

ISSN 1054-6618, Pattern Recognition and Image Analysis, 2006, Vol. 16, No. 2, pp. 143–154. © Pleiades Publishing, Inc., 2006.

Estimating the Number
of Clusters Using a Windowing Technique

1

B. Boutsinas

a

, D. K. Tasoulis

b

, and M. N. Vrahatis

b

a

 Department of Business Administration, University of Patras Artificial Intelligence Research Center (UPAIRC),
University of Patras, GR-26500 Rio, Patras, Greece

b

 Computational Intelligence Laboratory, Department of Mathematics, UPAIRC, University of Patras,
GR-26110 Patras, Greece

e-mail: vutsinas@upatras.gr, dtas@math.upatras.gr, vrahatis@math.upatras.gr

Abstract

—Clustering is the process of partitioning a set of patterns into disjoint and homogeneous meaningful
groups (clusters). A fundamental and unresolved issue in cluster analysis is to determine how many clusters are
present in a given set of patterns. In this paper, we present the

 z

-windows clustering algorithm, which aims to
address this problem using a windowing technique. Extensive empirical tests that illustrate the efficiency and
the accuracy of the proposed method are presented.

Key words

: clustering algorithms, automatic cluster detection, data mining, unsupervised learning, range
search.

DOI:

10.1134/S1054661806020015

Received January 26, 2006

1

1. INTRODUCTION

Clustering, that is, partitioning a set of patterns into
disjoint and homogeneous meaningful groups (clus-
ters), is a fundamental process in the practice of sci-
ence. In particular, clustering is fundamental in knowl-
edge acquisition. It is applied in various fields including
data mining [19], statistical data analysis [3], compres-
sion, and vector quantization [36]. Clustering is also
very important in most of the social sciences.

Recently, the task of extracting knowledge from
large databases using clustering rules has become a
subject of considerable interest. Clustering rules can be
extracted using unsupervised learning methods. Algo-
rithms for clustering have been widely studied in vari-
ous fields including machine learning, neural networks,
databases, and statistics. Clustering algorithms can be
classified [3] as either hierarchical or iterative (parti-
tional, density search, factor analytic or clumping, and
graph theoretic). Complete-link, average-link, and sin-
gle-link algorithms [17, 26, 41] are the most popular
hierarchical clustering algorithms.

k

-Means [25, 35],
along with its variants (e.g., [24, 38]) and hill climbing
[7] are some of the most popular partitional clustering
algorithms.

A fundamental issue in cluster analysis independent
of the particular clustering technique is to determine the
number of clusters that are present in the results of a
clustering study. This fundamental issue is an unsolved

1

The text was submitted by the authors in English.

problem in cluster analysis. For instance, popular itera-
tive techniques, such as the

k

-means algorithm, require
the user to specify the number of clusters present in the
data prior to the identification of the clusters by the
algorithm [25, 35].

There are a few symbolic and connectionist methods
that attempt to tackle the problem of estimating the
number of clusters. An obvious approach is to use hier-
archical clustering. The user, the data analyst, can con-
tinue hierarchically clustering the data until a satisfac-
tory level of clarity is achieved. There are some recent
agglomerative hierarchical clustering algorithms that
achieve high-quality clustering results, such as BIRCH
[50], CHAMELEON [27], and CURE [22]. However,
apart from a high user intervention and the typically
nonlinear time complexity, this approach has serious
drawbacks. For instance, the problem of determining
the number of clusters is reduced to the problem of
determining the level of the hierarchy at which to stop,
although there are methods that try to address this prob-
lem (e.g., [29]). Additionally, dendrograms cannot be
visualized for large data sets, as the diagram is too com-
plex with too many leaf nodes and branches to allow
comprehension. The main drawback, however, is that,
although input data are organized into a strict hierarchy
of nested subsets, there is no reason to believe that data
actually follow a true hierarchical descent. The same is
also true for other tree-based or lattice-based
approaches [21], which suffer from the bias created by
imposing a tree-structure or lattice-structure constraint
on the solution of the clustering problem. The same
should also be true for any method based on an imposed
model of clusters. For instance, the important Bayesian
Ying-Yang system [49] can automatically determine

MATHEMATICAL THEORY
OF PATTERN RECOGNITION

144

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 16

No. 2

2006

BOUTSINAS et al.

the number of clusters in the special case of a mixture
of

k

 Gaussian densities. Similarly, there are techniques
for estimating the order of a Gaussian mixture model
(order identification problem), as in [1, 37]. Cluster
[11] is a clustering algorithm that is based on [37] and
estimates the number of clusters that best fit the data.
However, the special case of a mixture of Gaussian den-
sities deviates from many practical situations. Notice
that clustering methods with no structural constraint
imposed on the solution require an exhaustive search
for the nearest cluster, thus becoming impractical for
large feature spaces.

Self-organizing maps (SOM) [28] can be catego-
rized as a connectionist clustering technique for han-
dling the problem. SOM can be used as a tool for map-
ping high-dimensional data into a two- or three-dimen-
sional output map. The key idea of using SOM in
clustering is to visually identify the clusters from that
output map and thus gain some idea about the structure
of the input data, due to the topology-preserving nature
of SOM. By topology preserving, we mean that similar
input patterns are projected into nodes that are close to
each other in the output map and that nodes that are
adjacent in the output map decode similar input pat-
terns. Although the key idea is based on user interven-
tion, a significant advantage could be gained if there
was an accurate representation of the input space. How-
ever, there are serious limitations to this approach,
since SOM, as has been shown theoretically [48], does
not provide complete topology preservation. Moreover,
the output map must be predetermined prior to the
learning process. Notice that choosing a very large net-
work may result in overfitting the training data, while
choosing a very small network may not make it possi-
ble to capture the structure of the training data. Usually,
the proper output map is known only after several trials.
Attempting to overcome these limitations, a number of
approaches based on dynamic self-organizing maps
have been proposed that determine the shape and the
size of the network during training. These networks
“grow” as they learn and “shrink” as they forget.

The GCS algorithm [20] is based on an incremental
self-organizing network with a

k

-dimensional simplex
as an initial topology. During training, new cells are
added and superfluous cells are removed according to a
heuristic criterion that takes into account the relative
winning frequency of a node. The GCS algorithm uses
a drawing method, which works well with low-dimen-
sional data, but there are problems in visualizing high-
dimensional data, since, in this case, the mapping is not
always planar.

The TRN (neural gas) algorithm [31] starts with a
network of a fixed number of cells with no connections.
During training, cells are adapted and connections are
created between the winning cells and the closest com-
petitor, while cells are removed according to an aging
mechanism. The predetermined number of cells and the

dependence on the respective locality of the input data
result in visualization difficulties.

The IGG algorithm [10] starts with a small number
of initial cells. During training, it generates cells from
the boundary of the network according to a growth heu-
ristic. Connections are added and removed according to
an internode weight difference. However, there is a dif-
ficulty in adapting its structure in the case of a dimen-
sion mismatch between the input space and the output
map.

Obviously, the aforementioned dynamic self-orga-
nizing algorithms, along with their extensions (e.g.,
GSOM [2], DTRN [40]), become more complex com-
pared to their fixed structure counterparts. Moreover,
they do not render an intuitive representation of the out-
put map to visualize the final clustering results in high-
dimensional spaces.

There are also approaches that adjust the number of
clusters during training. The ISODATA technique [8] is
based on the same key idea as the

k

-means algorithm;
starting with a typical number of initial clusters, it iter-
atively merges and splits existing clusters according to
“within-group variability” and “closeness” thresholds.
Adaptive resonance theory (ART) algorithms [13, 14]
grow cells according to a vigilance threshold that actu-
ally defines the cluster sizes (when it is small, it pro-
duces large clusters, and as it gets larger, it yields finer
clusters). However, the effectiveness of these
approaches is heavily dependent on the value of these
thresholds, which is usually based on a tacit knowledge
about the structure of the input data.

Finally, there are methods that try to tackle the prob-
lem by letting the user specify a range within which the
true presumable

k

 lies [33].
From our experience, the most promising approach

is the DBSCAN algorithm [18]. DBSCAN is a density-
based clustering algorithm that tries to recover clus-
ters from spatial databases. Clusters are defined by
means of neighborhoods of objects. The density of
each accepted such neighborhood has to exceed
some threshold. Although this threshold is very cru-
cial for the algorithm, heuristics have been proposed
to determine it.

In this paper, we present the

z

-windows algorithm,
an iterative clustering technique, aiming to solve the
problem of determining the number of clusters. The

z

-windows algorithm is based on the windowing tech-
nique of the

k

-windows clustering algorithm [47], used
to reduce the number of patterns that need to be exam-
ined for similarity at each iteration.

k

-Windows utilizes
the orthogonal range search technique of computational
geometry. The key idea is to use a sufficiently large
number of initial windows, which are properly merged
during the algorithm. The windowing technique of the

k

-windows algorithm allows a large number of initial
groups (windows) to be examined without a significant
overhead in time complexity. The merge operation is
guided by a certain threshold, which is set by the user.

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 16

No. 2

2006

ESTIMATING THE NUMBER OF CLUSTERS USING A WINDOWING TECHNIQUE 145

However, the effectiveness of the

z

-windows algorithm
largely depends on the initial windows that can be
determined by the range search tree, thus taking
directly into consideration the structure of the input
data.

The rest of the paper is organized as follows. The

k

-windows algorithm is briefly described in Section 2,
along with its computational complexity. The proposed

z

-windows algorithm is described in Section 3. In Sec-
tion 4, we present extensive empirical tests that illus-
trate the utility of the method. The paper ends with
some concluding remarks and a short discussion about
further research.

2. THE

K

-WINDOWS ALGORITHM

The

k

-windows algorithm [47] is an improvement of
the

k

-

means

 algorithm, which is a very popular algo-
rithm particularly suited for implementing the cluster-
ing process, because of its ability to efficiently partition
large amounts of data.

k

-Means consists of two main phases. At the first
phase, a partition of patterns into

k

 clusters is calcu-
lated, while during the second stage, the quality of the
partition is determined.

k

-Means is implemented by an
iterative process that starts from a random initial parti-
tion. The latter is repeatedly recalculated until its qual-
ity function reaches an optimum.

In particular, the whole process is built upon four
basic steps:

(1) selection of the initial

k

 centers;
(2) assignment of each pattern to a cluster with the

nearest center;
(3) recalculation of

k

 centers of the clusters; and
(4) computation of the quality function.
The last three steps are performed iteratively until

convergence.
The

k

-means algorithm is computationally very
expensive for large sets of patterns. It requires time pro-
portional to the product of the number of patterns, the
number of clusters, and the number of iterations. More
specifically, the assignment step of each pattern to the
cluster with the nearest center (mean) is computation-
ally the most expensive. This is imposed not only by its
time complexity in relative terms, but also by its basic
operation, which is the calculation of the Euclidean dis-
tance.

The

k

-windows algorithm addresses this problem by
employing a windowing technique, which allows the
consideration of only a limited number of patterns in
each iteration. Moreover, the basic operation in the first
loop, during the assignment of patterns to clusters, is
now only the arithmetic comparison between two num-
bers.

The key idea behind the

k

-windows algorithm is to
use a window in order to determine a cluster. The win-
dow is defined as an orthogonal range in

d

-dimensional

Euclidean space, where

d

 is the number of numerical
attributes. Therefore, each window is a

d-range

 and has
a fixed size. Every pattern that lies within a window is
considered to belong to the corresponding cluster. Each
window is iteratively moved in the Euclidean space by
centering itself on the mean of the patterns it includes.
This takes place until any further movement does not
result in any increase in the number of patterns that lie
within it (see solid line squares in Fig. 1). After that
step, we are able to determine the means of clusters as
the means of the points within the corresponding win-
dows. However, since only a limited number of patterns
is considered at each movement, the quality of a parti-
tion may not be optimal. Thus, the quality of a partition
is calculated in a second phase. At first, windows are
enlarged in order to contain as many patterns from the
corresponding cluster as possible (see dotted-line
squares in Fig. 1). The quality of a partition is deter-
mined by the number of patterns contained in any win-
dow, with respect to all the patterns.

The

k

-windows clustering algorithm operates as fol-
lows.

Algorithm k-windows

.

input

k

,

a

,

v

initialize

k

 means

i

m

1

, …,

i

mk

 along with their

k

d

-ranges

w

m

1

, …,

w

mk

 each of area

a

repeat
for each

 input pattern

i

l

, 1

≤

l

≤

n

do
assign

i

l

 to

w

j

, so that

i

l

 lies within

w

j

for each

d

-range

w

j

do

calculate

 its mean

i

mj

 =

and recalculate

d

-ranges

until

 no pattern has changed

d

-ranges

enlarge

d

-ranges until no significant change exists in
their initial mean

compute

 the ratio

r

 =

if

r

 <

v

then

 re-execute the algorithm

1
w j

-------- ilil w j∈∑

1
n
--- il w j∈

j 1=
k∑

Fig. 1.

 Movements and enlargements of a window.

146

PATTERN RECOGNITION AND IMAGE ANALYSIS

 Vol. 16 No. 2 2006

BOUTSINAS et al.

At first, k means are selected (possibly in a random
fashion). Initial d-ranges (windows) have as centers
these initial means and each one is of area a. Then the
mean of the patterns that lie within each range is calcu-
lated. Each such mean defines a new d-range, which is
considered a movement of the previous d-range. The
last two steps are executed repeatedly until there is no
d-range that includes a significant increment of patterns
after a movement.

In the second phase, the quality of the partition is
calculated. At first, the d-ranges are enlarged in order to
include as many patterns as possible from the cluster.
Then the relative frequency of patterns assigned to a
d-range in the whole set of patterns is calculated. If the
relative frequency is small, then, possibly, there may be
a missing cluster (or clusters). In this case, the whole
process is repeated.

The computational complexity of the k-windows
algorithm depends on the complexity of the step that
determines the patterns that lie within a d-range. This is
the orthogonal range search problem, formally stated
as:

• Input:

(a) V = {p1, …, pn} is a set of n points in �
d
, the

d-dimensional Euclidean space with coordinate axes
(Ox1, …, Oxd);

(b) a query d-range � = [a1, b1] × [a2, b2] × … × [ad,
bd] is specified by two points (a1, a2, …, ad) and
(b1, b2, …, bd), with aj ≤ bj .

• Output:

report all points of V that lie within the d-range �.

This problem has been addressed by various compu-
tational geometry techniques [4, 9, 15, 23, 34]. The
common base of these techniques is the construction of
a data structure storing the patterns at the preprocessing
stage. Traversing this data structure can provide fast
answers to range queries. In detail, for applications of
very high dimensionality, data structures like the multi-
dimensional binary tree (MBT) [34] and Bentley and
Maurer [9] seem more suitable. On the other hand, for
low-dimensional data with a large number of points, the
approach of Alevizos [4] appears more attractive. In the
context of the k-windows algorithm, two such
approaches, namely the MBT and the range tree [34],
were compared in [5].

The time complexity of k-means amounts to
O(ndkt), where t represents the performed iterations.
Comparing this with the time complexity for the k-win-
dows algorithm, using a range tree [34] as a data struc-

ture, it is reduced to O , where q

and r stand for the number of movement and enlarge-
ment operations, respectively. The product qr is empir-
ically shown to be proportional to t [47].

dkqr
nlog

d 2–

d
------------------ s+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞

3. THE z-WINDOWS ALGORITHM

The key idea is to apply the k-windows algorithm
using a sufficiently large number of initial windows.
The windowing technique of the k-windows algorithm
allows for a large number of initial windows to be
examined, without any significant overhead in time
complexity. Then, any two overlapping windows are
merged. The remaining windows, after the quality of
the partition criterion is met, define the final set of clus-
ters.

At first, the initial windows are determined using the
range tree (see below Step 2 of the z-windows algo-
rithm). Internal nodes of the same level in the range tree
can be used as representatives of different subsets of
patterns. We use those nodes as the centers of the initial
windows. We have tried various heuristic initialization
procedures, which are based on the range tree, in order
to choose the initial windows. The two most effective
are discussed in the next section.

The initial windows cover an initial area a (Step 3)
that depends on the density of the data set. Similarly to
k-windows, we define across each direction i,

Intuitively, we try to fill the mean space between two
patterns with nonoverlapping windows (thus, we scale
by 0.5).

Algorithm z-windows.
1. input a, u, the, thm, thc, thv
2. z=DetermineInitialWindows()
3. initialize z d-ranges wm1, …, wmz each of area a along
with their means im1, …, imz

4. for each input pattern il, 1 ≤ l ≤ n, do
assign il to wj , so that il lies within wj

repeat
5. for each d-range wj do

calculate its mean imj =

and recalculate d-ranges
6. for each d-range wj do

repeat
for each dimension di do
repeat

enlarge wj across di for the%
until increase in number of patterns across di

is less than thc%
until increase in number of patterns is less
than thc% across every di

until no significant change (<thv) of the means of d-
ranges takes place
7. for each d-range wj not marked do

ai
mean distance among patterns in i()

number of windows()
--- 0.5.×=

1
w j

-------- ilil w j∈∑

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

ESTIMATING THE NUMBER OF CLUSTERS USING A WINDOWING TECHNIQUE 147

mark wj with label lj

if ∃wi ≠ wj that overlaps with wj

then mark wi with label lj

8. compute the ratio r =

9. if r < u then re-execute the algorithm

10. for each input pattern il , 1 ≤ l ≤ n, do

assign il to wj with nearest mean imj ,

such as ||il – imj ||2 ≤ ||il – imu ||2, 1 ≤ j, u

11. output clusters , , … such as = {i |i ∈ wj

with label li}

Then, iteratively, each window is moved in the
Euclidean space by centering itself on the mean of the
patterns included (Steps 4 and 5) until no further move-
ment results in an increase in the number of patterns
that lie within it. This criterion is determined by a vari-
ability threshold thv that defines the least change in the
center of a window that can be considered as a legiti-
mate movement.

Then, within the loop, the enlargement phase takes
place. We enlarge windows in order to contain as many
patterns from the corresponding cluster as possible
(Step 6). The enlargement is a gradual process, where
every window is gradually enlarged, by the percent
across every coordinate. the is an enlargement thresh-
old, which is set by the user (Step 1). The enlargement
phase continues until any further enlargement does not
increase the number of patterns that lie within a win-
dow. This criterion is determined by a coverage thresh-
old, thc, that is set by the user (Step 1). The coverage
threshold, thc, defines the least increase (expressed as a
ratio) in the number of patterns of a window that can be
considered significant.

Movement and enlargement phases are executed,
one after the other, iteratively until no significant
change to the means of d-ranges, with respect to their
previous state, takes place, according to the variability
threshold thv mentioned above.

After moving and enlarging windows, a search for
overlapping windows is performed (Step 7). Every pair
of overlapping windows is substituted by one of them.
A straightforward criterion to identify windows to be
merged is whether they simply overlap. Alternatively,
we tested various other heuristics. The most efficient, as
is shown by the experimental results, is to grade overlap
according to the number of patterns that lie in the inter-
section. Specifically, the merge operation can be guided
by a merge threshold, thm, which can be set by the user
(Step 1), so that, if

1
n
--- il w j∈

j 1=
z∑

cl1
cl2

cli

1
2

il wi il∧ w j∈ ∈
wi

--
il wi il∧ w j∈ ∈

wi

--+⎝ ⎠
⎛ ⎞ thm,>

then wj and wi must be merged. Intuitively, merging is
guided by how much one window is embodied in
another.

Additionally, various other heuristics can be used in
the merging process, as far as treating the overlapping
windows is concerned. We tested several such heuris-
tics. For instance, merging the two overlapping win-
dows to form a larger one leads to a small number of
very large clusters. Alternatively, the trivial heuristic to
delete one of the two overlapping windows is more
effective compared to the previous one. The proposed
heuristic is a combination of the above: both windows
are retained, but they are considered to belong to the
same cluster, and, hence, they are assigned the same
label.

The last phase concerns examining the quality of the
partition. As in the case of k-windows, the quality of a
partition is determined by the number of patterns con-
tained in each window, with respect to all patterns
(Steps 8 and 9). If the desired quality, set by the user
through the parameter u, is not achieved, the whole
algorithm is re-executed. We are currently investigating
various approaches that can be used to guide such re-
executions. For instance, a new re-execution can be
started with the same initial means but with d-ranges of
a larger area a' > a. Another approach is to start with
different initial means located at a maximum distance
from the previous ones.

However, as the number of initial window grows,
the possibility that there would not be any missing clus-
ter decreases. In all of the tests we performed, there was
no need for re-executing the algorithm. In conclusion,
the value of u, according to our experience, does not
play any role, and we use it only for the sake of com-
pleteness.

Finally, we define the output clusters. First, each
input pattern is assigned to a group determined by the
window with the nearest mean to the pattern (Step 10).
Then, the algorithm outputs the final clusters that con-
sist of patterns that lie within windows with the same
labels (Step 11). After determining the clusters, we can
easily detect clusters of noise patterns, since the typical
density of patterns inside the clusters must be consider-
ably higher than that outside the clusters. The same
property is also used by the DBSCAN algorithm.

The z-windows algorithm is very fast compared to
other related algorithms, since it achieves sublinear
time complexity with respect to the total number of pat-
terns. The assignment of patterns to a d-range, using a
d-dimensional range tree, needs O(s + logd – 2n) time,
where s is the number of patterns that lie within the
d-range. Notice that the area of d-ranges is small
enough, so that s � n. Therefore, the first loop in Step 4,
where the patterns are assigned to d-ranges, has time
complexity O(z(s + logd – 2n)). The second loop in Step 5,
where the means of d-ranges are calculated, needs
O(sdz). The third loop in Step 6, where, during the
enlargement of d-ranges, assignments of patterns to a

148

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

BOUTSINAS et al.

d-range take place, has time complexity O(z(s + logd – 2n)).
Finally, the quality function is also calculated in O(sdz).
Thus, the proposed algorithm has time complexity

O , where q is the number of

movements and r is the number of repetitions caused by
missing clusters (Step 9). Notice that, due to deletions
of d-ranges in Step 7, it gradually decreases. Finally,
the basic operation regarding the time complexity of the
z-windows algorithm is the arithmetic comparison
between two numbers without any distance computa-
tion, which is cheap in computational terms.

4. EMPIRICAL TESTS

From a theoretical standpoint, the proposed z-win-
dows algorithm has a lower time complexity with
respect to other clustering algorithms. Moreover, it
achieves high-quality clustering results. Since we could
not compare our method to the great number of k-
means variations and centroid/medoid based methods,
due to space limitations, we chose to simply resort to
visual inspection. We applied the z-windows algorithm

dzqr
nlog

d 2–

d
------------------ s+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞

to various two-dimensional synthetic sample databases
that have already been used as test data sets to evaluate
BIRCH, CHAMELEON, CLARANS, CURE, and
DBSCAN (e.g., in [22, 27, 39]). We have also applied
the z-windows algorithm to high-dimensional data-
bases.

To evaluate the z-windows algorithm, we imple-
mented a system in the C++ language under the Linux
operating system with the “gcc ver. 3.3.2" compiler.
Using this system, we applied z-windows to eight two-
dimensional synthetic sample databases and six high-
dimensional databases. The sample databases (DSet1–
8) are depicted in Fig. 2 and include clusters with both
normal and irregular shape. We also applied k-means
for different values of k to those datasets. The DSet9–
12 are high-dimensional databases (5D, 12D, 20D, and
50D, respectively) which are generated as mixtures of
Gaussian densities by using a multidimensional Gauss-
ian random number generator which was built using the
"rnmvn” routine from the IMSL library of Fortran90.

We also applied the cluster algorithm [11] to DSet9–
12 datasets. The high-dimensional databases, DSet13–
14, represent two images that are stored and displayed

Dset1 Dset4

Dset7

Dset5

Dset2

Dset3

Dset6

Dset8

Fig. 2. The eight synthetic sample databases.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

ESTIMATING THE NUMBER OF CLUSTERS USING A WINDOWING TECHNIQUE 149

in the RGB space. In both images, the color of each
pixel follows red/green/blue (RGB) color specification
(three 0 to 255 ASCII numbers indicating red, green,
and blue). Thus, each pixel on the grid is represented by
a three-dimensional vector, corresponding to its RGB
values. The first one is a color retinal image that was
obtained using a retinal camera with a field of view of
45 and a 760 × 570 resolution in 24-bit RGB. Such ret-
inal images can be used in detecting retinal exudates.
Retinal exudates are typically manifested as spatially
random yellow/white patches of varying sizes and
shapes, and they are a characteristic feature of retinal
diseases such as diabetic maculopathy [32]. The second
image, with a 255 × 192 resolution, is a test image that
is used for color image segmentation. Color image seg-
mentation can be seen as an example of feature space
analysis, which is a widely used tool for solving low-
level image understanding tasks [16]. Given an image,
feature vectors are extracted from local neighborhoods
and mapped into the space spanned by their compo-
nents. Significant features in the image then correspond
to high-density regions in this space. Feature space
analysis is the procedure of recovering the centers of
the high-density regions, i.e., the representations of the
significant image features. Color image segmentation,

that is partitioning the image into homogeneous
regions, is a challenging task [16].

Clusters discovered by z-windows in the synthetic
two-dimensional sample databases are shown in Figs. 3
and 4. Note that z-windows achieve high-quality clus-
tering results even in cases where the results of other
clustering algorithms vary quite dramatically. For
instance, some algorithms are unsuitable for nonspher-
ical or nonconvex clusters (e.g., BIRCH and CLAR-
ANS). Additionally, if there are large differences in the
sizes of clusters (e.g., in DSet3), partitional clustering
algorithms based on the square-error measure may split
large clusters to minimize it. Also, if the clusters are
close to one another (e.g., in DSet4 or DSet5), agglom-
erative hierarchical clustering algorithms may merge
portions belonging to neighboring clusters. Finally, if
there is a dense string of points connecting two clusters
(e.g., in DSet6), both single-link hierarchical clustering
algorithms and density-based clustering algorithms
(e.g., DBSCAN) may merge the two clusters.

It is obvious from Figs. 3 and 4 that z-windows
copes with all those cases.

Clusters discovered by k-means in the DSet1 and
DSet8 synthetic two-dimensional sample databases are
shown in Fig. 5, for values of k found by applying

Fig. 3. Clusters discovered by z-windows algorithm from two-dimensional sample databases.

150

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

BOUTSINAS et al.

z-windows on the same databases. Notice that some
self-organizing algorithms have the same difficulty
with k-means in datasets with a wide spread distribu-
tion. They seem to have become stuck at a minimum
that is closer to the mass center [30].

Clusters discovered by k-means and z-windows are
taken from our implementation of the algorithms.
Notice that, as far as the k-means algorithm is con-
cerned, we used a primitive initialization method that

consists in pre-executing k-means in a sample of the
data in order to refine the initial points. If this primitive
initialization method was not used, the partition accu-
racy of the k-means algorithm would be worse.

Empirical tests aim also at examining the sensitivity
of z-windows to some of its critical parameters. There
are six user-defined parameters (a, u, the, thm, thc, and
thv). If clusters in the dataset are convex, none of them
seems to contribute to the quality of the clustering.

Fig. 4. Clusters discovered by z-windows algorithm from two-dimensional sample databases.

Dset1

Dset8

Fig. 5. Clusters discovered by k-means algorithm from datasets DSet1 and DSet8.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

ESTIMATING THE NUMBER OF CLUSTERS USING A WINDOWING TECHNIQUE 151

However, even when there exist clusters with irregular
shape:

(a) initial area a (Step 1) is automatically calculated
across each dimension i as ai = (mean distance among
patterns in i)/(number of windows) × 0.5;

(b) in all the tests we made, the algorithm was never
re-executed. Thus, u is needed only to exceptional and
not practical cases;

(c) variability (thv), coverage (thc), and enlargement
(the) thresholds do not seem to significantly contribute
to the quality of the clustering. In all the tests presented
in the paper, they were set to a fixed value. Of course, if
they were set to large values, e.g., 10, then the quality
of the clustering would be different. Table 1 shows the
range of values of these thresholds that lead to results
identical to those in Fig. 3 for data set DSet2;

(d) the number of identified clusters depends only
on the merge threshold (thm) that actually determines
the clarity of the clustering. We have investigated the
effect of this parameter on the quality of the clustering,
applying the proposed z-windows algorithm to the
same test database with the merge threshold set to dif-
ferent values. In Fig. 6, the number of discovered clus-
ters is depicted as a function of the merge threshold for
the dataset DSet2. It is obvious that the merge threshold
determines the number of discovered clusters.

We have also compared the z-windows algorithm to
algorithms that can automatically determine the num-
ber of clusters in the special case of a mixture of Gaus-
sian densities. The characteristics of DSet9–12 high-
dimensional databases are shown in Table 1. Notice that
the noise was generated using a covariance matrix with
large values. The projection of each dataset in two
dimensions looks like what is shown in Fig. 7. There
are four clusters in every high-dimensional database,
which have been discovered by both z-windows and
cluster algorithms. However, the cluster algorithm
requires the “diag” parameter to be properly set in order
to discover those clusters. Moreover, in any case, a fifth
cluster was discovered by the cluster algorithm due to
the presence of noise patterns.

Finally, clusters discovered by z-windows from
DSet13–14 are shown in Figs. 8 and 9. Each pixel was
colored exactly as the mean of the cluster containing
the pixel. The means of the clusters were randomly col-
ored. Notice that, although there are 150 different
three-dimensional vectors in the first image and 256 in
the second one, only five clusters were discovered in

Table 1. Range of parameter values for identical results for
data set DSet2

Threshold From To

Variability, thv 0.2 1.0

Coverage, thc 0.1 0.8

Enlargement, the 0.0 1.0

10

0 0.2

Number of clusters

15
20

30

40
45
50

5

25

35

0.4 0.6 0.8 1.0

Fig. 6. Number of discovered clusters in DSet2 as a function
of the merge threshold.

Fig. 7. The projection of DSet9–12 datasets in two dimen-
sions.

Table 2. The DSet9–12 high-dimensional databases

Dimensions Size Number
of noise patterns

DSet9 5 50000 5000

DSet10 12 2600 900

DSet11 20 2600 900

DSet12 50 2600 900

152

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

BOUTSINAS et al.

the first case and twenty-five clusters in the second
case. In the first image, candidate retinal exudates are
shown in white. In the second image, there is a very
high degree of correspondence between the obtained
image and the reference image.

We have also investigated the effect of the number
of initial windows. We tested various initialization pro-
cesses. One such process, for instance, is based on tra-
versing the range tree. It starts from the first level and
iteratively assigns a window to each different node of
each level. The initialization process ends if the number
of the windows assigned to a specific level is the same
as the number of the windows assigned to the previous
level. The most efficient initialization process we tested
assigns a window for each node of the middle interior
level of the range tree. Notice that all the tests presented
so far were made adopting the latter initialization pro-
cess.

It is obvious that a greater number of initial win-
dows considerably improves the quality of the cluster-
ing at the expense of a worse time performance. Figure
10 shows the time performance as a function of the
number of initial windows for data set DSet2.

As a conclusion, from all of the tests we performed,
it seems that both the merge threshold and the number
of initial windows are the critical factors to the quality
of the clustering.

5. CONCLUSIONS AND FUTURE WORK

The proposed z-windows algorithm is an iterative
clustering technique that tackles the problem of deter-
mining how many clusters are present in the results of
a given clustering study. The z-windows algorithm is
based on the k-windows clustering algorithm, which,
by employing a windowing technique, reduces time
complexity of the k-means algorithm. The key idea is to
use a sufficiently large number of initial windows,
which are properly merged during the algorithm.

The k-windows algorithm has already been
extended to be applicable to categorical data [46].
Moreover, parallel and distributed versions of the
k-windows algorithm have been presented [6, 43, 44].
A simple idea is to assign a different processor for each
window. Notice that, under such an assignment
scheme, k-windows can efficiently be parallelized, in
contrast to k-means that would require a large commu-
nication overhead. This is because a processor dedi-
cated to a cluster in k-means must be synchronized with
all the others before the assignment of a pattern. There
is no such need in k-windows, where the decision of
assigning a pattern to a d-range is taken by each proces-
sor independently. Since the d-ranges are enlarged in a

Fig. 8. Segmented image by z-windows algorithm.

Fig. 9. Colored image by z-windows algorithm.

20

0 200

Time in seconds

Number of windows

40

60

80

100

120

140

400 600 800 1000 1200

Fig. 10. Performance as a function of the number of initial
windows for the data set DSet2.

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

ESTIMATING THE NUMBER OF CLUSTERS USING A WINDOWING TECHNIQUE 153

parallel setting, there may be overlaps between them
which can be treated by the merging process described
above. Finally, the algorithm has been extended [45] to
be applicable in databases that undergo update opera-
tions such us deletions and insertions. All the above
extensions of the k-windows algorithm could also be
applied to the proposed z-windows algorithm.

Moreover, a lot of heuristics can be used to improve
the z-windows algorithm. However, the version pro-
posed in this paper is effective in most cases. For
instance, we are investigating the combination of the z-
windows algorithm with collaborative filtering. If clus-
ter identification is based on windows and on previ-
ously known and recognized categories, e.g., using cat-
egory-based filtering [42], the estimate of the number
of clusters may be improved.

REFERENCES
1. H. Akaike, “A New Look at the Statistical Model Identi-

fication,” IEEE Trans. Automat. Contr. AC-19, 1974,
pp. 716–723.

2. D. Alahakoon, S. K. Halgamuge, and B. Srinivasan,
“Dynamic Self-Organizing Maps with Controlled
Growth for Knowledge Discovery,” IEEE Trans. Neural
Networks 11 (3), 601–614 (2000).

3. M. S. Aldenderfer and R. K. Blashfield, “Cluster Analy-
sis,” in Ser. Quantitative Applications in the Social Sci-
ences (SAGE Publications, London, 1984).

4. P. Alevizos, “An Algorithm for Orthogonal Range Search
in d ≥ 3 Dimensions,” Proc. of the 14th European Workshop
on Computational Geometry, Barcelona, 1998.

5. P. Alevizos, B. Boutsinas, D. K. Tasoulis, and M. N. Vra-
hatis, “Improving the Orthogonal Range Search k-Win-
dows Clustering Algorithm,” Proc. of the 14th IEEE Int.
Conf. on Tools with Artificial Intelligence, Washing-
ton, D.C., 2002, pp. 239–245.

6. P. Alevizos, D. K. Tasoulis, and M. N. Vrahatis, “Paral-
lelizing the Unsupervised k-Windows Clustering Algo-
rithm,” Lecture Notes Comp. Sci. 3019, 225–232 (2004).

7. M. Anderberg, Cluster Analysis for Applications (Aca-
demic Press, New York, 1973).

8. G. H. Ball and D. J. Hall, “A Clustering Technique for
Summarizing Multivariate Data,” Behav. Sci. 12, 153–
155 (1967).

9. J. L. Bentley and H. A. Maurer, “Efficient Worst-Case
Data Structures for Range Searching,” Acta Inform. 13,
1551–1568 (1980).

10. J. Blackmore and R. Miikkulainen, “Visualizing High-
Dimensional Structure with the Incremental Grid Grow-
ing Neural Network,” Proc. of the 12th Int. Conf. on
Machine Learning, 1995, pp. 153–155.

11. C. A. Bouman and M. Shapiro, “A Multiscale Random
Field Model for Bayesian Image Segmentation,” IEEE
Trans. Image Processing 3 (2), 162–177 (1994).

12. B. Boutsinas and T. Gnardellis, “On Distributing the
Clustering Process,” Pattern Recognit. Lett. 23 (8), 999–
1008 (2002).

13. G. A. Carpenter and S. Grossberg, “A Massively Parallel
Architecture for a Self-Organizing Neural Pattern Rec-

ognition Machine,” Comp. Vis. Graph. Image Processing
37, 54–115 (1987).

14. G. A. Carpenter and S. Grossberg, “A ART-2: Self-Organi-
zation of Stable Category Recognition Codes for Analog
Input Patterns,” Appl. Opt. 26 (23), 4919–4930 (1987).

15. B. Chazelle, “Filtering Search: A New Approach to
Query-Answering,” SIAM J. Comput. 15 (3), 703–724
(1986).

16. D. Comaniciu and P. Meer, “Robust Analysis of Feature
Spaces: Color Image Segmentation,” IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR’97), San
Juan, Puerto Rico, 1997, pp. 0–755.

17. R. C. Dubes and A. K. Jain, “Clustering Methodologies
in Exploratory Data Analysis,” Adv. Comput. 19, 113–
228 (1980).

18. M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise,” Proc. of 2nd Int. Conf. on Knowl-
edge Discovery and Data Mining, 1996, pp. 226–231.

19. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth,
Advances in Knowledge Discovery and Data Mining
(MIT Press, 1996).

20. B. Fritzke, “Growing Cell Structure: A Self-Organizing
Network for Supervised and Unsupervised Learning,”
Neural Networks 7 (9), 1441–1460 (1994).

21. A. Gersho and R. M. Gray, Vector Quantization and Sig-
nal Compression (Kluwer Academic Publishers, Boston,
MA, 1992).

22. S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient
Algorithm for Clustering Large Databases,” Proc. of
ACM-SIGMOD 1998 Int. Conf. on Management of Data,
Seattle, 1998, pp. 73–84.

23. B. Chazelle and L. J. Guibas, “Fractional Cascading:
II. Applications,” Algorithmica 1, 163–191 (1986).

24. Z. Huang, “Extensions to the k-Means Algorithm for
Clustering Large Data Sets with Categorical Values,”
Data Mining Knowledge Discovery 2, 283–304 (1998).

25. A. K. Jain and R. C. Dubes, Algorithms for Clustering
Data (Prentice-Hall, Englewood Cliffs, NJ, 1988).

26. S. Johnson, “Hierarchical Clustering Schemes,” Phy-
chometrika (1967), pp. 241–254.

27. G. Karyapis, E. H. Han, and V. Kumar, “CHAMELEON:
A Hierarchical Clustering Algorithm Using Dynamic
Modeling,” IEEE Computer Special Issue on Data Anal-
ysis and Mining 32 (8), 68–75 (1999).

28. T. Kohonen, Self-Organizing Map (Springer, Heidel-
berg, 1995).

29. R. Kothari and D. Pitts, “On Finding the Number of
Clusters,” Pattern Recognit. Lett. 20, 405–416 (1999).

30. S. Lin and J. Si, “Weight Value Convergence of the SOM
Algorithm for Discrete Input,” Neural Comput. 10 (4),
807–814 (1998).

31. T. Martinetz, S. Berkovich, and K. Schulten, “Neural-
Gas Network for Vector Quantization and Its Application
to Time-Series Prediction,” IEEE Trans. Neural Net-
works 4 (4), 558–569 (1993).

32. A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham,
“Automatic Recognition of Exudative Maculopathy
Using Fuzzy c-Means Clustering and Neural Networks,”
Proc. Medical Image Understanding and Analysis Con-
ference (BMVA Press, 2001), pp. 49–52.

154

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 16 No. 2 2006

BOUTSINAS et al.

33. D. Pelleg and A. Moore, “X-Means: Extending k-Means
with Efficient Estimation of the Number of Clusters,”
Proc. of the 17th Int. Conf. on Machine Learning, 2000,
pp. 727–734.

34. F. Preparata and M. Shamos, Computational Geometry
(Springer Verlag, 1985).

35. J. B. MacQueen, “Some Methods for Classification and
Analysis of Multivariate Observations,” Proc. of the 5th
Berkeley Symposium on Mathematics Statistics and
Probability, 1967, pp. 281–297.

36. V. Ramasubramanian and K. Paliwal, “Fast k-Dimen-
sional Tree Algorithms for Nearest-Neighbor Search
with Application to Vector Quantization Encoding,”
IEEE Trans. Signal Processing 40 (3), 518–531 (1992).

37. J. Rissanen, “A Universal Prior for Integers and Estima-
tion by Minimum Description Length,” Ann. Stat. 11 (2),
417–431 (1983).

38. E. H. Ruspini, “A New Approach to Clustering,” Inf.
Control 15, 22–32 (1969).

39. J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Density-
Based Clustering in Spatial Databases: The Algorithm
GDBSCAN and Its Applications,” Data Mining Knowl-
edge Discovery 2 (2), 169–194 (1998).

40. J. Si, S. Lin, and M. A. Vuong, “Dynamic Topology Rep-
resenting Networks,” Neural Networks 13, 617–627
(2000).

41. R. Sokal and C. D. Michener, “A Statistical Method for
Evaluating Systematic Relationships,” Univ. Kansas Sci.
Bull. 38, 1409–1438 (1958).

42. M. Sollenborn and P. Funk, “Category-Based Filtering
and User Stereotype Cases to Reduce the Latency Prob-
lem in Recommender Systems,” Proc. of the 6th Europ.
Conf. on Case Based Reasoning, ECCBR2002, Springer
Verlag Lecture Notes Series (2002), pp. 395–405.

43. D. K. Tasoulis, P. Alevizos, B. Boutsinas, and M. N. Vra-
hatis, “Parallel Unsupervised k-Windows: an Efficient
Parallel Clustering Algorithm,” Lecture Notes Comp.
Sci. 2763, 336–344 (2003).

44. D. K. Tasoulis and M. N. Vrahatis, “Unsupervised Distrib-
uted Clustering,” IASTED Int. Conf. on Parallel and Dis-
tributed Computing and Networks, 2004, pp. 347–351.

45. D. K. Tasoulis and M. N. Vrahatis, “Unsupervised Clus-
tering on Dynamic Databases,” Pattern Recognit. Lett.
26, 2116–2127 (2005).

46. D. K. Tasoulis and M. N. Vrahatis, “Generalizing the
k-Windows Clustering Algorithm in Metric Spaces,”
Math. Comput. Modeling (2006) (in press).

47. M. N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pav-
lides, “The New k-Windows Algorithm for Improving
the k-Means Clustering Algorithm,” J. Complexity 18,
375–391 (2002).

48. T. Villmann, R. Der, M. Hermann, and M. Martinetz,
“Topology Preservation in Self-Organizing Feature
Maps: Exact Definition and Measurement,” IEEE Trans.
Neural Networks 8, 256–266 (1997).

49. L. Xu, “Bayesian Ying-Yang Machine, Clustering and
Number of Clusters,” Pattern Recognit. Lett. 18, 1167–
1178 (1997).

50. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An
Efficient Data Clustering Method for Very Large Data-
bases,” Proc. of ACM SIGMOD Int. Conf. on Manage-
ment of Data, 1996, pp. 103–114.

Basilis Boutsinas. Received his
diploma in Computer Engineering and
Informatics in 1991 from the University
of Patras, Greece. He also conducted
studies in Electronics Engineering at the
Technical Education Institute of Piraeus,
Greece, and Pedagogics at the Pedagog-
ical Academy of Lamia, Greece. He
received his PhD on Knowledge Repre-
sentation from the University of Patras
in 1997. He has been an assistant profes-
sor in the Department of Business

Administration at the University of Patras since 2001. His pri-
mary research interests include data mining, business intelli-
gence, knowledge representation techniques, nonmonotonic rea-
soning, and parallel AI.

Dimitris K. Tasoulis received his
diploma in Mathematics from the Uni-
versity of Patras, Greece, in 2000. He
attained his MSc degree in 2004 from
the postgraduate course “Mathematics
of Computers and Decision Making”
from which he was awarded a post-
graduate fellowship. Currently, he is a
PhD candidate in the same course. His
research activities focus on data min-
ing, clustering, neural networks, par-
allel algorithms, and evolutionary

computation. He is coauthor of more than ten publications.

Michael N. Vrahatis is with the
Department of Mathematics at the
University of Patras, Greece. He
received the diploma and PhD degree
in Mathematics from the University of
Patras in 1978 and 1982, respectively.
He was a visiting research fellow at
the Department of Mathematics, Cor-
nell University (1987–1988) and a vis-
iting professor to the INFN (Istituto
Nazionale di Fisica Nucleare), Bolo-
gna, Italy (1992, 1994, and 1998); the
Department of Computer Science,

Katholieke Universiteit Leuven, Belgium (1999); the Depart-
ment of Ocean Engineering, Design Laboratory, MIT, Cam-
bridge, MA, USA (2000); and the Collaborative Research
Center “Computational Intelligence” (SFB 531) at the
Department of Computer Science, University of Dortmund,
Germany (2001). He was a visiting researcher at CERN (Euro-
pean Organization of Nuclear Research), Geneva, Switzerland
(1992) and at INRIA (Institut National de Recherche en Infor-
matique et en Automatique), France (1998, 2003, and 2004). He
is the author of more than 250 publications (more than 110 of
which are published in international journals) in his research
areas, including computational mathematics, optimization, neu-
ral networks, evolutionary algorithms, and artificial intelligence.
His research publications have received more than 600 citations.
He has been a principal investigator of several research grants
from the European Union, the Hellenic Ministry of Education
and Religious Affairs, and the Hellenic Ministry of Industry,
Energy, and Technology. He is among the founders of the “Uni-
versity of Patras Artificial Intelligence Research Center”
(UPAIRC), established in 1997, where currently he serves as
director. He is the founder of the Computational Intelligence
Laboratory (CI Lab), established in 2004 at the Department of
Mathematics of University of Patras, where currently he serves
as director.

