximation of the submin-

imizer ŵij along each weight direction. As men-

tioned in a previous subsection, one step of the
subminimization method helps to reduce the com-

putational effort for high dimensional nonconvex

functions when far from a minimizer, as it usually

happens in neural network training (Vrahatis

et al., 2003).

Next, we present a high level description of the

proposed algorithm that implements a heuristic

version of the JRprop. It is based on the idea of
function comparison methods (Scales, 1985) taking

into account E(t � 1) < E(t), and exploits the signs

of the gradient values. The parameter q is a reduc-

tion factor that is used to update the midpoint of

the considered interval; choice of q has an influ-

ence on the number of error function evaluations

required to obtain an acceptable weight vector

(Magoulas et al., 1999).
JRprop algorithm:

repeat
compute the gradient vector $E(t)
if E(t) 6 E(t � 1) then

for all weights and biases

if oEðt�1Þ
owij

� oEðtÞ
owij

> 0 then
Dij(t) = min{Dij(t � 1) Æ g+,Dmax}

DwðtÞ
ij ¼ �sign oEðtÞ

owij
� DijðtÞ

wðtþ1Þ
ij ¼ wðtÞ

ij þ DwðtÞ
ij

oEðt�1Þ
owij

¼ oEðtÞ
owij

Dwðt�1Þ
ij ¼ DwðtÞ

ij
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else if oEðt�1Þ � oEðtÞ < 0 then
1932 A.D. Anastasiadis et al. / Pattern R
owij owij

Dij(t) = max{Dij(t � 1) Æ g�,Dmin}

oEðt�1Þ
owij

¼ 0
else if oEðt�1Þ
owij

� oEðtÞ
owij

¼ 0 then

DwðtÞ
ij ¼ �sign oEðtÞ

owij
� DijðtÞ

wðtþ1Þ
ij ¼ wðtÞ

ij þ DwðtÞ
ij

oEðt�1Þ
owij

¼ oEðtÞ
owij

Dwðt�1Þ
ij ¼ DwðtÞ

ij

end if

q = 1

end if
if E(t) > E(t � 1) then

wðtþ1Þ
ij ¼ wðtÞ

ij þ 1
2q
Dwðt�1Þ

ij

q = q + 1

end if

until termination criterion is met

The particular implementation of the JRprop

does not take a special consideration for the third
condition of (8). This condition requires special

treatment as it may lead the algorithm to converge

to an undesired extremum. As shown in the

pseudocode description, in our heuristic JRprop

this is handled by the standard Rprop. Finally,

we set for all the parameters the same values as

suggested by Riedmiller and Braun for the Rprop

algorithm (Riedmiller and Braun, 1993; Riedmil-
ler, 1994).

Various termination criteria can be used in the

weight update procedure, e.g. meeting a predefined

training error goal E(t), reaching the maximum

number of epochs t, or having the norm of the gra-

dient vector close to zero.

In case the initial weights are far from the

neighborhood of a local minimizer, then it is pos-
sible to equip the algorithm with a strategy for

adapting the direction of search to a descent one.

In this way, a decrease of the function value can

be ensured at each iteration and convergence to

a local minimizer of the objective function from re-

mote initial points can be achieved as has been

shown in (Magoulas et al., 2002). Here we will

not consider this case.
4. Experimental study

In this section, we evaluate the performance

of the heuristic JRprop in four pattern classifica-

tion problems and compare it with the original
Rprop (Riedmiller and Braun, 1993; Riedmiller,

1994), the improved Rprop (iRprop) proposed

recently by Igel and Husken (2003), the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm

(Gill et al., 1981), and the scaled conjugate gradi-

ent backpropagation (SCG) proposed by Moller

(1992).

The BFGS and SCG algorithms have been ap-
plied in an attempt to use second derivative related

information to accelerate the learning process as

suggested in (Battiti, 1992; Moller, 1992). The

BFGS quasi-Newton method is an alternative to

the direct application of the second-order Newton�s
method, which is considered of limited applicabil-

ity in neural network training, particularly when

the networks have a large number of weights; the
one-step BFGS is a memoryless quasi-Newton

algorithm (Moller, 1992). Another approach that

performs well in practical applications is the SCG

method. This method has superlinear convergence

rate (Moller, 1992). It is a variation of the well

known conjugate gradient method that avoids the

line-search per learning iteration by using a Leven-

berg–Marquardt approach (Fletcher, 1975) in
order to scale the step-size. It is a second-order

algorithm, which combines the benefits of the Con-

jugate methods and the Levenberg–Marquardt

scheme (Moller, 1992).

We have used well-studied problems from the

UCI repository of machine learning databases

(Murphy and Aha, 1994), namely cancer1, diabe-

tes1, thyroid1, genes2, as described in the PRO-
BEN1 benchmark collection (Prechelt, 1994).

The literature suggests specific network archi-

tectures for these problems; thus we considered

them appropriate for our study as we wanted to re-

duce, as much as possible, biases introduced by the

size of the weight space. We also decided not to en-

hance the algorithms tested with add-on tech-

niques for improving the classification success in
the testing phase (i.e. the generalization ability of

the trained neural network) as this would require

introducing, and fine tuning or even optimizing



Table 1

Results for the cancer problem

Cancer Average

Algorithm Epochs Speed

(s)

Class. success

(%)

Conv.

(%)

Rprop 242 1.7 (+) 97.64 (�) 100

iRprop 241 1.5 (+) 97.63 (�) 100

BFGS 632 10.7 (+) 94.00 (+) 72

SCG 198 2.2 (+) 95.99 (+) 88

JRprop 151 1.1 97.60 100
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additional heuristics depending on the learning

task. The implementation of the algorithms has

been done in Matlab 6.5.

In all experiments, we used the same parameters

as suggested in (Riedmiller and Braun, 1993;
Riedmiller, 1994) for the classic Rprop heuristics.

Feed-forward neural networks (FNN) with sig-

moid hidden and output nodes were applied for

the cancer1, diabetes1, thyroid1 problems, and

an FNN with tansig hidden nodes were used in

the genes2 problem.

The notation I–H–O is used below to denote a

network architecture with I inputs, H hidden layer
nodes and O outputs nodes. All results reported are

based on 100 independent trials for each problem.

Moreover, the 100 random weight initializations

were the same for all the learning algorithms. In

all cases, the training and testing sets were created

according to the guidelines of PROBEN1 (see Pre-

chelt, 1994, for details).

To analyze the statistical significance of the re-
sults we implemented the Wilcoxon test as sug-

gested by Snedecor and Cochran (1989). This is a

nonparametric method that is considered an alter-

native to the paired t-test. This test assumes that

there is information in the magnitudes of the dif-

ferences between paired observations, as well as

the signs. Firstly, we take the paired observations,

we calculate the differences and then we rank them
from smallest to largest by their absolute value.

After adding all the ranks associated with positive

and negative differences giving T+ and T� statistic

respectively. Finally, the probability value associ-

ated with this statistic is found from the appropri-

ate table. All statements refer to a significance level

of 0.05, which corresponds to Zc < 1.95 for the

convergence speed and Zcr < 1.95 for the testing
classification success.

Convergence (learning) speed is a critical factor

when it comes to decide which algorithm to use.

Classification success in testing (generalization

performance) is another crucial factor. Below we

present experimental results for both factors, and

highlight cases where the results of JRprop (in

terms of convergence speed and testing classifica-
tion success) are statistically significant with re-

spect to corresponding results of the other tested

methods.
4.1. The cancer1 problem

This is a breast cancer diagnosis problem based

on nine inputs describing a tumor as benign or

malignant. The data set consists of 350 patterns.
We have used a feed-forward neural network with

9–4–2–2 nodes as suggested in the PROBEN1

benchmark collection and in relevant literature

(Igel and Husken, 2003). The termination criterion

was an E < 0.02 within 2000 epochs.

The results for this pattern classification prob-

lem are summarized in Table 1. The new algorithm

performs significantly better than the other tested
methods. The differences between iRprop and

Rprop are not important. In Table 1, we represent

the average time (‘‘Speed’’, measured in seconds),

the average classification success with the testing

set (‘‘Class. Success’’, measured by the percentage

of testing patterns that were classified correctly),

and the average convergence success in the train-

ing phase (‘‘Conv.’’, measured by the percentage
of simulation runs that converged to the error

goal) for an algorithm. All the results are based

on those runs that algorithms meet the error goal.

For each comparison we apply the Wilcoxon rank

test to calculate the significance of the results of

the JRprop with respect to the other methods. Sta-

tistically significant cases are marked with (+).

Judging from Table 1, we can notice that all
first-order methods converge to the error goal

and there is no significant difference in the testing

classification success percentage. The second-order

algorithms BFGS and SCG meet the error goal 72

and 88 times out of the 100 runs respectively. The

SCG algorithm converges faster in terms of epochs

than the Rprop and iRprop but needs more time
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as it requires on average more time at each itera-

tion for the computations. Finally the BFGS algo-

rithm has the worst performance as many times

during training the Hessian matrix is close to sin-

gular or is badly scaled.
The new algorithm is faster than the other

methods. The percentage of improvement that

the new algorithm achieved over Rprop and

iRprop in terms of learning speed is 34.5% and

29.4% respectively. The results show slightly less

classification success but the Wilcoxon rank test

did not show any statistical significance with re-

spect to the first-order method. Instead, it shows
slightly better generalization compared to the

second-order algorithms.
4.2. The diabetes1 problem

The aim of this real-world classification task is

to decide when a Pima Indian individual is diabe-

tes positive or not. We have eight inputs represent-
ing personal data and results from a medical

examination. The data set consists of 384 patterns.

The PROBEN1 collection proposes several archi-

tectures for this problem, including one with 8–

2–2–2 nodes. We decided to use this architecture

as it has been also suggested by others (Igel and

Husken, 2003). The termination criterion is

E < 0.14 within 2000 epochs.
In the diabetes classification problem both

Rprop and iRprop behave similarly. Table 2 gives

the average convergence speed and success of the

tested algorithms. The table also includes the re-

sults of the Wilcoxon Rank test. The increased
Table 2

Results for the diabetes problem

Diabetes Average

Algorithm Epochs Speed

(s)

Class. success

(%)

Conv.

(%)

Rprop 321 2.1 (+) 75.64 (�) 95

iRprop 317 1.9 (+) 75.67 (�) 95

BFGS 360 6.2 (+) 74.68 (+) 64

SCG 375 4.3 (+) 74.64 (+) 76

JRprop 172 1.1 75.78 100
convergence speed does not seem to affect the clas-

sification success of the new method in testing.

4.3. The genes2 problem

It is a binary problem. The goal of this classifi-

cation task is to decide, from a window of 60 DNA

sequence elements (nucleotides), whether the mid-

dle is either an intron/exon boundary (a donor), or

an exon/intron boundary (an acceptor), or none of

these. Each nucleotide is encoded using bipolar in-

puts (i.e. �1 and +1). The data set consists of 1588

patterns. This data set was created based on the
‘‘splice junction’’ problem from the UCI repos-

itory. We have used an architecture with 120–4–

2–3 nodes as suggested in the PROBEN1

benchmark collection. The termination criterion

is E < 10�5 within 10000 epochs.

In Table 3, the average learning time, the con-

vergence success and the results of the Wilcoxon

Rank Test are exhibited; a plus, (+), indicates
cases where the JRprop outperforms another

method. Thus the improvement of JRprop is sta-

tistically significant when compared to Rprop

and iRprop with respect to both learning speed

and classification success. Furthermore, it is

important to notice that the testing classification

success of JRprop is 100% in this binary problem.

This is particularly important as the Wilcoxon
rank test is satisfied. The overall improvement

achieved by the JRprop over Rprop and iRprop

is 25% and 23.8% in terms of convergence. How-

ever it is clear that the second-order algo-

rithms achieve significantly improved learning

speed in this problem with respect to the first-order
Table 3

Results for the genes problem

Genes Average

Algorithm Epochs Speed

(s)

Class. success

(%)

Conv.

(%)

Rprop 3240 48.2 (+) 98.76 (+) 95

iRprop 3235 47.2 (+) 98.76 (+) 94

BFGS 379 14.6 96.70 (+) 92

SCG 217 7.6 96.20 (+) 90

JRprop 2698 39.9 100.00 100
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methods with the SCG outperforming over all the

other algorithms.

4.4. The thyroid problem

This problem is based on patient query data

and patient examination data. The task is to decide

whether the patient�s thyroid has over function,

normal function, or under function. The data set

consists of 3600 patterns. We use the thyroid1,

which is not a permutation of the original data,

but retains the original order. We have used an

architecture with 21–4–3 nodes, as suggested by
Treadgold and Gedeon (1998). The termination

criterion is E < 0.0036 within 2000 epochs.

The comparative results of the tested algorithms

are given in Table 4. The table gives the average

learning speed, the average classification success

in testing and the result of the Wilcoxon Rank

Test. In our tests, the SCG did not converge to

the desired error goal within the specified number
of epochs in any of the 100 runs; this is indicated

with a D in the table.

In an attempt to explore the reasons for this

behavior of the SCG, we run again the experiments

using the same initial weights as before but we set

the error goal to a higher value, i.e. E < 0.01. The

SCG exhibited a 90% average percentage of con-

vergence success and an average number of epochs
of 500; in that case Rprop and JRprop needed an

average of 80 and 70 epochs respectively.

The BFGS outperforms in terms of learning

speed over the Rprop and iRprop but exhibits a

small percentage of convergence (only 16 out the

100 runs); this is because the approximations of

the Hessian matrix were close to singular. JRprop
Table 4

Results for the thyroid problem

Thyroid Average

Algorithm Epochs Speed

(s)

Class. success

(%)

Conv.

(%)

Rprop 781 26.2 (+) 98.12 (�) 100

iRprop 778 25.8 (+) 98.12 (�) 100

BFGS 516 22.2 (+) 98.12 (�) 16

SCG D D D 0

JRprop 669 11.6 98.23 100
outperforms the other algorithms both in learning

speed and classification success (the average

improvement in learning speed achieved by the

new method over Rprop, iRprop and BFGS is

55.4%, 54.8%, and 46.9% respectively).
5. Conclusions

In this paper we introduced a new class of sign-

based schemes that are based on the composite

nonlinear Jacobi process. An algorithm of this

class that applies the bisection method to locate
subminimizer approximations along each weight

direction has been derived, and a simplified heuris-

tic version has been proposed. This new heuristic

algorithm constitutes and efficient improvement

of the Rprop algorithm that is built on a theoreti-

cal basis.

We presented results on the behavior of the new

algorithm in four pattern classification problems
from the PROBEN1 repository and compared its

performance with the Rprop, the iRprop (a re-

cently introduced modification of the Rprop algo-

rithm), the BFGS and the SCG algorithms.

Additional experiments have been performed on

other PROBEN1 problems (e.g. the ecoli and the

yeast classification problems). The JRprop exhib-

ited significantly better convergence speed than
the Rprop and iRprop in all cases. There is of

course need to conduct further research into the

performance of JRprop in other pattern recogni-

tion problems to fully explore its advantages and

identify possible limitations.
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