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Abstract
In this paper, we present a systematic method for finding all homoclinic orbits
of invertible maps in any finite dimension. One advantage of this method is
that it can also be used to order and classify all the homoclinic orbits, using
symbolic dynamics, if a certain criterion is satisfied. We also present a more
direct scheme, which quickly locates homoclinic orbits without, however, being
able to order and classify them. Our work represents an extension of a method
introduced in an earlier paper, with which one could only find homoclinic orbits
possessing a certain symmetry. Thus, asymmetric homoclinic orbits can now be
as easily computed. One application of our results is the explicit construction of
breather (and multibreather) solutions of a class of one-dimensional nonlinear
lattices.

Mathematics Subject Classification: 37C29, 37M99

1. Introduction

The accurate computation of homoclinic (or heteroclinic) orbits of multi-dimensional maps
and the study of their topological properties has long been recognized as a very important
problem in nonlinear dynamical systems [1–3]. Homoclinic orbits provide an excellent means
for analysing the chaotic dynamics near saddle-unstable fixed points and may be thought of as
complementary to the study of regular dynamics in the vicinity of periodic orbits.

In recent years, there has been renewed interest in the computation of homoclinic orbits of
multi-dimensional invertible maps as recursion relations obeyed by the Fourier coefficients
of localized oscillatory modes of nonlinear lattices, or discrete breathers [4–10]. In the
case of one-dimensional particle chains with linear nearest-neighbour coupling and quartic
on-site potential, it has been demonstrated that homoclinic orbits of two-dimensional maps
can provide excellent approximations, from which one can explicitly construct breathers of
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arbitrary complexity [11, 12], using the rotating wave approximation. Recently, Tsironis [13]
used a similar technique to derive two-dimensional maps whose homoclinic orbits can provide
even better approximations to the breather solutions.

In this paper we present a systematic numerical method for computing all homoclinic
orbits of invertible maps in any (finite) dimension. In a previous paper [12], Bergamin
et al had introduced an approach (called the centre condition method (CCM)) for finding all
homoclinic orbits which are symmetric (or antisymmetric) with respect to the middle particle.
This paper extends that approach and introduces an explicit scheme for classifying these orbits
using symbolic dynamics, when a certain criterion is satisfied. In this way, we are able to
obtain highly accurate approximations of discrete breathers, even in the absence of any spatial
symmetry.

Finding homoclinic orbits of maps can be done, for instance, by using shooting algorithms
(see, e.g. [14,15]) or more sophisticated methods as the one presented by Beyn and Kleinkauf
[16, 17]. The latter consists of implementing a Newton–Raphson scheme to solve a system
of N equations whose zeros are the homoclinic orbits. The parameter N is equal to the
number of elements of an orbit. For the successful use of this algorithm, an initial condition
is necessary, which is chosen arbitrarily. Our method, on the other hand, does not require an
initial guess and has no convergence problems when using the Newton–Raphson scheme. It
finds all homoclinic orbits (unlike most shooting methods) with an accuracy that is entirely
under control.

Let us write a general, invertible map f : R
g → R

g, g � 1 as

xn+1 = f (xn), xn ∈ R
g, n ∈ Z, (1)

whose inverse is

xn−1 = f −1(xn).

We shall assume that the origin is an equilibrium point (i.e. f (0) = 0) of the saddle type and
study orbits homoclinic to this equilibrium (i.e. orbits {xn}, n ∈ Z, with the property xn → 0
as n → ±∞).

Our main approach consists of deriving a new map (a second-difference map which we
shall call the special form map (SFM)) with dimension 4g, whose homoclinic orbits that satisfy
a simple symmetry condition yield all the homoclinic orbits of the original map. Numerically,
finding these symmetric homoclinic orbits of the SFM becomes a search for zeros of a nonlinear
system of equations in a restricted domain of a g- or 2g-dimensional space, depending on the
complexity of the problem. Using then a topological degree method [23–26], we are able to
find all zeros and thus all homoclinic orbits of the original map.

Employing symbolic dynamics to describe the properties of maps is a common practice,
adopted by many authors in the literature [18–22]. Using the symmetry of the homoclinic
orbits of the SFM, our method provides a way of partitioning phase space in a natural way and
then employs a symbolic representation to identify the different homoclinic orbits.

At the end of our paper, we also discuss a more direct method for computing homoclinic
orbits which begins by writing (1) as a map of dimension 2g. The homoclinic orbits of this
map correspond directly to the homoclinic orbits of the original map. We again derive a system
of g equations with g unknowns whose zeros correspond to the homoclinic orbits. However,
there is no symmetry present in this case and thus we are not able to identify each homoclinic
orbit with a symbolic sequence, as we did with our first method. If one is only interested in
getting homoclinic orbits, this more direct approach is perfectly suited for it.

To present our main method, we first construct the SFM in section 2 and describe in
section 3 the ideas of symbolic dynamics used to classify our solutions. Then, in section 4 we



Homoclinic orbits of invertible maps 1605

illustrate this method by applying it to the cubic map

xn+1 + xn−1 = 3x3
n − Cxn, xn ∈ R. (2)

Homoclinic orbits of this two-dimensional example approximate very accurately spatially
localized, time-periodic solutions (i.e. discrete breathers) of the form un(t) ≈ 2

√
αxn cos(ωt),

with C = −(2 + (K − ω2)/α), where un(t) satisfies the differential-difference equation

ün + Kun + u3
n − α(un+1 − 2un + un−1) = 0

(see [11] for more details).
In section 5 we present our second more direct method and apply it to find homoclinic

orbits of the famous Hénon map [27]

xn+1 = 1 + byn − ax2
n,

yn+1 = xn,
xn, yn ∈ R. (3)

Finally, in section 6 we describe how these methods may be used to find heteroclinic orbits
in invertible maps and end with some concluding remarks.

2. Construction of the SFM

In order to apply our method, we first need to rewrite the map (1) as follows:

Xn+1 + MXn−1 = F(Xn), Xn ∈ R
d , (4)

where M is a d × d matrix which can have two forms: when d = 1 we take M = 1; when
d > 1 we require that d be even and write

M =
(

Idg 0
0 −Idg

)
, g = d

2
,

with the obvious property M = M−1 (Idg denotes the g ×g identity matrix). We still demand,
of course, that F(0) = 0 be a saddle equilibrium, which possesses homoclinic orbits. Note
that (1) can always be written in the form (4) by defining

Xn =
(

xn

yn

)
∈ R

d , d = 2g,

so that

Xn+1 + MXn−1 =
(

f (xn) + f −1(xn)

f (yn) − f −1(yn)

)
≡ F(Xn).

Homoclinic orbits of (5) are homoclinic orbits of (1) under the condition xn = yn for all n. This
condition will reduce the dimension of the space in which we search for homoclinic orbits, as
will be explained later on (see the text following equation (12)).

We now introduce what we shall call the SFM as

An+1 + KAn−1 = LĜ(An), (5)

where

An =
(

Vn

Wn

)
∈ R

2d ,

with Vn, Wn ∈ R
d ,

K =
(

M 0
0 M

)
, L =

(
Idd M

Idd −M

)
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and

Ĝ(An) =




F

(
Vn + Wn

2

)

F

(
Vn − Wn

2

)

 .

If we define

Vn = Xn + X−n, (6a)

Wn = Xn − X−n, (6b)

it is easy to show that all homoclinic orbits of (4) correspond to homoclinic orbits of the SFM
(5) obeying the symmetry condition

An = SdA−n, ∀n, (7)

with

Sd =
(

Idd 0
0 −Idd

)
and vice versa. Indeed, if Xn is an orbit of (4), it is clear from (6a) and (6b) that systems (4)
and (5) are compatible. Thus, if Xn is a homoclinic orbit (i.e. Xn → 0 as n → ±∞), so is
An. On the other hand, if An is a homoclinic orbit of the SFM (5) (i.e. Vn → 0, Wn → 0 as
n → ±∞), then by virtue of (6a) and (6b) so is the corresponding Xn.

According to this observation, locating the homoclinic orbits of (4) can be achieved by
finding all homoclinic orbits of the SFM obeying symmetry property (7). To check if an orbit
of (5) has the required symmetry, it is only necessary to verify it at the points n = 0 and n = 1
(see appendix A for a proof), i.e.

A1 = SdA−1, A0 = SdA0.

For d = 1 this reduces (after using the map (5) with n = 0) to the condition

V1 − V−1 = 0, W0 = 0, (8)

while for d > 1 and even, it becomes

V
(1)

1 − V
(1)
−1 = 0, W

(2)
1 + W

(2)
−1 = 0, W

(1)
0 = 0, W

(2)
0 = 0, (9)

where the superscripts denote the first d/2 components and the last d/2 components of the
vectors Vn and Wn. Thus, both (8) and (9) represent a system of 2d equations, satisfied by all
orbits of (5) which obey the symmetry condition (7).

The problem is, therefore, reduced to a search for the roots of this system of equations. To
guarantee that we find all the zeros (and thus all the homoclinic orbits), we use the notion of the
topological degree. This convenient method of finding all the zeros of a system of equations in
any (finite) dimension has been discussed in detail in [23–26]. For completeness, we describe
its main steps here in appendix B.

Let us now define in which space we search for zeros. Clearly, we need the values of A−1,
A0 and A1 for each possible orbit of (5) to check whether (8) or (9) is fulfilled. To obtain A−1,
A0 and A1, we first define

Bn =
(

An

An−1

)
,

such that we have a new 4d map

Bn+1 =
(

LĜ(An) − KAn−1

An

)
(10)



Homoclinic orbits of invertible maps 1607

and choose B−N with N � 1 such that B−N−n → 0 as n → ∞ (i.e. B−N is on the unstable
manifold of the equilibrium at the origin). We then apply the map (10) N + 1 times, to obtain
B0 and B1, and hence A−1, A0 and A1. Since the unstable manifold of the origin has dimension
2d, we can determine B−N by a 2d-dimensional coordinate on this manifold, which we shall
call σ.

One straightforward way to choose B−N is to take its projection on the unstable eigenspace
spanned by the eigenvectors of the equilibrium whose eigenvalues have absolute value larger
than 1, placing it very close to the origin, i.e.

B−N = ε

2d∑
i=1

σiEi, (11)

with

JEi = λiEi, (12)

where J is the Jacobian matrix of the system (10) at the origin and |λi | > 1 are associated
eigenvalues. The parameter 0 < ε 	 1 is an accuracy parameter.

The vector σ is indeed sufficient for determining the entire orbit. Thus, we will now
search for roots in σ-space of the system (8) or (9) with Vn and Wn being functions of σ

with N and ε as parameters. This gives 2d equations which must be solved for 2d unknowns
(the components of σ). Notice that the restriction imposed by the condition mentioned below
equation (5) will yield only d equations but will also have only d unknowns.

If ε is taken small enough (i.e. the linear eigenspace is a good approximation of the
nonlinear unstable manifold), the behaviour of the map is approximately determined by its
linear part and we can write

B−N−1 = ε

2d∑
i=1

σi

λi

Ei = ε

2d∑
i=1

σ ′
i Ei, (13)

such that increasing N by 1 is approximately equivalent to dividing all σis by their respective
λis. Therefore, the domain in σ-space in which we search for zeros can be restricted, for
example, by

−λ2
i � σi � λ2

i , ∀i. (14)

The zeros outside this domain can be brought into this domain in groups, by increasing N

(since |λi | > 1 we have |σ ′
i | < |σi | in (13)). Therefore, N acts as an indicator of different

orbit ‘generations’. As we will see in the next section on symbolic dynamics, this role of N is
directly related to the ordering of the homoclinic orbits.

3. Symbolic dynamics

Increasing N by 1 (while keeping ε and σ constant) simply moves all particles by one position.
The new orbit, in general, will not obey any symmetry. Thus, since we want it to obey symmetry
condition (7), there are two quantities to be determined, namely V0 and W−1 (since W0 ≡ 0).
The possible values for V0 and W−1 depend on the form of the map itself. This introduces a
symbolic naming by which each of the possible values is assigned a symbol uniquely identifying
each orbit. After the method has been presented, a condition is given which must be fulfilled
for the method to be applied. Let us now return to the concept of the SFM and explain all this
in detail for the case where d = 1. The case d > 1 and even can be treated in the same way.
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Observe first that equation (5) can be written as two coupled maps, one for Vn and one
for Wn:

Vn+1 + MVn−1 = F

(
Vn + Wn

2

)
+ MF

(
Vn − Wn

2

)
,

Wn+1 + MWn−1 = F

(
Vn + Wn

2

)
− MF

(
Vn − Wn

2

)
.

(15)

All the orbits we are looking for have the required symmetry (7) and hence they satisfy

V1 = V−1, W0 = 0,

which gives, for n = 0 in the first equation of (15) and n = −1 in the second,

V−1 = F

(
V0

2

)
, MW−2 = F

(
V−1 + W−1

2

)
− MF

(
V−1 − W−1

2

)
. (16)

Consider now the following transformation, mapping a complete (known) orbit onto
another, indicated here by primes:

V ′
±(n+1) = V±n, ∀n � 0,

W ′
±(n+1) = W±n, ∀n > 0,

W ′
0 = 0.

(17)

This transformation does not specify V ′
0, W ′

−1 and W ′
1. Thus, we impose the symmetry (7)

on the orbit denoted by the prime (so that W ′
1 = −W ′

−1) and assume that the orginal orbit also
obeys the symmetry.

We also impose the map equations on the orbit denoted by the prime, so that its system of
equations takes the same form as (16) with all variables primed. Upon using (17), this yields

V0 = F

(
V ′

0

2

)
, MW−1 = F

(
V0 + W ′

−1

2

)
− MF

(
V0 − W ′

−1

2

)
, (18)

which are two equations with two unknowns (V ′
0 and W ′

−1). We consider this as a map
H : (V ′

0, W
′
−1) → (V0, W−1). Notice, however, that this map is in the wrong direction:

from the orbit denoted by the primes we find the original (known) orbit. The interesting
transformation for us, of course, is H−1. However, this is not well defined since there is no
unique solution. In general, there are different branches of solutions, for V ′

0 and (separately)
for W ′

−1. The number of branches of one unknown might depend on the value of the other
unknown. However, the maximum number of possible branches is fixed.

Suppose that there is a maximum of k1 branches of solutions V ′
0 and a maximum of k2

branches of solutions W ′
−1. To each of the k1 and k2 branches, we assign a different symbol.

Then, any solution of (18) can be indicated by two symbols: one for the V ′
0-branch and one for

the W ′
−1-branch.

Let us consider the transformation H−1 : (V0, W−1) → (V ′
0, W

′
−1) which constitutes

together with (17) a complete map. We call this map the homoclinic orbit map HOM since
it maps a homoclinic orbit onto several others. All the new orbits are uniquely identified by
the above two symbols. Thus, we are able to name all homoclinic orbits, by combining the
new symbols with the symbolic name of the original homoclinic orbit to which the HOM was
applied.

Let us observe that primes denote a new orbit ‘generation’, whose appearance through
(17) is equivalent to increasing N by one in the numerical method. Thus, we may regard N

as a ‘generation’ parameter, which also acts as an ordering parameter. In this way, using our
numerical method together with the symbolic naming and ordering procedure described above,
we should be able to find name and order all homoclinic orbits of any invertible map.
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One important observation we wish to make here is that the HOM by itself (without using
its numerical counterpart) does not generate true homoclinic orbits. Solutions, in general, do
not obey the mapping equations (16) (with primes) at n = −2, −1, 0, 1, 2, even though in the
symbolic sense they are equivalent to the real homoclinic orbits. So, the correct interpretation
of the homoclinic orbit map is the following.

Suppose we have found a homoclinic orbit H0, for a certain N , ε and σ, and increase
N by 1 (not changing ε). We then find at most k1 × k2 homoclinic orbits with coordinates
close to σ. Each of these solutions can be identified with one of the k1 × k2 solutions of the
homoclinic orbit map applied to H0, each one uniquely identified by two symbols. We then
assign symbolic names to the new homoclinic orbits by combining the new symbols with the
symbolic name of the original (‘parent’) orbit H0. This way, all homoclinic orbits are uniquely
named and ordered. The example presented in the next section illustrates this procedure in
detail.

The success of the above approach clearly requires that the HOM can be applied to H0

(i.e. yields admissible results). This is only the case when V0 and W−1 are in the domain of
the HOM equations (18) (one can see that this is necessary since the HOM is only inversely
defined and hence there might be no solutions). Therefore, the relevant criterion enabling the
HOM to name homoclinic orbits is that the ‘reachable range’ of the HOM equations (i.e. the
values V0 and W−1 of all homoclinic orbits to which the HOM is applied) lie within the domain
of these equations.

4. The cubic map

To illustrate our method, let us apply it to the example of a cubic map, given by

xn+1 + xn−1 = 3x3
n − Cxn, xn ∈ R. (19)

As mentioned in the introduction, homoclinic orbits of this map approximately represent
spatially localized, time-periodic solutions (i.e. discrete breathers) of a one-dimensional chain
of linearly coupled particles with a quartic on-site potential. In earlier publications [11, 12]
we were able to accurately approximate all symmetric (or anti-symmetric) homoclinic orbits
and use these as approximations to symmetric or anti-symmetric discrete breather solutions.
Here, we will apply the new method introduced in this paper to also find all the asymmetric
homoclinic orbits which are thus approximations to asymmetric breathers.

4.1. Deriving the SFM and finding the homoclinic orbits

To derive the SFM we observe that the map (20) can be cast into the form (4) with

Xn = xn, M = 1, F (Xn) = 3X3
n − CXn,

while the SFM equations yield

Vn+1 + Vn−1 = F

(
Vn + Wn

2

)
+ F

(
Vn − Wn

2

)
,

Wn+1 + Wn−1 = F

(
Vn + Wn

2

)
− F

(
Vn − Wn

2

)
,

(20)

with F(Xn) as given above. This is a four-dimensional map which we write in the form (10)
with the aid of the vector Bn = (Vn, Wn, Vn−1, Wn−1)

T.
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When linearized about the fixed point at the origin, this map possesses two eigenvectors
with eigenvalue λ = (−C − √

C2 − 4)2 < −1 for C > 2, which span a two-dimensional-
space tangent to the unstable manifold at the origin and may be written in the form

E1 =




λ

0
1
0


 , E2 =




0
λ

0
1


 .

Thus, we can now define

B−N = ε(σ1E1 + σ2E2) (21)

as the starting point for a search for orbits satisfying the symmetry condition (7).
In figure 1 we plot the nullclines of the two components of system (8) for the above

example. Intersection points of these lines are homoclinic orbits. The scaling procedure from
equation (13), showing that all homoclinic orbits can be found using this method, is clearly
visible.

We now use topological degree methods [23–26] to calculate the total number of zeros for
different values of N (as explained appendix B) and then apply a bisection technique to locate
all zeros and hence find all homoclinic orbits for each generation. For example, for C = 8,
N = 15 and ε = 0.7 × 10−10 we have located 224 homoclinic orbits in the domain given by
(14), some of which are shown in figure 4. Among these orbits, of course, there are several
ones which are asymmetric with respect to n = 0.

50 0 50
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–20

0

20

40

60

σ
1

σ 2

N = 8

–50 0 50
–60

–40

–20

0

20

40

60

σ
1

σ 2

N = 9

–50 0 50
–60

–40

–20

0

20

40

60

σ
1

σ 2

N = 10

–50 0 50
–60

–40

–20

0

20

40

60

σ
1

σ 2

N = 11

Figure 1. Nullclines of the functions V−1 − V1 = 0 (——) and W0 = 0 (- - - -) for the map
(19). Intersection points of the lines correspond to homoclinic orbits, with starting point (21) and
σ = (σ1, σ2). We have parameters C = 8, ε = 0.7 × 10−10 and show the region (14).
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4.2. Ordering and identifying the homoclinic orbits

The HOM is easily derived for this example by inserting n = 0 into the map equation for Vn

and n = −1 into the map equation for Wn, setting Vn = V ′
n, Wn = W ′

n and identifying V ′
−1

and W ′
−2 with V0 and W−1, respectively, to obtain

V0 = F

(
V ′

0

2

)
, W−1 = F

(
V0 + W ′

−1

2

)
− F

(
V0 − W ′

−1

2

)
, (22)

with F(X) = 3X3 − CX. As explained in section 3, system (22) should be read in its inverse
form, i.e. V0 and W−1 are mapped onto V ′

0 and W ′
−1.

The first equation (for V ′
0) can be explicitly solved. For simplicity we plot the result in

the graph of figure 2. There are three branches of solutions, to which we give the symbols +,
0 and − as indicated in figure 2. The second equation (for W ′

−1) can also be explicitly solved,
but the number of branches depends on the value of V0. The maximum number of branches,
however, is also equal to 3. We use again the symbols +, 0 and − as indicated in figure 3 for
several values of V0 and C = 8.

We can use the HOM to order and identify the homoclinic orbits, since the range and
domain of both equations are equal to the whole real line. To show how the symbolic names
are assigned, let us consider the orbit given in table 1. The symbolic name of this orbit is equal
to a shifted version of the symbolic name of the orbit from which it was formed by the HOM,
except for the symbols of the elements V0 and W−1, so we will only explain how to obtain
these. For this, we identify the values of V−1 and W−2 with V0 and W−1 and insert these in
(22). We then solve for V ′

0 and W ′
−1. In table 2 we list all combinations we find and identify

them with the corresponding branches of figures 2 and 3.

–8 –6 –4 –2 0 2 4 6 8
–8

–6

–4

–2

0

2

4

6

8

V
0
(k)

V
0(k

+1
)

C=10 

C=8 C=4 

(+) region

(o) region 

(–) region 

Figure 2. Partition generating the symbolic dynamics for the first component of the homoclinic
orbit map (22), i.e. V0. The dashed, dotted and dot-dashed lines indicate the relationship between
V0 and V ′

0 for various values of C. The thick, solid lines indicate the borders of the regions which
have different symbols, namely (+), (0) and (−).
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–8 –6 –4 –2 0 2 4 6 8
–8

–6

–4

–2

0

2

4

6

8

W
–1
(k)

W
–1(k

+1
)

V
0
(k)=0 

V
0
(k)=1.3

V
0
(k)=2 

(+) region 

(o) region 

(o) region 

(–) region 

Figure 3. Partition generating the symbolic dynamics for the second component of the homoclinic
orbit map (22), i.e. W−1. The dashed, dotted and dot-dashed lines indicate the relationship between
W−1 and W ′

−1 for various values of V0 and C = 8. The thick, solid lines indicate the borders of the
regions which have different symbols, namely (+), (0) and (−). Observe that the (0) region becomes
a single point (the origin) when |V0| � 2

3

√
C ≈ 1.89 for C = 8.

Table 1. Example of a homoclinic orbit (only the central part is presented). Given here are Vn and
Wn, the orbit of the SFM (20) and the resulting Xn = (Vn + Wn)/2 which is a homoclinic orbit
of (19). See the second row, first shape in figure 4 for a graphic representation. This orbit has
symbolic name (00)(−0)(00)(+−) as explained in the text.

n Vn Wn Xn

−8 −0.000 014 −0.000 001 −0.000 007 5
−7 0.000 108 5 0.000 007 5 0.000 058
−6 −0.000 852 −0.000 058 −0.000 455
−5 0.006 709 0.000 457 0.003 583
−4 −0.052 82 −0.003 6 −0.028 21
−3 0.415 74 0.028 318 0.222 029
−2 −3.218 460 5 −0.211 914 5 −1.715 187 5
−1 0.002 957 5 −3.279 147 5 −1.638 095

0 3.266 356 0 1.633 178
1 0.002 957 5 3.279 147 5 1.641 052 5
2 −3.218 460 5 0.211 914 5 −1.503 273
3 0.415 74 −0.028 318 0.193 711
4 −0.052 82 0.003 6 −0.024 61
5 0.006 709 −0.000 457 0.003 126
6 −0.000 852 0.000 058 −0.000 397
7 0.000 108 5 −0.000 007 5 0.000 050 5
8 −0.000 014 0.000 001 −0.000 006 5
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Table 2. All combinations (V ′
0, W

′
−1) solving the HOM (22) for the orbit with (V0, W−1) =

(V ′
−1, W

′
−2) = (0.002 957 5, −0.211 914 5), with the primed orbit given in table 1. Also shown

are the symbols of the branches in figures 2 and 3 where these combinations are found. The first
symbol indicates the branch of V ′

0, the second indicates W ′
−1.

Branch symbols
No (V ′

0, W
′
−1) (VW)

1 (3.266 355 948, 3.245 295 580) (++)

2 (3.266 355 948, 0) (+0)

3 (3.266 355 948, −3.245 295 580) (+−)

4 (−0.000 739 375, 3.245 295 580) (0+)

5 (−0.000 739 375, 0) (00)

6 (−0.000 739 375, −3.245 295 580) (0−)

7 (−3.265 616 573, 3.245 295 580) (−+)

8 (−3.265 616 573, 0) (−0)

9 (−3.265 616 573, −3.245 295 580) (−−)

By comparing with the actual point (V ′
0, W

′
−1) = (3.266 356, −3.279 147 5), we see that

the (+−) combination is closest. Since we have also found the other combinations in other
orbits, we know for sure that the (+−) symbols are correct.

There is more than one way to append these new symbols to the name of the parent orbit.
One can, for instance, simply add it at the end of the name. In this way, one just keeps track
of the positions of V0 and W−1 for each generation.

The orbit under consideration is found in the third generation of orbits starting from
the trivial homoclinic orbit An = 0 for all n (zeroth generation) with symbolic name (00)

(the location of both V0 and W−1 is on the 0-branch). When we increase the generation by 1, all
new orbits will have symbolic names (00)(vw), with (vw) the symbols identifying each orbit.
Our orbit had (vw) = (−0), so its symbolic name (generation 1) is (00)(−0). Its descendant we
focus on has name (00)(−0)(00) (generation 2). Finally, our target orbit adds (+−) to this name
as described above; so we have determined its full name to be (00)(−0)(00)(+−). Figure 4
gives several homoclinic orbits of (19) with C = 8 and their name according to the homoclinic
orbit map. We used shortcuts to identify all nine possible combinations (vw) that occur.

5. The second method

If one is only interested in finding the homoclinic orbits of an invertible map, there is a more
direct method presented in this section which gives them in a very easy way. It has many
similarities with the method presented above, but does not construct symmetric orbits. This
means that no ordering or explicit identifying is possible. However, the dimension of the
search space will always be 2g and not 4g (g being the dimension of the original map) and
this makes the method computationally more convenient.

We write the map under consideration as (1) with xn = Xn and define Yn+1 = f −1(Yn).
We see immediately that if X0 = Y0, then Yn = X−n for all n. Thus, we define An = (Xn, Yn)

T

and construct the map

An+1 = F(An) ≡
(

f (Xn)

f −1(Yn)

)
. (23)

If we now choose A−N = (X−N, Y−N), N � 1, to be on the unstable manifold of (23) and
apply the map N times to obtain A0 = (X0, Y0), we see that the identity

X0 = Y0 (24)
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Figure 4. Several homoclinic orbits of the cubic map (19) and their symbolic name according to the
HOM (22) where we used the shortcuts A = (−+), B = (0+), C = (++), D = (−0), O = (00),
E = (+0), F = (−−), G = (0−), H = (+−).

implies Xn = Y−n for all n. Since Y−N → 0 as N → ∞ (because A−N is on the unstable
manifold), this means that, in that limit, XN → 0 and hence AN is on the stable manifold.
Thus, we have a homoclinic orbit.

In analogy with the previous method, we approximate A−N to be on the unstable manifold
by choosing a point close to the origin and on the linear eigenspace of the Jacobian matrix
of F at the origin (see equations (11) and (12)). This eigenspace has dimension g and hence
we need a g-dimensional coordinate σ to determine the entire orbit, searching for zeros of the
system of equations X0 − Y0 = 0 in this parameter space.

The lack of symmetry, however, is a significant drawback of this simple approach. First
of all, it denies the possibility of assigning a symbolic name to each orbit, as was possible with
the method presented in the previous sections. Second, since the eigenvalues corresponding
to the eigenvectors spanning the tangent space of the unstable manifold at the origin are not
equal, the location of the ‘centre’ of the homoclinic orbit (i.e. that part of the orbit where the
amplitudes xn are significantly larger than zero) is not necessarily around n = 0.

All this can be nicely illustrated on the example of the well-known quadratic map

x̂n+1 = 1 + bŷn − ax̂2
n, ŷn+1 = x̂n (25)

originally due to Hénon [27].
Translating to new variables (xn, yn) for which the saddle equilibrium (xeq, xeq) of (25)

(xeq = (2a)−1((b − 1) +
√

(1 − b)2 + 4a)) is at the origin, we obtain

xn+1 = 1 + byn − a(xn + xeq)
2 + (b − 1)xeq, yn+1 = xn. (26)
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Figure 5. Nullclines of the system x0 − v0 = 0 (——) and y0 − w0 = 0 (- - - -) for the map (27)
at the parameter values a = 1.4, b = 0.3, N = 8 and ε = 1.0 × 10−5. Notice the difference in
scale for σ1 and σ2 which is a direct result of the inequality of the two unstable eigenvalues of the
linearized map.

We then write (26) in the form (23) by setting Xn = (xn, yn), Yn = (vn, wn) and An = (Xn, Yn)

such that

An+1 =




f (xn) + byn

xn

wn

1

b
(vn − f (wn))


 , (27)

with f (x) = 1 − a(x + xeq)
2 + (b − 1)xeq. Zeros of the equations

x0 − v0 = 0, y0 − w0 = 0

correspond to homoclinic orbits of (26). In figure 5 these two nullclines are given. In figure 6
several homoclinic orbits of this map are presented.

Observe in figure 5 the different scale of the axes. This is a direct result of the fact that
the eigenvalues of the Jacobian matrix of (27) at the origin with magnitude larger than 1 are
not equal.

6. Concluding remarks

We have presented in this paper two methods for locating the homoclinic orbits of any
finite dimensional, invertible map, and have successfully applied them to some typical two-
dimensional examples. Although both methods use a zero-search scheme to solve systems
of equations with many nearby roots, if the dimensionality of the system is not too high the



1616 J M Bergamin et al

–5 0 5

–1

–0.5

0

0.5

1

n

x n

–5 0 5

–1

–0.5

0

0.5

1

n

x n
–5 0 5

–1.5

–1

–0.5

0

0.5

1

1.5

n

x n

–5 0 5

–1

–0.5

0

0.5

1

n

x n

Figure 6. Several homoclinic orbits of the Hénon map (26) for a = 1.4 and b = 0.3.

topological degree method we have employed is relatively fast and very accurate. Furthermore,
it is guaranteed to find all the zeros, which means that we can find all the homoclinic orbits.

The main idea of our approach is the following: given a g-dimensional invertible map, we
use its inverse to embed it in a higher dimensional mapping, whose homoclinic orbits are the
same as those of the original problem and are obtained as the roots of a system of nonlinear
equations.

Our first method also provides a way to name all orbits using symbolic dynamics and
is straightforward and easy to apply. Even though the homoclinic tangle contains an infinite
number of homoclinic orbits, they can all be uniquely identified via the HOM introduced in
this paper.

The HOM can also be used in another way to generate homoclinic orbits rapidly, albeit with
less control over the accuracy. Starting from the trivial homoclinic orbit (i.e. all elements at the
origin) and applying this map we create (at most) k1 × k2 new approximate homoclinic orbits.
When these new orbits are used as a starting point for a Newton–Raphson search (i.e. applying
the method of Beyn and Kleinkauff [16, 17] with our approximate homoclinic orbit as an
initial condition), we get accurate homoclinic orbits. The HOM can again be applied to each
of them to get approximate homoclinic orbits and then, using a Newton–Raphson search, a
large number of homoclinic orbits are generated in a very fast manner. The drawbacks of this
method are: (a) the successful application of the homoclinic orbit map requires that the part
of its range reached by homoclinic orbits be a subset of its domain (see section 3) and (b) the
convergence of the Newton–Raphson method is not easily controlled and so the method may
converge to a homoclinic orbit far from the approximated one.

The methods presented here can also easily be applied to find heteroclinic orbits. By
adding and subtracting a heteroclinic orbit and its inverse, we get a new heteroclinic orbit with
a well-defined symmetry. Therefore, one can again set up a system of equations whose zeros
correspond to the heteroclinic orbits, following the first method. The second method can be
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applied exactly as presented here. The fixed point of the constructed map now has components
from both points to which the orbit is heteroclinic.
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Appendix A. Verifying the symmetry condition (7)

In this appendix we prove that, in order for equation (7) to hold for all n, it is only necessary
to check this at two points n = 0 and n = 1. This we demonstrate by induction as follows:
we assume that (7) holds for An−1, An and then show that it also holds for An+1. To see this,
note that

Sd = S−1
d , Ĝ(SdAn) =

(
0 Idd

Idd 0

)
Ĝ(An) ≡ RĜ(An),

and that by our assumption

A−n+1 = SdAn−1, A−n = SdAn.

Thus, we have, from (5),

An+1 = LĜ(An) − KAn−1

= LRĜ(A−n) − KSdA−n+1

= LRL−1(A−n+1 + KA−n−1) − KSdA−n+1

= LRL−1A−n+1 + LRL−1KA−n−1 − KSdA−n+1

= (LRL−1 − KSd)A−n+1 + LRL−1KA−n−1 (A1)

and, since

LRL−1 = KSd =
(

M 0
0 −M

)
, LRL−1K = Sd,

we have proven, from (A1),

An+1 = SdA−n−1,

as desired.

Appendix B. The method of the topological degree

In order to find homoclinic orbits, it is necessary to find roots of systems of nonlinear equations.
To do this, we use a topological degree method which is capable of finding all roots of any
(finite dimensional) system of equations, within a certain region [23–26].

Let us first define the notion of the topological degree. Suppose that the function
Fn = (f1, . . . , fn) : Dn ⊂ Rn → Rn is defined and two times continuously differentiable
in an open and bounded domain Dn of Rn with boundary b(Dn). Suppose further that the
zeros of the system of equations

Fn(x1, x2, . . . , xn) = 0 (B1)
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(0 denotes the origin of Rn) are not located on b(Dn) and they are simple, i.e. the Jacobian
determinant of Fn at these zeros is nonzero. Then the topological degree of Fn at 0 relative to
Dn is denoted by deg[Fn, Dn, 0] and can be defined by the following sum:

deg[Fn, Dn, 0] =
∑

x∈F−1
n (0)∩Dn

sgn JFn
(x), (B2)

where JFn
denotes the determinant of the Jacobian matrix and sgn defines the three-valued

sign function.
The above definition can be generalized when Fn is only continuous. In this

case, Kronecker’s theorem states that the system (B1) has at least one root in Dn if
deg[Fn, Dn, 0] = 0. Also, deg[Fn, Dn, 0] can be represented by the Kronecker integral which
is defined as follows (see, e.g. [29]):

deg[Fn, Dn, �n] = �(n/2)

2πn/2

∫ ∫
b(Dn)

· · ·
∫ ∑n

i=1 Ai dx1 · · · dxi−1 dxi+1 · · · dxn

(f1
2 + f2

2 + · · · + fn
2)n/2

, (B3)

where Ai defines the following determinants:

Ai = (−1)n(i−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1
∂f1

∂x1
· · · ∂f1

∂xi−1

∂f1

∂xi+1
. . .

∂f1

∂xn

f2
∂f2

∂x1
· · · ∂f2

∂xi−1

∂f2

∂xi+1
· · · ∂f2

∂xn

...
...

...
...

...
...

...

fn

∂fn

∂x1
· · · ∂fn

∂xi−1

∂fn

∂xi+1
· · · ∂fn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B4)

The topological degree is equal to the number of zeros of (B1) in the area Dn with
positive Jacobian minus the number of roots in Dn with negative Jacobian. In general, this is
not sufficient to determine the number of zeros of a system of equations. Invoking Picard’s
theorem, however, gives the answer: we consider an extended system of n + 1 equations by
adding one more equation to the first n as follows:

fn+1 = xn+1JFn
(x1, x2, . . . , xn). (B5)

The roots of the extended function Fn+1 = (f1, f2, . . . , fn, fn+1) : Dn+1 ⊂ Rn+1 → Rn+1,
where Dn+1 is the direct product of the domain Dn with an arbitrary interval of the real
xn+1-axis containing the point xn+1 = 0, are equal to the roots of Fn, but now they all have
positive Jacobian. Thus, the topological degree of Fn+1 is exactly equal to the number of roots
of Fn in Dn.

In the case of our system of equations (8), (9) or (24), we apply Picard’s theorem and
calculate the number of zeros in a given region. Using bisection methods (in small dimensions)
or other rootfinding methods such as Newton’s or Broyden’s method, we are then able to locate
every zero in that region, and thus find the (symmetric and asymmetric) homoclinic orbits of
the original system (1). Integration can be done using standard methods like the Runge–Kutta
or the Monte Carlo techniques (see, e.g. [28] for implementations).
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