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1. INTRODUCTION

The literature on supervised training of feed—forward neural networks (FNN) [1] includes all algo-
rithms which consider supervised training as the unconstrained minimization of an ob jective function.
The square error over a finite set of imput-desired output patterns, containing 7" representative pairs,
is usually taken as the function to be minimized:
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where wiLj_l‘L is the connection weight from the ith neuron at the (L — 1) layer to the jth neuron
at the L output layer, yJ-L‘1 denotes the output of the jth neuron belonging to the (L — 1) layer,
05‘ denotes the bias of the jth neuron at the Lth layer, ¢ is a nonlinear activation function, such as
the well known function o(z) = (1 + e~%)~! or the hyperbolic tangent function o(z) = tanh(az),
and d;(t) is the desired response of an output meuron at the input pattern i. Each pass through
the entire training set to compute E is called an epoch. The minimization of E(w) corresponds to
updating the weights by epoch, named batch training. Training methods originating from the field
of numerical analysis such as steepest descent [2,3], nonlinear conjugate gradients [4,5] and second
derivative based methods [6,7] have been proposed.

In this frammework, the empirical comparison of numerical methods [8] is of great importance in the
development of improved training methods and in algorithm selection for problem solving since it is
not always evident which algorithm is proper for a given class of applications. Questions concerning
“the cost”, in terms of function evaluations, the speed of convergence, in terms of epochs and the
sensitivity of an algorithm to initial conditions are usually addressed by practitioners of the field.
To this end a software package for analyzing and visualizing the convergence behavior of training
methods is introduced in this contribution. This package gives quantitative measures for the terms
“cost”, “fast” and “semsitive”. Also it gives pieces of information and displays the geometry of
basins of attraction for any training method. It displays also, using different colors, the regions of
convergence to the minima for various training methods. Moreover, it indicates the rate of their
convergence as well as the region of divergence of these methods. PFurthermore, this package gives
statistical information regarding the total convergence area in a specific domain for various minima.

2. ACCUMULATING INFORMATION IN A PICTURE

Visualizing the error surface depicting the response of an FNN leads to a better intuitive under-
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standing of the training process. The weights in an FNN can be expressed in vector notation as
w = (w1, W, ..., Wn_1,Wn,Wnil,---,wn)' defining a point in the N-dimensional real Euclidean
space R"Y, where N denotes the total number of weights and biases in the network. Thus, geomet-
rically we have to find a global minimum of an objective function with N variables. This function
cannot be visualized for N > 2. However, using the approach introduced in this section it is possible
to “see” in a picture the convergence behavior of a training algorithm.

Each picture’s element (pixel) corresponds to an initial (¥V—dimensional) point of the analyzed
training algorithm. Thus, in a network with N weights we can take a finite domain of initial points
of the two-dimensional subspace E? of RN spanned by {e™2%, e™"}, where €™%%, ™" are the eigen-
vectors corresponding to the extreme eigenvalues of the Hessian of E at a minimizer w*, V2E(w*).
To be more specific, we apply the algorithms for points

w=w"+ (c1 e™T 4 czemi") , (2.1)

where w € RY and ¢;,c0 € R, by taking a grid of the values of ¢; and ¢, which determine the
coordinates of a pixel. Since V2E(w*) is real and symmetric all eigenvalues and eigenvectors are real
and the eigenvectors corresponding to distinct eigenvalues are orthogonal. Thus, the values of ¢; and
¢z taken by a grid into an orthogonal parallelepiped represent an orthogonal parallelepiped subset of
IE2. The reason for the choice of this two—dimensional subspace is that it reveals useful information
explained in the sequel.

Studying the semsitivity of the minimum to small changes to initial points, it is known that, in a
sufficiently small neighborhood of w*, the directions of the principal axes of the elliptical contours
(N -dimensional ellipsoids) will be given by the eigenvectors of V2E(w*), while the lengths of the
axes will be inversely proportional to the square roots of the corresponding eigenvalues (see also [9]).
Thus, a variation along the eigenvector corresponding to the maximum eigenvalue will cause the
largest change in E, while the eigenvector corresponding to the minimum eigenvalue gives the least
one.

In order to study the behavior of training methods for various directions, including the “extreme
ones”, we apply the corresponding algorithms for initial points given by Relation (2.1). Of course,
it is not necessary to know the coordinates of the minima beforehand, since the package applies
an algorithm for any finite domain of initial points and according to its convergence it saves the
coordinates of the minima. The minima are distinguished because they are marked with different
colors; the first minimum is colored Red, the second Green, the third Cyan, the fourth Gray and so
on.

Each picture’s element, corresponding to an initial point of the algorithm, takes the color of the
minimum to which the algorithm converges. In case where the algorithm does not converge for this
initial condition (within an epoch or function evaluation limit) or it converges to a local minimum,
the pixel is colored white. Thus, if we have alternate convergence and divergence regions in a picture,
then the respective algorithm is not stable since it is sensitive to small perturbations of the initial
points. Furthermore, in order to display the rate of convergence (how fast the algorithm converges
to a minimum for the specific initial point) we utilize color shades. The dark colors indicate fast
convergence while the light ones indicate slow convergence. To this end, we utilize eight different
shades per color. In this way, reading a picture we are able to see the regions of rapid convergence.

Moreover, by observing that the colored zones are separated we can easily answer the question
whether a minimum attracts the initial points close to it or not. This is a characteristic of the
algorithm that we call “method’s reliability”. Qur package counts the total number of the initial
points that converge to the closest minimum. Thus, estimating the above percentage, we are able to
declare the reliability of the algorithm.
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Finally, regarding the computational complexity of an algorithm quantitative measurements are
performed and the average of the number of epochs as well as the average of the number of error
function evaluations are evaluated.

3. APPLICATION EXAMPLES

The proposed software package has been applied to several problems using FNNs of various dimen-
sions. Here, we exhibit pictures, we give quantitative results and discuss the performance of various
training methods in two applications.

3.1. Pattern classification problem: The classification of the four XOR patterns in two classes
is a classical problem [2,9,53]. The patterns are classified using a simple FNN consisting of L=3,
two linear, unity-gain input neurons with biases set to zero, and three neurons (two hidden, one
output) of logistic activation function with biases to be learned. We give pictures and comparative
results for 5 batch training methods: Back Propagation with Variable Stepsize (BPVS) [3], Fletcher-
Reeves (FR), Polak-Ribiere (PR), Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb—
Shanno (BFGS) [10]. The termination condition for all algorithms tested was to obtain an error value
E < 0.04 within 1500 error function evaluations. 64000 simulations have been run in each case with
weight vectors initialized according to Relation (2.1).

Looking at the pictures of Application 3.1 we easily observe that all methods are sensitive to small
changes of the initial weights. Also we observe that FR has the widest white region, while BFGS is
the less sensitive to initial weights. Furthermore, the basin of fastest convergence is formed by BPVS
since the dark color shade occupies most of the convergence region.

Quantitative results are summarized in Table 1. The first part of the table contains the mean num-
ber of error function evaluations Mn, the standard deviation Std, and minimum/maximum number of
function evaluationsMin/Maz that indicates the fastest/slowest run. The reliability Re of a method
is given in percentage of successive runs. In the second part of Table 1 the percentage of successful
XOR simulations per color zone (1-8) starting from the darkest color (fastest convergence speed) is
given. According to these results, BPVS is the fastest with an average of 65.2 function evaluations
and 96.94% of succesfull runs in color zone 1, while BFGS is the most reliable with 56%. FR has the
highest mean number of function evaluations and the lowest reliability.

Method Mn Std Min/Max Re % 1 2 3 4 5 6 7 8
BPVS 65.2  56.3 7/1485 476 | 9694 296 0.03 0.03 0.00 001 001 0.01
FR 303.8 173.1 20/1498 409 | 20.13 63.80 10.57 250 1.22 0.73 0.60 0.44
PR 261.9 108.5 20/1491 48.0 | 29.81 62.56 6.05 0.66 0.49 031 0.08 0.04
DFP 194.3 2243 20/1499 49.8 [ 73.80 15.60 426 220 164 1.07 079 0.66
BFGS 175.1 135.6 20/1473 56.0 | 71.22 20.67 552 220 0.27 0.08 0.03 0.00

Table 1: Analysis of the convergence behavior of training methods for the classification of the XOR

3.2 Continuous finction approximation problem: The task is the approximation of a continuous
function, f(z) = sin(z) with points in the interval (—,x). The function is learned through a set
of 20 input—output pairs, which are uniformly chosen and represent the function adequately (see
[11]). These pairs are presented always with the same order to the algorithms. The FNN consists of
one linear, unity—gain input neuron no biased, four hidden neurons of hyperbolic tangent activation
function and one linear output neuron, all with biases to be learned. We give comparative results for
4 training methods: batch BP with fixed stepsize (BP)[2], Levenberg-Marquardt (LM)[6], Recursive
Prediction Error with forgetting factor (RPEF) and Recursive Prediction Error with constant trace
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Contour lines Back-propagation with Variable Stepsize

Fletcher - Reeves Polak - Ribiere

Davidon - Fletcher - Powell Broyden - Fletchet - Goldfarb - Shanno

Classification of the XOR  Box: ¢, € [-50,50], ¢, € [-90,90]
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Contour lines Surface

Back-propagation Levenberg-Marquardt

Recursive Prediction Error with forgetting Recursive Prediction Error with constant
factor trace

Function Approximation  Box: ¢, € [-1515], ¢, € [-30,30]
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Method Mn Std Min/Max Re % 1 2 3 4 5 6 7 8
BP 7277 375.2 12/1500 75| 593 17.10 14.85 16.85 16.01 11.59 9.09 8.51
LM 20.2 15.1 2/199 80.6 | 83.83 13.14 1.23 121 026 013 0.10 0.08
RPEF 4.9 384 1/200 82.6 | 60.17 17.38 891 582 322 201 128 115
RPEC 40.4  36.5 1/200 77.8 | 46.57 18.72 17.27 10.45 4.52 1.33 0.69 0.45

Table 2: Analysis of the convergence behavior of training methods for the approximation of the sin(z)

(RPEC) [12]. In this example we compare the algorithms in terms of epochs keeping in mind that
BP is notorious for its slow convergence. The goal was to obtain an error value E < 0.01 within 1500
epochs for the BP and 200 epochs for all other algorithms tested. In all instances 16000 simulations

have been run.

From the pictures of Application 3.2 we see that BP has the widest white region although the
maximum number of allowed epochs is more than 7 times the one of the other algorithms tested.
Also we observe that LM has dark color shades mostly, since the first color shade occupies the highest
percentage 83.83% of the total dark area (which occupies the 80.6% of the grid), while RPEF is the
most reliable method (82.6%).

4. CONCLUDING REMARKS

The proposed software package can be applied to FFNs of any dimension by taking a finite domain
of initial weights of the two dimensional subspace of IR spanned by taking the eigenvectors corre-
sponding to the extreme eigenvalues of the Hessian of E at a minimum w*. This subspace reveals
useful information when studying the convergence behavior of various FNN training methods.
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