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Abstract. To improve speaker verification performance, we extend the well-
known Probabilistic Neural Networks (PNN) to Locally Recurrent Probabilistic 
Neural Networks (LRPNN). In contrast to PNNs that possess no feedbacks, 
LRPNNs incorporate internal connections to the past outputs of all recurrent 
neurons, which render them sensitive to the context in which events occur. 
Thus, LRPNNs are capable of identifying time and spatial correlations. A fast 
three-step method is proposed for training an LRPNN. The first two steps are 
identical to the training of traditional PNNs, while the third step is based on the 
Differential Evolution optimization method. The performance of the proposed 
LRPNNs is compared with that of the PNNs on the task of text-independent 
speaker verification. 

1   Introduction 

The speaker verification process, based on identity claim and a sample of speaker's 
voice, provides an answer to the unambiguous question: "Is the present speaker the 
one s/he claims to be, or not?" The output of the verification process is a binary deci-
sion "Yes"/"No", depending on the degree of similarity between the speech sample 
and a predefined model for the user, the speaker claims to be. The text-dependent 
speaker verification systems examine the manner in which a specific password or a 
system-prompted sequence is pronounced. In the text-independent scenario, the talker 
is not restricted in any way, and as soon as, the identity claim is provided, s/he is free 
to speak in any manner, without imposing any vocabulary restrictions. In the present 
work, we consider the text-independent case. 

In short, contemporary speaker verification systems are composed of a feature ex-
traction stage, which aims at extracting speaker’s characteristics while evading any 
sources of adverse variability, and a classification stage, that identifies the feature 
vectors with a certain class. Popular classification techniques, such as k-Nearest 
Neighbor (k-NN) [1], Probabilistic Neural Networks (PNN) [2], and Gaussian Mix-
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ture Models (GMM) [3], employed in the text-independent speaker verification task, 
assume context independence among feature vectors extracted from adjacent speech 
frames. It is well known, however, that speech signals contain an abundance of short- 
and long-term correlations, which if identified can be exploited to enhance speaker 
verification performance.  

At present, the most popular speech features, like Linear Predictive Cepstral Coef-
ficients (LPCC) [4], Mel-Frequency Cepstral Coefficients (MFCC) [5], and Perceptual 
Linear Prediction (PLP) coefficients [6], used in speaker recognition tasks, represent 
the static spectrum for a given speech frame. To capture the dynamics of a speech 
signal, in addition to the static parameters the forward differences � and �2 are widely 
used. A more effective approach to exploit inter-frame correlations is to employ a 
classifier sensitive to these correlations. Classifiers of this type include Hidden 
Markov Models (HMM) [7], Time-Delay Neural Networks (TDNN) [8], and Recur-
rent Neural Networks (RNN) [9]. Time-delay neural networks are able to capture the 
inter-frame correlations at the cost of a significant increase of network size and com-
putational requirements, in comparison to their static counterparts. Recurrent neural 
networks are much more efficient, but suffer from stability problems, and their train-
ing is computationally more demanding compared to time-delay neural networks. Here 
we focus on Neural Network based classifiers. 

Following the introduction of the Probabilistic Neural Network by Specht [2], nu-
merous enhancements, extensions, and generalizations of the original model have been 
proposed. These efforts aim at improving either the learning capability [12] [13], or 
the classification accuracy [15] of PNNs; or alternatively, at optimizing network size, 
thereby reducing memory requirements and the resulting complexity of the model, as 
well as achieving lower operational times [17] [18]. A temporal updating technique 
for tracking changes in a sequence of images, based on periodic supervised and unsu-
pervised updates of the PNN, has been also developed [14]. 

In previous work [25], we proposed a locally recurrent global-feedforward PNN-
based classifier, combining the desirable features of both feedforward and recurrent 
neural networks. More specifically, we have extended the original PNN architecture, 
proposed by Specht [2], to Locally Recurrent PNN (LRPNN), in order to capture the 
inter-frame correlations present in a speech signal, without imposing a large computa-
tional burden to train the network. In this contribution, we update the LRPNN archi-
tecture, its training procedure, and provide comprehensive results.  

The locally recurrent global-feedforward architecture was originally proposed by 
Back and Tsoi [10], who considered an extension of the Multilayer Perceptron (MLP) 
neural network to exploit contextual information. In the work of Back and Tsoi, each 
recurrent neuron has connections to his own current and delayed inputs and outputs. 
Our approach is based on the locally recurrent global-feedforward architecture. The 
locally recurrent layer we propose is similar to the IIR synapse [10]. The main differ-
ence is that we consider PNNs instead of MLPs. Furthermore, in the proposed net-
work, the input values of each summation unit are comprised of (a) the current inputs, 
(b) its past outputs, and (c) most importantly, the previous output values of all the 
other neurons in that layer. Broadly speaking, the input signal, acting on a recurrent 
neuron located in the recurrent hidden layer of an LRPNN, is a sum of two differences. 
The first difference is between the weighted probability of the given class and the sum 
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of weighted probabilities computed for all the other classes. The second difference is 
between the weighted past output values of the given unit and the sum of the weighted 
past output values of all the other neurons in this layer. Thus, in the proposed architec-
ture, the probability of belonging to a specific class is combined with the probabilities 
computed for the other classes, and more importantly with the past values of the out-
puts of the summation units for all classes. This incorporation of previous information 
enables the LRPNN network to produce improved confidence levels, and conse-
quently make a more correct final decision. 

In contrast to [14], our approach does not require retraining or adaptation of the 
PNN parameters during the operational phase – ones the parameters are computed, 
they remain unchanged.  

The rest of the paper is organized as follows: In Section 2, we define the architec-
ture of the LRPNN. In Section 3, a fast three-step training method is proposed. In 
Section 4, a comparative evaluation of LRPNN’s performance, with that of PNNs, is 
performed, on the task of text-independent speaker verification. The paper ends with 
concluding remarks. 

2   The LRPNN Architecture 

Although there exist numerous improved versions of the original PNN, which are 
either more economical, or exhibit a significantly superior performance, for simplicity 
of exposition, we adopt the original PNN as a starting point for introducing the 
LRPNN architecture. The enhancement of the PNN architecture we propose can be 
applied to the more advanced PNNs.  

The LRPNN is derived from the PNN by including a hidden layer, which consists 
of summation neurons possessing feedbacks, between the radial basis and competitive 
layers of the original structure. Thus, in the first hidden layer, the LRPNNs, as their 
predecessor – the PNNs, implement the Parzen window estimator by using a mixture 
of Gaussian basis functions (see [2] for details). If an LRPNN for classification in K 
classes is considered, the probability density function fi(xp) of each class ki is defined 
by (1), 

 
where xij is the j-th training vector from class ki, xp is the p-th input vector, d is the 
dimension of the speech feature vectors, and Mi is the number of training patterns in 
class ki. Each training vector xij is assumed a center of a kernel function, and conse-
quently the number of pattern units in the first hidden layer of the neural network is 
given by the sum of the pattern units for all the classes. The variance iσ  acts as a 

smoothing factor, which softens the surface defined by the multiple Gaussian func-
tions. Instead of the simple covariance matrix, iσ I, where I represents the identity 

matrix, the full covariance matrix can be computed using the Expectation Maximiza-
tion algorithm, as proposed in [11] [12]. For simplicity of exposition, we consider 
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here the simple case, where the value of the variance is identical for all pattern units 
belonging to a specific class, or, it can even be the same for all pattern units irrespec-
tive of the class, as it was originally proposed by Specht [2].  

The summation units output yi(xp) of the locally recurrent layer is computed by  

where fi(xp) is the probability density function of each class ki, xp is the input vector, K 
is the number of classes, N is the recurrence depth, ( )i p ty −x  is the normalized past 

output for class ki that has been delayed on t time steps, and ai,j,t and bi,j are weight 
coefficients. The output yi(xp) of each summation unit is subject to a regularization 
transformation: 
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which retains the probabilistic interpretation of the output of the recurrent layer. The 
designation sgm refers to the sigmoid activation function.  
 In general, the recurrent layer can be considered as a form of Infinite Impulse Re-
sponse filter that smoothes the probabilities generated for each class, by incorporating 
information about the probabilities computed for all other classes, and more impor-
tantly, by exploiting one or more past values of the outputs for all classes. 

Finally, in the third hidden layer, the Bayesian decision rule (4) is applied to distin-
guish class ki, to which the input vector xp is categorized:  

( ) argmax{ ( )},  1, 2,...,p i i i p
i
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where hi is a-priori probability of occurrence of a pattern from class ki, and ci is the 
cost function associated with the misclassification of a vector belonging to class ki.  

The conditional probabilityP( | )ik X , that all test vectors of a set X={xp}, where 

p=1,2,…,P belong to class ki, is computed by:  
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In the speaker verification task, the final decision is made with respect to a speaker 
independent threshold. The speaker is rejected as an impostor when the probability (5) 
is below this threshold; otherwise, the speaker’s identity claim is accepted. 

In Fig. 1, the architecture of the LRPNN for the case of two classes (K=2) and re-
currence depth one (N=1) is shown. For visualization purposes the locally recurrent 
layer is magnified. As depicted in Fig. 1, the probability density functions f1 and f2 
computed by the first hidden layer act as inputs for the summation units of the locally 
recurrent layer. Both these inputs, as well as the delayed past outputs 1y  and 2y  of the 

two classes are weighted by the weights bi,j and ai,j, respectively. Finally, the current 
output values 1y  and 2y  are passed as inputs to the competitive layer that decides the 

winning class. 

3   The LRPNN Training 

A three-step training procedure for the LRPNN is proposed. By analogy to the origi-
nal PNN, the first training step creates the actual topology of the network. In the first 
hidden layer, a pattern unit for each training vector is created, by setting its weight 
vector equal to the corresponding training vector. The outputs of the pattern units 
associated with the class ki are then connected to one of the second hidden layer sum-
mation units. The number of summation units is equal to the number of classes K. We 
consider a modification of the PNN, where only the n-best results are summed to-
gether, with n usually ranging between one and six.  

The second training step is the computation of the smoothing parameter iσ  for 

each class. To this end, various approaches [15]-[20] have been proposed. Although 
other methods can be employed, here we will mention only the one proposed by Cain 
[15] due to its simplicity. According to Cain, any iσ  is proportional to the mean value 

Fig. 1. Architecture of the Locally Recurrent Probabilistic Neural Network 
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of the minimum distances among the training vectors in class ki: 

1

1
,

i

i

M

i
i j

d j k
M

σ λ
=

= �             (6) 

where , i
d j k is the smallest Euclidean distance computed between j-th pattern unit of 

class ki and all the other pattern units from the same class, and Mi is the number of 
training patterns in class ki. The constant λ  is usually in the range of 1.1 and 1.4. If 
the smoothing parameter is common for all classes, either it is chosen empirically, or it 
is computed by applying (6) on the entire training data set.  

The third step is the computation of the weights of the locally recurrent layer, using 
the training data exploited at step one. This is equivalent to the minimization of the 
error function (7): 
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where the parameter ci is the relative cost of detection error for the corresponding 
class ki, ( | )iP Miss k  is the post probability of misclassification of the patterns belong-

ing to class ki, and P(ki) is the a-priori probability of occurrence  the patterns of class 
ki in the training data set. The values of ( | )iP Miss k  are obtained in the following way: 

For a given weight vector w={a, b}, the values of iy  are computed, according to (2) 

and (3), and then (4) is applied. Finally, ( | )iP Miss k  is computed as 

( | )=1 P( | )i iP Miss k k− X , where P( | )ik X  is obtained from (5) for the case of the 

training data set.  
The minimization of total error E(w) is achieved by employing the Differential 

Evolution (DE) algorithm introduced by Storn and Price [21]. The DE method ex-
ploits a population of potential solutions to probe the search space. At each iteration, 
called generation g, three steps, called mutation, recombination, and selection are 
performed [21]. First, all weight vectors are randomly initialized. Then at the mutation 

step, new mutant weight vectors 1
i
gv +  are generated by combining weight vectors, 

randomly chosen from the population: 

1 2
1 ( ) ( )i i best i r r

g g g g g gv w w w w wµ µ+ = + − + −       (8) 

where 1r
gw and 2r

gw are two randomly selected vectors, different from i
gw , best

gw is the 

best member of the current generation, and the positive mutation constant µ  controls 
the magnification of the difference between two weight vectors. At the recombination 
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step, each component j=1,2,…,L of these new weight vectors is subjected to a further 
modification. A random number r ∈ [0, 1] is generated, and if r is smaller than prede-

fined crossover constant p, the j-th component of the mutant vector 1
i
gv + becomes j-th 

component of the trial vector. Otherwise, the j-th component is obtained from the 
target vector. Finally, at the selection step, the trial weight vectors obtained at the 
crossover step are accepted for the next generation only if they yield a reduction of the 
value of the error function; otherwise, the previous weights are retained.  

4   Experiments and Results 

Our text-independent speaker verification system WCL-1 [22], a participant in the 
2002 NIST Speaker Recognition Evaluation [23], was used as a platform to compare 
the performance of the LRPNN and the original PNN. In all experiments, the number 
of classes K was fixed (K=2), since in the speaker verification task only two classes 
are considered – one for the enrolled user and one for the collective model of non-
users (impostors). Since the present study aims at comparing the LRPNN architecture 
to the classical PNN, rather than optimizing absolute speaker verification performance, 
the smoothing parameteriσ  was set to the fixed value of 0.35 for both the classes. 

This choice was motivated by our intention to evaluate the performance gain that is 
solely attributed to the ability of the LRPNN architecture to exploit inter-frame corre-
lations. Any difference in the smoothing parameter in the comparative experiments 
might influence the performance of the classifiers, and consequently bias our conclu-
sions. The locally recurrent layer’s weights were computed from a common set of data 
for all enrolled speakers. To speed up the computation process, we retained only 
10000 training vectors – namely, the first 5000 feature vectors for each of the two 
classes.  

Common training and testing protocols were followed in all experiments. Fifty 
male speakers, extracted from the PolyCost v1.0 telephone-speech speaker recognition 
corpus [24], were enrolled as authorized users. The training data, comprised of ten 
utterances, containing both numbers and sentences, obtained from the first session of 
each speaker. In average, about 17 seconds of voiced speech per speaker were avail-
able for training each user model. All the enrolled users' training data were then com-
bined for building a common reference model. Utterances from all the 74 male speak-
ers (50 users + 24 unknown to the system) available in the database were used to per-
form test trials. Each user model was tested by 4 target trials from the second session 
of the corresponding enrolled user, and by 292 trials from both unknown impostors 
and pseudo-impostors. About 1.3 seconds of voiced speech per test utterance were 
available. The actual amount of voiced speech in the particular trials was in the range 
of 0.4 to 2.1 seconds. Impostor trials from opposite sex speakers were not performed. 

In the first speaker verification experiment, the LRPNN in its simplest form, with 
recurrence depth one (N=1), was compared with the original PNN. Fig. 2 presents the 
normalized distribution of the scores for the enrolled users (dashed line) and the im-
postors (solid line). The considerable spread of both users’ and impostors’ scores for 
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the PNN case, shown in Fig. 2 (a), is obvious. In contrast, as Fig. 2 (b) demonstrates, 
the LRPNN classifier produces a smaller deviation from the mean value for both the 
users and the impostors. In 62 % of the cases a zero probability for the impostor trials 
was produced, which is a major improvement compared to the 38 % attained trough 
the traditional PNN. Moreover, the LRPNN exhibited a significant concentration of 
the enrolled users’ scores at the maximum probability point of one (about 60 % of all 
trials), in contrast to the simple PNN for which the user scores were spread out over a 
much wider area in the upper part of the scale. Therefore, not only major concentra-
tion of the score distributions, but also a clearer separation of the two classes, and a 
decrease of the overlapping area were observed.  

Next, we studied the influence of the recurrence depth N over the speaker verifica-
tion performance achieved by the LRPNN architecture. Comparative results that con-
trast the LRPNN and the PNN error rates are presented in Table 1. 

Table 1. The Equal Error Rate for the LRPNN for various recurrence depth values, 
contrasted to the performance of the original PNN 

Architecture Number of weights in 
the recurrent layer 

EER [%] 

Original PNN - 3.50 
LRPNN (N=1) 8 3.24 
LRPNN (N=2) 12 3.03 
LRPNN (N=3) 16 2.50 
LRPNN (N=4) 20 3.50 

 

 As expected, when N increases – the Equal Error Rate (EER) decreases, because a 
larger part of the inter-frame correlation can be identified and subsequently exploited. 
The major increase of the EER, observed for N=4 is mainly due to the insufficient 
amount of training data. The number of weight coefficients in the recurrent layer de-

Fig. 2. Speaker verification score distribution for the: (a) PNN, and (b) LRPNN 

)a )b
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pends in linear manner to N, but for large N larger training datasets are required. 
When data are scarce, the neural network becomes overspecialized on the training set 
and is unable to generalize on unknown data. A second important constraint on the 
recurrence depth is the size of the time window. For large values of N the time win-
dow could spread across two or more phonemes, and even across syllables. In this 
case, the neural network becomes sensitive to the linguistic information carried by the 
training data. This can be very useful in the case of speech recognition or text-
dependent speaker verification, but in the context of text-independence, it decreases 
the speaker verification performance. 

A quantitative assessment of the relative reduction of the error rates demonstrates 
the significant advantage of using the LRPNN architecture. For example, when com-
pared to the original PNN, the LRPNN with recurrence depth N={1, 2, and 3}, gains a 
relative reduction of the error rate by more than 7 %, 13 %, and 28 %, respectively.  

Conclusion 

Introducing the Locally Recurrent Probabilistic Neural Network, we extended the 
original PNN architecture to exploit the inter-frame correlation among the feature 
vectors extracted from successive speech frames. Moreover, a fast three-step training 
method for LRPNNs was proposed. Comparative experimental results for text-
independent speaker verification were presented. They demonstrated the superior 
performance of the LRPNN architecture over the original PNN. A relative reduction 
of the error rate by more than 28 % was observed for recurrence depth N=3. The pro-
posed approach can be employed by the more sophisticated versions of the PNN. 
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