
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
ment of Electri

26500 Rion-Pat

E-mail addr
Neurocomputing 70 (2007) 1424–1438

www.elsevier.com/locate/neucom
Generalized locally recurrent probabilistic neural networks with
application to text-independent speaker verification

Todor D. Gancheva,�, Dimitris K. Tasoulisb, Michael N. Vrahatisb, Nikos D. Fakotakisa

aWire Communications Laboratory, Department of Electrical and Computer Engineering, University of Patras, GR-26500 Rion-Patras, Greece
bComputational Intelligence Laboratory, Department of Mathematics, University of Patras, GR-26500 Rion-Patras, Greece

Received 18 November 2005; received in revised form 17 May 2006; accepted 21 May 2006

Communicated by R. Tadeusiewicz

Available online 10 October 2006
Abstract

An extension of the well-known probabilistic neural network (PNN) to generalized locally recurrent PNN (GLR PNN) is introduced.

The GLR PNN is derived from the original PNN by incorporating a fully connected recurrent layer between the pattern and output

layers. This extension renders GLR PNN sensitive to the context in which events occur, and therefore, capable of identifying temporal

and spatial correlations. In the present work, this capability is exploited to improve the speaker verification performance. A fast three-

step method for training GLR PNNs is proposed. The first two steps are identical to the training of original PNNs, while the third step is

based on the differential evolution (DE) optimization method.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Recurrent neural networks; Hybrid architectures; Speaker verification
1. Introduction

Following the introduction of the probabilistic neural
network (PNN) by Specht [27], numerous enhancements,
extensions, and generalizations of the original model have
been proposed. These efforts aim at improving either the
learning capability [33,3], or the classification accuracy [6]
of PNNs; or alternatively, at optimizing network size,
thereby reducing memory requirements and the resulting
complexity of the model, as well as achieving lower
operational times [29,30]. An architecture, referred to as
a modified PNN (MPNN), was introduced in [35] for
equalization of a non-linear frequency modulated commu-
nication channel. The MPNN, which is closely related to
the PNN, represents a vector-quantized form of the general
regression neural networks (GRNN) [28] of Specht.
Improved versions of the MPNN were employed in
numerous signal processing, pattern recognition [34], and
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2006.05.012

ing author. Wire Communications Laboratory, Depart-

cal and Computer Engineering, University of Patras, GR-

ras, Greece. Tel.: +30 69 38552140; fax: +30 26 10997336.

ess: tganchev@wcl.ee.upatras.gr (T.D. Ganchev).
financial prediction applications [15]. A temporal updating
technique for tracking changes in a sequence of images,
based on periodic supervised and unsupervised updates of
the PNN, has been also developed [32]. A locally recurrent
global-feedforward PNN-based classifier, combining the
desirable features of both feedforward and recurrent neural
networks was introduced in [10]. Specifically, by incorpor-
ating a new hidden layer, comprised of recurrent neurons,
we extended the original PNN architecture to locally
recurrent PNN (LR PNN) [10], in order to capture the
inter-frame correlations present in a speech signal.
Initially, the locally recurrent global-feedforward archi-

tecture was proposed by Back and Tsoi [1], who considered
an extension of the multi-layer perceptron neural network
(MLP NN) to exploit contextual information. In their
work, they introduced the infinite impulse response (IIR)
and finite impulse response (FIR) synapses, able to utilize
time dependencies in the input data. The FIR synapse has
connections to his own, current and delayed, inputs, while
the IIR synapse has also connections to its past outputs.
Ku and Lee [16] proposed diagonal recurrent neural
networks (DRNN) for the task of system identification in
real-time control applications. Their approach is based on

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.05.012
mailto:tganchev@wcl.ee.upatras.gr


ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1425
the assumption that a single feedback from the neuron’s
own output is sufficient. Thus, they simplify the fully
connected neural network to render training easier.
A comprehensive study of several MLP-based locally
recurrent neural networks is available in Campolucci
et al. [5]. The authors of [5] introduced a unifying
framework for the gradient calculation techniques, called
causal recursive back-propagation. All aforementioned
approaches consider gradient based training techniques
for neural networks, which, as it is well-known, require
differentiable transfer functions.

The work presented here draws on the concept of the
locally recurrent global-feedforward architecture, and the
recurrent layer we propose is similar to the IIR synapse
introduced in [1] and the DRNN defined by Ku and Lee
[16]. Our approach differs from the previously mentioned,
primarily, because we consider PNNs instead of MLP NN.
Most importantly, however, in the architecture proposed
here each neuron in the recurrent layer receives as input not
only current and past values of its inputs, but also the N

previous outputs of all neurons in that layer. This can be
considered as an generalization of the locally recurrent
global-feedforward PNN architecture [10] that was ob-
tained by adding time-lagged values of inputs to recurrent
layer linkage of the LR PNN. Thus, in the GLR PNN, the
neurons of the recurrent layer are linked to all current and
L past inputs, and to N past outputs of all neurons from
the same layer—in contrast to the LR PNN where
connections to the past inputs were not implemented.

In comparison to [11], the present contribution updates
the GLR PNN architecture, its training procedure, and
provides comprehensive results. Specifically, now all feed-
backs, which origin from past outputs of neurons belong-
ing to the recurrent layer, embrace the activation functions
of these neurons. The last facilitates the training procedure
of the recurrent layer weights and contributes for an
improved convergence of the training process due to
reduced dynamic range of values that the weight coeffi-
cients take. More importantly however, the aforemen-
tioned modification of the GLR PNN architecture leads
to transformed dynamic range of the weight coefficients
of the recurrent layer feedbacks. The dynamic range
of their values is now comparable to the one of the
weight coefficients of the inputs for that layer. In turn,
the last leads to a lower sensitivity to rounding errors, an
more economical hardware implementation, and most
importantly, to an improved overall robustness of GLR
PNNs.

Besides this improvement, in the present work the GLR
PNN architecture evolves further allowing independence of
the number of past inputs L and past outputs N considered
in the hidden recurrent layer linkage. Thus, the earlier
works [10,11] can be considered as two special cases of the
generalized architecture: for L ¼ 0 and L ¼ N, respec-
tively. The aforementioned generalization of the GLR
PNN architecture adds a new degree of freedom into the
hands of researchers, and therefore contribute to improved
flexibility and applicability to a wider range of classifica-
tion tasks.
Another important development that we bring forward

in the present work, when compared to [11], is the amended
error function, which is object of minimization during the
recurrent layer training. The error function was modified in
a manner to seek for specific predefined balance of training
among the classes, which guarantees a better steering of the
learning rate for each and every class, and a better
customization of the individual classes.
The layout of the present article is described as follows:

The theoretical foundations of the original PNN are briefly
discussed in Section 2. In Section 3, we present the updated
architecture of the GLR PNN, and in Section 4, a
modification of the training method is proposed. A brief
description of the speaker verification (SV) task and the
specific form of the GLR PNN when involved in this task is
presented in Section 5. In addition, Section 5 outlines our
SV system, referred to WCL-1, and discusses some measures
for assessment of the SV performance. Section 6 des-
cribes the PolyCost speaker recognition database. Next, in
Section 7 the experimental setup is discussed and compara-
tive results on the task of text-independent SV are presented.
Specifically, firstly the efficiency of various differential
evolution (DE) operators for training the GLR PNNs
recurrent layer is studied. Then, the ability of the GLR PNN
to exploit correlations in the input data, for several values of
the recurrence depth N, is investigated. A comparative
evaluation of the GLR PNNs performance with that of the
LR PNNs one, and with other locally recurrent structures,
like the DRNNs, IIRs and FIR’s ones, is performed.
Finally, results from a comparative evaluation of the GLR
PNN with respect to the original PNN, as well as to a
Gaussian mixture models (GMMs)—based classifier, are
reported. The article ends with concluding remarks.
2. Theoretical foundations of the PNN

In Fig. 1, the general structure of a PNN for classifica-
tion in K classes, is illustrated. As presented in the figure,
the first layer of the PNN, designated as an input layer,
accepts the input vectors to be classified. The nodes of the
second layer, which is designated as a pattern layer, are
grouped in K groups depending on the class ki they belong.
These nodes, also referred to as pattern units or kernels, are
connected to all inputs of the first layer. Although
numerous probability density function estimators are
possible [27,23,4], here we consider that each and every
pattern unit can be defined as having an activation function
the Gaussian basis function

f ijðx; cij ; sÞ ¼
1

ð2pÞd=2sd
exp �

1

2s2
ðx� cijÞ

T
ðx� cijÞ

� �
,

(1)

where i ¼ 1; . . . ;K ; j ¼ 1; . . . ;Mi, and Mi is the number of
pattern units in a given class ki. Here, s is the standard



ARTICLE IN PRESS

Fig. 1. Structure of the original probabilistic neural network.

Fig. 2. Internal structure of: (a) ith neuron in the pattern layer; (b) a

neuron in the output layer.

T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381426
deviation, also known as spread or smoothing factor. It
regulates the receptive field of the kernel. The input vector
x and the centers cij 2 Rd of the kernel are of dimension-
ality d. Finally, exp stands for the exponential function,
and the superscript T denotes the transpose of the vector.
Obviously, the total number of the second-layer nodes is
given as a sum of the pattern units for all classes:

M ¼
XK

i¼1

Mi. (2)

Next, the weighted outputs of the pattern units from the
second layer that belong to the group ki are connected to
the summation unit of the third layer (designated as
summation layer) corresponding to that specific class ki.
The weights are determined by the decision cost function
and the a priori class distribution. In the general case, the
positive weight coefficients wij for weighting the member
functions of class ki have to satisfy the requirement

XMi

j¼1

wij ¼ 1 for every given class ki; i ¼ 1; . . . ;K. (3)

For a symmetrical cost function of the type ‘‘zero-one’’ (no
loss for correct decision and a unit loss to any error), which
implies minimum classification error rate, and a uniform a
priori distribution, all weights for class ki are equal to
1=Mi. Consequently, each node of the summation layer
estimates the class-conditional probability density function
piðxjkiÞ of each class ki, defined as

piðxjkiÞ ¼
1

ð2pÞd=2sd

1

Mi

XMi

j¼1

exp �
1

2s2
ðx� xijÞ

T
ðx� xijÞ

� �
,

(4)

where xij is the jth training vector from class ki, x is the test
input vector, d is the dimension of the speech feature
vectors, and Mi is the number of training patterns in class
ki. Each training vector xij is assumed a center of a kernel
function. The standard deviation s acts as a smoothing
factor, which softens the surface (4), defined by the
multiple Gaussian functions (1). As obvious from (4), s
has the same value for all the pattern units, and therefore, a
homoscedastic PNN is considered.
The internal structure of the pattern units, (i.e. the

neurons in the pattern layer) is illustrated in Fig. 2(a). As
the figure presents, the ith pattern unit forms a dot product
zi of the input pattern vector x with a weight vector wi

zi ¼ xwi. (5)

Next, a non-linear operation is performed on zi (the
activation function box in Fig. 2(a)) before outputting it to



ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1427
the following summation layer. In fact, the non-linear
operation

gðziÞ ¼ exp
zi � 1

s2

� �
(6)

used here supposes that both the vectors x and wi are
normalized to unit length, and therefore, this is equivalent
to using

exp �
1

2s2
ðwi � xÞTðwi � xÞ

� �
(7)

which is in the same form as Eq. (1). Although, as
originally proposed by Specht [27] alternative estimators
(details available in: [23,4]) can be used instead of the one
in (4), here we only consider estimators of the type specified
by Eq. (4).

Comparing (1) and (4), it can be seen that the output of
the summation unit for class ki is the estimated class-
conditional PDF for that class, when cij ¼ xij. That makes
the training of the pattern layer straightforward, since the
training procedure is reduced just to remembering of the
training set and adjusting s. Having the estimation (4) of
the class-conditional PDF piðxjkiÞ for all classes computed
from the training data, and the a priori class probability
PðkiÞ, which in many applications is known (or otherwise
usually assumed uniform for all classes), the best classifier
which can minimize the defined cost function is given by
the fundamental Bayesian decision rule [20]. Thus, in the
output layer of the PNN, also known as competitive layer,
the Bayesian decision rule

DðxÞ ¼ arg max
i

fPðkiÞpiðxjkiÞg; i ¼ 1; . . . ;K (8)

is applied to distinguish the class ki, to which the input
vector x belongs.

Fig. 2(b) presents the internal structure of a neuron from
the output layer. As the figure illustrates, in a two-class
problem—such as the SV problem—the output units are
two-input neurons, which produce binary outputs. They
have a single variable weight, Ck,

Ck ¼ �
P2ðk2Þc2;k

P1ðk1Þc1;k

M1

M2
, (9)

where P1ðk1Þ and P2ðk2Þ are a priori class probabilities, M1

and M2 are the number of training patterns for class one
and two, respectively, and c1;k and c2;k are the losses in case
of misclassification of input vectors belonging to the
respective class. In fact, the constant Ck represents the
ratio of a priori probabilities, divided by the ratio of
training vectors and multiplied by the ratio of losses. When
the numbers M1 and M2 of the training vectors from the
respective categories are obtained in proportion to their a
priori probabilities, (9) can be rewritten [27], as

Ck ¼ �
c2;k

c1;k
. (10)

Hence, the constant Ck depends only from the significance
of the decision. If there is no particular reason for biasing
the decision, Ck may simplify to �1. Furthermore, since
the class-conditional PDFs for all the K classes were
already computed in (4), beside the decision DðxÞ, the PNN
is able to provide the confidence in its decision that follows
directly from the Bayes’ theorem [2]. Thus, the posterior
probability for each class, provided that the classes are
mutually exclusive and exhaustive, is computed through

PðkijxÞ ¼
PðkiÞpiðxjkiÞPK
j¼1 PðkjÞpjðxjkjÞ

; i ¼ 1; . . . ;K . (11)

At this point, we need to emphasize that according to the
Bayes’ Postulate the a priori class probability PðkiÞ is
assumed equal for all classes, unless there is a compelling
reason to assume otherwise.

3. The generalized locally recurrent PNN architecture

Although there exist numerous improved versions of the
original PNN, which are either more economical, or exhibit
a significantly superior performance, for simplicity of
exposition, we adopt the original PNN as a starting point
for introducing the GLR PNN architecture. The develop-
ment of the PNN architecture that we propose in the
present section does not interfere with the aforementioned
enhancements, and therefore, it can be applied straightfor-
wardly to the more advanced PNNs.
The GLR PNN is derived from the PNN by including a

hidden recurrent layer between the radial basis (4) and
competitive (8) layers. This hidden recurrent layer consists
of fully linked neurons (one per each target class), which in
addition to current inputs and L delayed inputs possess
also feedbacks from N past outputs of all neurons
belonging to that layer, including its own ones.
The simplified structure of the GLR PNN ðL ¼ N ¼ 1Þ

is presented in Fig. 3. As illustrated, the first hidden layer
of the GLR PNN is identical to the one of the PNN.
Specifically, in the first hidden layer, the GLR PNN, as
their predecessor—the PNN, implement the Parzen win-
dow estimator by using a mixture of Gaussian basis
functions. When a GLR PNN for classification in K classes
is considered, the probability density function of each
class ki, which for simplicity we denote here as f iðxpÞ, is
defined by

f iðxpÞ ¼
1

ð2pÞd=2sd

1

Mi

XMi

j¼1

exp �
1

2s2i
ðxp � xijÞ

T
ðxp � xijÞ

� �

(12)

for i ¼ 1; . . . ;K , where xij denotes the jth training vector
from class ki; xp is the pth input vector; d is the dimension
of the speech feature vectors; and Mi is the number of
training patterns in class ki. Each training vector xij is
assumed to be a center of a kernel function, and
consequently the number of pattern units in the first
hidden layer of the neural network is given by the sum (2)
of the pattern units for all classes. As in the original PNN,
the spread si, smooths the surface defined by the multiple



ARTICLE IN PRESS

Fig. 3. Simplified structure of the generalized locally recurrent PNN.

Fig. 4. Linkage of a recurrent neuron in the GLR PNN.

T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381428
Gaussian functions. Instead of the simple covariance
matrix, s2i I , where I represents the identity matrix, the full
covariance matrix can be computed using the Expectation
Maximization algorithm, as proposed in [33,17]. For
simplicity of exposition, we consider here a simple case,
where the value of si is identical for all pattern units from a
specific class, or, it can even be the same for all pattern
units irrespective of the class, as it was originally proposed
by Specht [27].

The class-conditional PDFs (12), computed for all K

classes, act as inputs for the next hidden layer, namely the
fully connected recurrent layer. In fact, along with the
current K values obtained through (12), each recurrent
neuron also receives L� K past values of the PDFs, as well
as N � K past outputs of all recurrent neurons from the
same layer. Fig. 4 illustrates the linkage of a single neuron
belonging to this hidden generalized recurrent layer. As
illustrated, beside the current values of the PDFs from all
classes, f iðxpÞ; i ¼ 1; . . . ;K, this neuron also receives
the past inputs f iðxp�tÞ; t ¼ 1; . . . ;L and feedbacks from
its past outputs yiðxp�tÞ; t ¼ 1; . . . ;N, as well as from
current y0jaiðxpÞ; j ¼ 1; . . . ;K and past yjaiðxp�tÞ; j ¼

1; . . . ;K ; t ¼ 1; . . . ;N outputs from all other neurons
belonging to that layer. Here, the subscript i denotes the
current neuron number, and the subscript p stands for
the serial number of the input vector xp. On its own side,
the current neuron i provides to the other neurons of the
recurrent layer its current yiðxpÞ and past yiðxp�tÞ; t ¼

1; . . . ;N outputs, again with p standing for the specific
input vector.
In Fig. 5, the detailed structure of the recurrent neurons
is illustrated. The inputs f iðxpÞ and f iðxp�tÞ, with i ¼

1; . . . ;K ; and t ¼ 1; . . . ;L denoting the current and past
class conditional PDFs, respectively, are weighted by the
coefficients bi;j;t. All feedbacks yiðxp�tÞ, t ¼ 1; . . . ;N that
originate from the present neuron i, and the links
yjaiðxp�tÞ; j ¼ 1; . . . ;K ; t ¼ 1; . . . ;N coming from the
other neurons jai of the recurrent layer are weighted by
the coefficients ai;j;t; t ¼ 1; . . . ;N and ai;jai;t; j ¼ 1; . . . ;
K ; t ¼ 1; . . . ;N, respectively. The three indexes of the



ARTICLE IN PRESS

Fig. 5. Structure of a neuron from the recurrent layer of the GLR PNN.

T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1429
weights ai;j;t and bi;j;t stand for: (1) i ¼ 1; . . . ;K indicates
current recurrent neuron i and equals to the class index ki;
(2) j ¼ 1; . . . ;K indicates for the class to which the
corresponding input or output belongs; and (3) t ¼

1; . . . ;L shows the time delay of the specific input.
The output yiðxpÞ of each summation unit located in the

locally recurrent layer of the GLR PNN is computed by

yiðxpÞ ¼
XL

t¼0

XK

k¼1

bi;k;tfkðxp�tÞ þ
XN

t¼1

XK

k¼1

ai;k;tykðxp�tÞ,

i ¼ 1; . . . ;K . ð13Þ

Here, xp denotes the input vector; fkðxp�tÞ is the
probability density function of class ki that has been
computed t time steps ago; L is the number of delayed
input values for a given class; K is the number of classes; N

stands for the recurrence depth; ykðxp�tÞ is the normalized
past output of class ki that has been delayed on t time
steps; and finally ai;k;t and bi;k;t represent weight coeffi-
cients.

Next, the output yiðxpÞ of each summation unit located
in the recurrent layer of the GLR PNN is subject to the
regularization transformation

yiðxpÞ ¼
sgmðyiðxpÞÞPK
j¼1 sgmðyjðxpÞÞ

; i ¼ 1; . . . ;K , (14)

imposed to retain an interpretation of the output of the
recurrent layer in terms of probabilities. The designation
sgm refers to the sigmoid activation function.

Consequently, the Bayesian decision rule (8), rewritten
as

DðxpÞ ¼ arg max
i

fhiciyiðxpÞg; i ¼ 1; . . . ;K (15)
is applied to distinguish the class ki, to which the input
vector xp belongs. Here, hi is a priori probability of
occurrence of the patterns of category ki, and ci is the loss
in case of misclassification of a vector belonging to class ki.
Finally, provided that all classes are mutually exclusive and
exhaustive, we can compute the Bayesian confidence for
every decision DðxpÞ by applying the Bayes’ theorem

PðkijxpÞ ¼
hiyiðxpÞPK
j¼1 hjyjðxpÞ

; i ¼ 1; . . . ;K . (16)

The posterior probability PðkijxpÞ for the pth input
vector belonging to class ki is computed by relying on the a
priori probabilities hi and the temporally smoothed
probabilities yiðxpÞ.
When a test trial consists of multiple feature vectors, as

this happens in the SV task, the posterior probability
PðkijXÞ, all vectors of a given test trial X ¼ fxpg, p ¼

1; . . . ;P to belong to class ki, is computed by

PðkijXÞ ¼
NðDðxpÞ ¼ kiÞPK
j¼1 NðDðxpÞ ¼ kjÞ

; i ¼ 1; . . . ;K , (17)

where NðDðxpÞ ¼ kiÞ is the number of vectors xp classified
by the Bayesian decision rule (15) as belonging to class ki.
Since the SV task assumes an exhaustive taxonomy, any of
the inputs xp falls in one of the classes ki. Thus, the equality

P ¼
XK

j¼1

NðDðxpÞ ¼ kjÞ, (18)

where P is the number of test vectors in the given trial X, is
always preserved.
Considering that in many real-world applications,

including the SV problem, computing the probability
PðkijXÞ is not sufficient as a final outcome from the GLR
PNN, since an explicit final (in our case binary) decision
about a given trial X is required, the outcome of (17) is
assessed with respect to a predefined threshold Y

PðkijXÞwY. (19)

Most often, the threshold Y is computed on a data set,
referred to as development data, which is independent from
the training and testing data. A necessary requirement for
obtaining a reasonable estimate of Y is the development
data to be representative, i.e. they have to bear a
resemblance to the real-world data that the GLR PNN
will operate within the corresponding application.

4. The GLR PNN training

A three-step training procedure for the GLR PNN is
proposed. By analogy to the original PNN, the first
training step creates the actual topology of the network.
Specifically, in the first hidden layer, a pattern unit for each
training vector is created by setting its weight vector equal
to the corresponding training vector. The outputs of the
pattern units associated with the class ki are then connected
to the corresponding summation units of the second hidden



ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381430
layer neurons. The number of recurrent neurons in this
second hidden layer is equal to the number of classes K .

The second training step is the computation of the
smoothing parameters fsig for each class. (In the general
case of heteroscedastic PNN [33,17] the covariance matrixP

ki
has to be computed). To this end, various approaches

[6,29,30,19,21,18,12], etc. have been proposed. Although
other methods can be employed, here we mention only the
one proposed by Cain [6] due to its simplicity. According to
this method, any si is proportional to the mean value of the
minimum distances among the training vectors in class ki:

si ¼ l
1

Mi

XMi

j¼1

minfkxi;j � xi;jaik
2
2g, (20)

where xi;j is the jth pattern unit (located in the pattern
layer) for class ki; k � k2 corresponds to the 2-norm on Rd

(reminding that xi;j are the remembered training data, and
therefore, xi;j 2 Rd ); d is the dimensionality of the input
data; the expression min kxi;j � xi;jaik

2
2

� �
represents the

smallest Euclidean distance computed between jth pattern
unit of class ki and all other pattern units from the same
class; and Mi is the number of training patterns in class ki.
The constant l, which controls the degree of overlapping
among the individual Gaussian functions, is usually
selected in the range l 2 ½1:1; 1:4�. If the smoothing
parameter s is common for all classes, either it is chosen
empirically, or it is computed by applying (20) on the entire
training data set, regardless of the class belonging of the
pattern units.

The third training step is the computation of the weights
of the recurrent layer. This step utilizes the probabilities
obtained by passing the training data exploited at step one
through the pattern layer. The optimization of the
recurrent layer weights is equivalent to the minimization
of the composite error function

EðwÞ ¼ EcðwÞ þ GimpEdðwÞ, (21)

where the errors EcðwÞ and Ed ðwÞ are defined as follows:

EcðwÞ ¼
XK

i¼1

ciPðMissjkiÞPðkiÞ, (22)

EdðwÞ ¼
1

KðK � 1Þ

XK

i¼1

XK

j¼1
jai

jciPðMissjkiÞPðkiÞ

� cjPðMissjkjÞPðkjÞj. ð23Þ

While the EcðwÞ renders an account for the level of training
for the entire recurrent layer, EdðwÞ provides for balance
among the training of the individual classes. The gain
factor Gimp allows adjusting the contribution of the EdðwÞ

in the total error EðwÞ; K is the number of classes; ci is the
relative cost of detection error for the corresponding class
ki; PðMissjkiÞ is the post probability of misclassification of
the patterns belonging to class ki; and the PðkiÞ is the a
priori probability of occurrence of the patterns of class ki

in the training data set. The values of PðMissjkiÞ are
obtained in the following way: For a given weight vector
w ¼ fai;k;t; bi;k;tg, the values of yi; i ¼ 1; . . . ;K are com-
puted, according to (13) and (14), and then (15) is applied.
Finally, the post-probability PðMissjkiÞ is computed as

PðMissjkiÞ ¼ 1� PðkijXÞ, (24)

where PðkijXÞ is obtained from (17) for the case of the
training data set.
The minimization of the total error EðwÞ ¼ Eðai;k;t; bi;k;tÞ

is achieved by employing the DE algorithm introduced by
Storn and Price [31]. In brief, the DE method exploits a
population of potential solutions to probe the search space.
At each iteration, called generation g, three steps, called
mutation, recombination, and selection are performed.
According to the DE method, initially all weight vectors
are randomly initialized. Then at the mutation step, new
mutant weight vectors vi

gþ1 are generated by combining
weight vectors, randomly chosen from the population. For
that purpose, one of the variation operators (25)–(30) is
exploited

vi
gþ1 ¼ or1

g þ mðor1
g � or2

g Þ, ð25Þ

vi
gþ1 ¼ obest

g þ mðor1
g � or2

g Þ, ð26Þ

vi
gþ1 ¼ or1

g þ mðor2
g � or3

g Þ, ð27Þ

vi
gþ1 ¼ oi

g þ mðobest
g � oi

gÞ þ mðor1
g � or2

g Þ, ð28Þ

vi
gþ1 ¼ obest

g þ mðor1
g � or2

g Þ þ mðor3
g � or4

g Þ, ð29Þ

vi
gþ1 ¼ or5

g þ mðor1
g � or2

g Þ þ mðor3
g � or4

g Þ, ð30Þ

where or1
g , or2

g , or3
g , or4

g and or5
g are randomly selected

vectors, different from oi
g, o

best
g is the best member of the

current generation, and the positive mutation constant m
controls the magnification of the difference between two
weight vectors. At the recombination step, each component
j ¼ 1; . . . ;R of these new weight vectors is subject to a
further modification. A random number r 2 ½0; 1� is
generated, and if r is smaller than a predefined crossover
constant p, the jth component of the mutant vector vi

gþ1

becomes jth component of the trial vector. Otherwise the
jth component is obtained from the target vector. Finally,
at the selection step, the trial weight vectors obtained at the
crossover step are accepted for the next generation only if
they yield a reduction of the value of the error function;
otherwise the previous weights are retained. The training
process ends when the target error margin is reached, or
after completing a predefined number of iterations.
After the weight coefficients of the recurrent layer are

computed, the GLR PNN is fully trained and ready for
operation.

5. The SV task

The SV process, based on an identity claim and a sample
of speaker’s voice, provides an answer to the unambiguous
question: ‘‘Is the present speaker the one s/he claims to be,
or not?’’ The output of the verification process is a binary
decision ‘‘Yes, s/he is !’’ or ‘‘No, s/he is not !’’. The actual



ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1431
decision depends on the degree of similarity between the
speech sample and a predefined model for the enrolled user,
whose identity the speaker claims. When an enrolled user
claims his own identity, we designate the input utterance as
a target trial. When a non-user addresses a SV system, or
when an enrolled user claims identity belonging to another
user, we denote that utterance as a non-target trial. The
non-target trials are also referred to as impostor trials.

Thus, in the SV problem we have two hypotheses—either
the input speech originates from the same person, whose
identity the speaker claims, or it originates from another
person, which has different identity. In order to test each of
these two hypotheses, we build an individual expert (e.g. a
GLR PNN) for each enrolled user. Each expert incorpo-
rates two models: one build from the voice of the en-
rolled user, and another one representing the rest of the
world. The latter one is also designated as a reference. Since
the reference model has to be sufficiently flat not to
interfere with the models of the individual users, it is build
by exploiting large amounts of speech from multiple
speakers.

With respect to linguistic contents of speech the
speaker recognition process can be text-dependent or
text-independent. The text-dependent SV systems examine
the manner in which a specific password or a system-
prompted sequence is pronounced. In the text-independent
scenario, the talker is not restricted in any way, and as soon
as the identity claim is provided, s/he is free to speak
naturally, without any vocabulary restrictions. Al-
though the GLR PNN is suitable for the text-dependent
scenario, in the present work, we consider the text-
independent one.
Fig. 6. Architecture of the generalized locally recurrent probabilistic neu
5.1. GLR PNNs in the context of the SV task

As it was explained above, in the SV task only two
classes ðK ¼ 2Þ are considered—one for the particular
enrolled user whose identity is claimed, and one for the
reference, which represents the collective model of the non-
users. Therefore, for each enrolled users a GLR PNN
involved in two-class separation problem is considered. For
easiness of illustration, here we discuss the simplest GLR
PNN—with recurrence depth one.
In Fig. 6, the architecture of the GLR PNN for the case

of two classes ðK ¼ 2Þ, one past value of the inputs ðL ¼ 1Þ,
and recurrence depth one ðN ¼ 1Þ is shown. For visualiza-
tion purposes the locally recurrent layer is magnified. As
illustrated, there exist three distinct sections in Fig. 6
corresponding to the three major elements in the GLR
PNN architecture. Starting from the input, all blocks that
precede the recurrent layer, defined by (13) and (14),
represent the computation of the probability density
function (12). Next, the block compet that follows the
recurrent layer stands for the Bayesian decision rule (15).
The probability density functions f1 and f2 and their past

values computed by the first hidden layer act as inputs for
the summation units of the recurrent layer’s neurons. Both
these inputs, as well as the delayed past outputs y1 and y2

of the two classes are weighted by the weights bi;k;t and
ai;k;t, respectively. Finally, the current output values y1 and
y2 are passed as inputs to the competitive layer (15) that
decides the winning class.
Since, in the speaker recognition tasks each test trial

consists of P speech feature vectors, (17) is applied to
accumulate the decisions made in (15). The final decision
ral network. The locally recurrent layer is delineated by dashed line.



ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381432
(19) is made with respect to a speaker-independent
threshold.
5.2. WCL-1: A text-independent SV system

Our text-independent SV system, referred to as WCL-1,
briefly described in the following was used as a platform to
evaluate the performance of the GLR PNN in comparison
to various other classifiers. The WCL-1 system [7], a
participant in the 2002 NIST speaker recognition evalua-
tion [22] has a modular structure with an individual PNN
for each enrolled user. A reference model is employed for
counterbalancing the scores produced by the individual
user models.

The WCL-1 system utilizes a feature vector composed of
31 Mel-frequency cepstral coefficients (MFCC). A com-
prehensive description of the MFCC computation steps is
offered in [8], where various implementation strategies are
evaluated on the SV task. In the baseline system discussed
here, the MFCC FB-32 implementation (details in [8]),
which is profoundly based on the Auditory Toolbox [26] of
M. Slaney, is employed.

Fig. 7 summarizes the speech parameterization steps. In
the present work, we deal with telephone quality speech,
sampled at 8 kHz. Saturation by level is a common
phenomenon for telephone speech signals. In order to
reduce the spectral distortions it causes, a band-pass
filtering of speech is performed as a first step of the feature
extraction process. A fifth-order Butterworth filter with
pass-band from 80 to 3800Hz is used for both training and
testing. Then the speech signal is pre-emphasized by the
filter

HðzÞ ¼ 1� 0:97z�1 (31)

and subsequently, windowed into frames of 40ms dura-
tion, at a frame rate of 100Hz using a Hamming window.
The voiced/unvoiced speech separation is performed by a
modification of the autocorrelation method with clipping
[24]. Only the voiced speech frames are used due to their
relatively better robustness to interference. Next, each
Fig. 7. Diagram of the speech prepro
voiced speech frame is subjected to 1024-point short-time
discrete Fourier transform, and then is passed through a set
of Q equal-area triangular band-pass filter-bank channels

HiðkÞ ¼

0 for kof bi�1
;

2ðk�f bi�1
Þ

ðf bi
�f bi�1

Þðf biþ1
�f bi�1

Þ
for f bi�1

pkpf bi
;

2ðf biþ1
�kÞ

ðf biþ1
�f bi
Þðf biþ1

�f bi�1
Þ

for f bi
pkpf biþ1

;

0 for k4f biþ1
;

8>>>>>>>><
>>>>>>>>:

with i ¼ 1; . . . ;Q, ð32Þ

where i stands for the ith filter; f bi
are the boundary points

that specify the filters; and k corresponds to the kth
coefficient of the 1024-point DFT. The boundary points f bi

are expressed in terms of position in order to conform
with k.
We have accepted an approximation of the Mel-scale,

with 13 linearly spaced filters, lowest central frequency
200Hz, highest 1000Hz and 19 log-spaced with highest
central frequency 3690Hz. Finally, a J dimensional feature
vector Cj is formed, after applying discrete Cosine trans-
form (33) to the log-filter-bank outputs X i

Cj ¼
XQ

i¼1

X i cos jði � 1=2Þ
p
Q

� �
; j ¼ 1; . . . ; J, ð33Þ

X i ¼ log10
XF�1
k¼0

jX ðkÞjHiðkÞ

 !
; i ¼ 1; . . . ;Q. ð34Þ

Here X ðkÞ are the DFT coefficients; Q ¼ 32 is the number
of filters in the filter-bank HiðkÞ; J ¼ 32 is the total number
of cepstral coefficients; and F ¼ 1024 is the size of the
DFT. In the WCL-1 system, we compute all 32 MFCCs,
but the zeroth one is not included into the feature vector.
As it is well-known the zeroth cepstral coefficient is related
to log-energy of the speech frame, and therefore it is much
influenced by the transmission channel and handset type.
Subsequently, the feature vectors computed from the

training data set, for both the user’s and reference models,
are compressed by using the k-means clustering technique
cessing and MFCC computation.



ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1433
[13], and the codebooks produced are further used for
training the PNNs. In this way, the complexity of
individual neural networks is greatly reduced and faster
operation times are achieved. Specifically, in the WCL-1
system, we used a codebook of 128-vectors for the enrolled
users, and a codebook of 256-vectors for the reference
model. The size of the codebooks was chosen as a trade-off
between computational demands and performance. A
comprehensive description of the baseline speaker verifica-
tion system, WCL-1, is available in [7]. A more sophisti-
cated version is presented in [9].

In brief, the WCL-1 system operates as follows:
Depending on the probability density function (4) com-
puted for the user’s and reference models, frame-by-frame
decisions (8) are made for each segment of the speech
signal. In the simplified baseline system employed here,
these decisions are accumulated (17) over the whole test
utterance. The final decision (19) is made with respect to a
speaker independent threshold Y. The speaker is rejected
as an impostor when the probability (17) is below this
threshold; otherwise, the speaker’s identity claim is
accepted.

5.3. SV performance assessment

Two types of errors can occur in the SV process. The first
one, called a false rejection (FR) error, occurs when the
true target speaker is falsely rejected as being an impostor,
and as a result, the system misses accepting an attempt
belonging to the true authorized user. The second type,
called a false acceptance (FA) error, occurs when a try-out
from an impostor is accepted as if it came from the true
authorized user. The latter error is also known as a false

alarm, because a non-target trial is accepted as a target one.
The FR and FA are employed together to characterize the
performance of the SV systems under investigation.

The equal error rate (EER) decision point is where the
FR and the FA error probabilities are equal. When
computing the EER, we assume equal values for the cost
ci (see Eq. (15)) for both the classes. In practice, the final
decision is made at the location, where the distance
between the FR and FA rates has its minimum. The
EER decision point is widely accepted as balanced
performance estimation, but its disadvantage is that the
final decision is made a posteriori.

In the present work, the EER is paired off with the
normalized detection cost CNorm (35), a less intuitive
function which is the official performance measure in the
annual speaker recognition evaluation campaigns, e.g. [22]

CNorm

¼
cFRPðFRjTgtÞPðTgtÞ þ cFAPðFAjNonTgtÞPðNonTgtÞ

minfcFRPðTgtÞ; cFAPðNonTgtÞg
,

ð35Þ

where cFR and cFA are the relative costs for detection errors
FR and FA; PðFRjTgtÞ and PðFAjNonTgtÞ are the
probability of FR of a target and FA of an impostor trail;
and finally, PðTgtÞ and PðNonTgtÞ ¼ 1� PðTgtÞ are the a
priori probabilities of the target and impostor trials,
respectively.
The CNorm function offers multiple decision points,

depending on the choice of the costs cFR and cFA, and
threshold Y. Specifically, the optimal detection cost,
DCFopt, gives impression about the prospective perfor-
mance of a system if the optimum speaker-independent
threshold is applied, and the DCFact presents the actual
performance of a system on a specific task, when a specific
predefined threshold is applied.
Together the EER and DCFopt offer a unique description

of the SV performance convenient for ranking of different
systems, which often exhibit different slope of the detection
error trade-off (DET) curve. While the EER gives intuitive,
balanced, and application-independent assessment of the
potential performance of a system, DCFopt and DCF act are
application-specific due to the detection costs cFR and cFA
[22]. The ratio between these costs can vary from one
application to another in the range of 1:10–10:1, depending on
whether the emphasis is placed on security or comfort of use.
Both EER and DCFopt utilize posteriori-computed

thresholds, which results in an optimistic estimation of
the absolute SV performance. However, since the present
study aims at comparing the performances provided by
various classifiers rather than comparing the absolute SV
performance of different systems, the ordering and relative
differences among the classifiers is of interest.

6. Speaker recognition database

Our experimentations (see Section 7) are based on the
well-known PolyCost speaker recognition corpus [14]. In
the present work, we use version v1.0 with bugs from 1 to 5
fixed.
PolyCost is comprised of real-world telephone quality

speech recordings (English spoken by non-native speakers)
collected across the international land-based telephone
networks of Europe. The speech data are representative for
research related to telephone-driven voice services and
automated call-centers.
The database contains 1285 calls (around 10 sessions per

speaker) recorded by 134 speakers (74 males and 60
females) from 13 different European countries. Each
session comprises: 10 prompts with connected digits
uttered in English, two prompts with sentences uttered in
English, and two prompts in the speaker’s mother tongue
(17 different languages or dialects). One of the prompts in
the speaker’s mother tongue consists of free speech.
A detailed description of the PolyCost speaker recogni-

tion database is available in [14].

7. Experiments and results

The WCL-1 system outlined in Section 5.2 is used as a
platform to compare the performance of various classifiers.



ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381434
Initially, we study several variation operators for training
the GLR PNN and the influence of the recurrence depth N

over the SV performance. Next, a comparison between the
distribution of output scores for the GLR PNN and
original PNN is performed. Subsequently, the performance
of the GLR PNN is contrasted to the one obtained by
substituting the fully connected recurrent layer with several
partially connected architectures, such as the DRNN, IIR
and FIR MLP NN, as well as to the one obtained for the
LR PNN. Finally, a comparison with a GMM-based
classifier with a similar complexity is provided.

7.1. Experimental set-up

As it was discussed in Section 3, the GLR PNN inherits
its pattern layer from the original PNN architecture.
Therefore, for the purpose of fair comparison, we kept
identical settings of the pattern layer in all experiments
with the PNN and GLR PNN. This choice was motivated
by our intention to evaluate the performance gain that is
solely attributed to the ability of the GLR PNN
architecture to exploit temporal correlations among the
successive speech frames. Any difference in the smoothing
parameters fsig during the comparative experiments might
influence the performance of the classifiers, and conse-
quently bias our conclusions. Consequently, the smoothing
parameters fsig were set to the fixed value of 0.35, which
provides a good approximation of the true underlying
distribution of the training data.

In support of our decision to unify the parameters of the
pattern layer are the following reasons: (1) In the present
development the recurrent layer of the GLR PNN is
optimized independently from the other layers (details are
available in Section 4). (2) The various NN structures
(FIR, IIR, DRNN, fully or partially connected recurrent
layers) that are evaluated here share the same input data,
which are formed by the pattern layer of the original PNN.
(3) The present study aims at comparing the GLR PNN
architecture to the classical PNN, rather than optimizing
absolute SV performance.

The pattern layer of the GLR PNN was trained as
described in Section 4, employing the feature vectors
computed in Section 5.2. After that, the class-conditional
probability for each speech frame is computed for the
entire training set, and further serve as training data for the
recurrent layer. When plenty of training data are available
for each enrolled speaker, the recurrent layer’s weights can
be computed in a speaker-dependent manner. Since in the
present experimental setup we deal with small amounts of
training speech, the recurrent layer’s weights were com-
puted from a common data set, obtained through pooling
together the training data of all enrolled speakers. In order
to speed up the computation process, we retained only
25 000 training vectors—namely, 12 500 feature vectors
for each class. Irrelevant outputs of the pattern layer
are automatically discarded to facilitate recurrent layer
training.
Common training and testing protocols were followed in
all experiments. The speech recordings of the PolyCost v1.0
database were separated on non-overlapping training and
testing sets, utilizing different sessions. The training data
comprised of eighth utterances, obtained from the first two
sessions of each speaker. In average, about 11 s of voiced
speech per speaker were detected for creating each speaker
model. The reference model was build from the combined
training data of all enrolled users. In average, about 1.3 s of
voiced speech per test utterance were available. The actual
amount that was detected in the particular trials varied in
the range of 0.4–2.1 s.
In total, there were 54 male and 45 female user models.

Utterances from all the 134 speakers (74 males and 60
females) available in the database were used to perform test
trials. We used 20 target trials per user model, taken from
sessions 6–10 of the corresponding speaker. The number of
non-target trials per model was 219 and 236, for the males
and the females, respectively. The impostor trials for each
model were made by both enrolled users claiming some-
body else’s identity and unknown to the system impostors.
There were 20 males and 15 females which served as
unknown impostors.
Summarily, there were 11 826 and 10 620 impostor trials,

and 1080 and 900 target ones in the male and female
experiments, respectively. The genders were evaluated
separately and no cross-gender trials were performed.
In all experiments, the SV performance is reported in

terms of both equal error rate and optimal detection cost
DCFopt.

7.2. Study of six variation operators for training the

recurrent layer weights

Firstly, we tested the effectiveness of the variation
operators (25)–(30), on the performance of the GLR
PNN. Table 1 presents the EER and DCFopt obtained
for training the recurrent layer by each of the aforemen-
tioned variation operators, when a recurrence depth of one
ðN ¼ 1Þ and one present and one delayed values of the
recurrent layer inputs ðL ¼ 1Þ are considered. As Table 1
presents, for the both male and female experiments the
lowest EER and DCFopt is achieved for operator (25),
followed by (30) and (27), and the highest for (28). The
operator (26) performed almost as good as (27). Although
our past experience suggested operator (28) as a candidate
for the best performance, due to its good performance on
numerous optimization tasks, it did not perform well here.
For the operator (28), we have observed an almost perfect
separation of the two classes for the training data, but also
the highest error rate for the test data. The last observation
suggests that when a relatively small amount of training
data is available, preventive measures are required to
assure that the recurrent layer weights do not become
overspecialized on the training data, and thus unable to
generalize. The operators (26) and (29) similarly to (28), are
based on exploiting the best member obest

g of each



ARTICLE IN PRESS

Table 1

The EER and DCFopt depending on the variation operator

Operator Eq. (25) Eq. (26) Eq. (27) Eq. (28) Eq. (29) Eq. (30)

Males EER (%) 3.89 4.07 4.05 8.21 4.60 3.89

DCFopt 0.230 0.278 0.267 0.403 0.329 0.251

Females EER (%) 4.70 5.00 4.98 5.12 5.10 4.78

DCFopt 0.378 0.396 0.391 0.412 0.394 0.400

Table 2

The EER and DCFopt depending on the recurrence depth N

N 0 1 2 3 4 5

Males EER (%) 4.14 3.89 3.80 3.98 3.99 4.18

DCFopt 0.254 0.230 0.224 0.241 0.241 0.250

Females EER (%) 5.11 4.70 5.00 5.01 5.00 5.10

DCFopt 0.387 0.378 0.422 0.416 0.426 0.422

T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1435
generation, and therefore are also prone to overspecializa-
tion when they are not bounded by limitations. For
achieving a high performance providing sufficient amount
of training data is highly recommended, but when such
data are not available, a restriction of the learning rate
seems to be an effective solution for avoiding such an
overspecialization.

7.3. The GLR PNN performance depending on the

recurrence depth N

In principle, for optimizing the performance of the GLR
PNN, the number of past input values L and the recurrence
depth N can be set independently one from another.
However, here we consider the simple case when these
parameters are equal (i.e. L ¼ N).

Table 2 presents the EER and the optimal detection cost
DCFopt obtained for GLR PNN-based speaker verification
and various values of the recurrence depth N. In the
present experimental setup, N ¼ 0 corresponds to lack of
recurrence (each speech frame is processed independently,
exactly as in the original PNN), and N ¼ 5 corresponds to
90ms time window (one frame of 40ms plus five over-
lapping frames shifted on 10ms each).

As expected, when N increases—the EER decreases,
because a larger part of the inter-frame correlation is
identified and exploited. We deem, the increase of the EER
observed for higher values of N, is mainly due to the
insufficient amount of training data—only 12 500 train
vectors per class were utilized. The number of weight
coefficients ðLþN þ 1Þ � K2

� �
in the recurrent layer

depends in linear manner from N and L, but for large N

and L more training data are required.
Another important constraint that restricts the recur-

rence depth is the time window length. As the experimental
results presented in Table 2 suggest, in the male experi-
ment, the best performance is observed for N ¼ 2, which
corresponds to 60ms time window. In the female experi-
ment the lowest EER and DCFopt were observed for
N ¼ 1, which corresponds to a time window of 50ms. We
deem this difference between the male and female results is
due to the gender-specific features of speech. Specifically,
these are differences in the dynamics and the fundamental
frequency of speech signal, as well as in the speaking style.

For even larger values of N and L the time window could
spread across more than one phonemes, and even across
syllables. In that case, the neural network becomes sensitive
to the linguistic information carried by the training data,
which can be very useful in the case of speech recognition
or text-dependent SV, but decreases the SV performance
when a text-independence is considered.

7.4. Performance comparison between the original PNN and

the GLR PNN

The GLR PNN in its simplest form, with a recurrence
depth one, N ¼ 1, and one past value of the recurrent layer
inputs, L ¼ 1, trained by the variation operator (25) was
compared with the original PNN. Fig. 8 presents the
normalized distribution of the scores for the enrolled users
(dashed line) and the impostors (solid line). The consider-
able spread of both users’ and impostors’ scores for the
PNN case, shown in Fig. 8 (left), is obvious. In contrast, as
Fig. 8 (right) illustrates, the GLR PNN classifier produces
a smaller deviation from the mean value for both the users
and the impostors. In about 55% of the cases, a zero
probability for the impostor trials was produced, which is a
major improvement compared to the only 38% of the
original PNN. Moreover, the GLR PNN exhibited a
significant concentration of the enrolled users’ scores at the
maximum probability point of one (in about 50% of all
trials), in contrast to the PNN for which the user scores
were spread out over a much wider area in the upper part
of the scale. Therefore, not only a major concentration of
the score distributions, but also a clearer separation of the
two classes, and a decrease of the overlapping area were
observed. For the male experiment, this is expressed in
terms of EER ðDCFoptÞ as 4.14% (0.254) and 3.89%
(0.230), for the PNN and GLR PNN, respectively.
Examining the score distributions for the PNN and GLR

PNN (Fig. 8), we see that when compared to the baseline
one, the performance of the GLR PNN-based system is less
susceptible to the choice of decision threshold Y. This
virtue of the GLR PNN has an enormous practical value.

7.5. Comparing the fully linked recurrent layer with other

recurrent structures

A comparative study of the GLR PNNs fully linked
recurrent layer with other recurrent architectures was
performed. The FIR and IIR structures [1], and the
DRNN [16] one, were employed instead of the fully linked



ARTICLE IN PRESS

Speaker verification score

P
er

ce
nt

ag
e 

of
 o

cc
ur

re
nc

e

P
er

ce
nt

ag
e 

of
 o

cc
ur

re
nc

e

PNN: distribution of the SV scores

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Speaker verification score

GLR PNN: distribution of the SV scores

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Fig. 8. Distribution of user (dashed line) and impostor (solid line) scores for the original PNN (left), and the GLR PNN for N ¼ 1, L ¼ 1 (right).

Table 3

The EER and DCFopt depending on the architecture

Arch. FIR IIR DRNN LR PNN GLR PNN

# w� 4 6 10 8 12

Males EER (%) 4.45 4.17 4.02 3.98 3.89

DCFopt 0.307 0.268 0.249 0.241 0.230

Females EER (%) 5.32 5.22 5.00 4.91 4.70

DCFopt 0.447 0.424 0.421 0.389 0.378

T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381436
layer. For comprehensiveness on our study, the LR
PNN architecture [10] was also included. Table 3 pre-
sents a performance comparison among these architectures
over a common data set, and a recurrence depth N ¼ 1
(for the GLR PNN, N ¼ 1 and L ¼ 1 were considered).
Exploiting one past value of the input data, these struc-
tures also exploit one past value of their own output,
or the outputs of all classes. The only exception here
is the FIR synapse, which does not possess feedbacks.
Thus, for the same time window, a different number of
weighted connections are available in each structure. The
symbol ð�Þ, next to the number of weight coefficients w,
suggests that no biases were considered in the presented
quantities.

As presented in Table 3, the best SV performance is
achieved for the GLR PNN, followed by LR PNN,
DRNN, IIR and FIR at the end. An increasing EER is
observed, as the number of weighted connections de-
creases. The only deviation here is the LR PNN which
possesses less connections than DRNN, but exhibits a
better performance. In our opinion this is due to the
presence of cross-class feedbacks from the past outputs of
all classes in the LR PNN architecture. Thus, for the same
size of the time window, the linkage of the LR PNN is
better suited to capture the dynamics of the process.

7.6. Comparison of the GLR PNN with a GMM-based

classifier

For the sake of comparison the PNN classifier of the
WCL-1 system was replaced by one, based on GMMs [25].
Initially, an equivalent complexity—128 mixtures for the
user models, and 256 mixtures for the universal back-
ground model was considered. In attempt to optimize the
SV performance, multiple other mixture sizes were tested.
In the case when spherical kernels are used, the complexity
of the GMM classifier is equivalent to the one of PNN. In
the case of more sophisticated GMMs—when a diagonal
or full covariance matrix is employed, the complexity is
equivalent to the elliptical basis function network described
in [17].

Table 4 presents the EERs and the detection cost DCFopt

that were obtained for the male voices. As shown in the
table, the GMM-based system did not perform well here
due to the insufficient amount of training data. When these
results are compared to Table 3 we observe that the PNN-
based structures (and the GLR PNN in particular)
outperform entirely the GMM classifier.
Table 5 presents results from another experiment, where

more training data were available. In particular, this time
we have used 17 seconds of voiced speech for training, and
4 target and 292 non-target trials for testing, per user
model. As shown in Table 5, when more training speech is
available the GMM-based system significantly outper-
formed the baseline PNN-based one. When more sophis-
ticated GMM models are trained, by exploiting a diagonal
covariance matrix instead of the spherical-diagonal fs2Ig,
EER drops to 2.60%, at the cost of multifold increase in
the training time, and the amount of memory required for
each speaker model. However, as presented in the table, the
amount of training data was still insufficient for training
GMMs with full covariance matrix.
In conclusion, summarizing the experimental results

presented in Sections 7.2–7.6, we support the claim that
the GLR PNN architecture outperforms the LR PNN
and traditional PNN, and that the fully connected
recurrent layer is more effective than the partially
linked DRNN, IIR, and FIR structures. For small
amounts of training data the original PNN and GLR
PNNs demonstrate a better performance than the one
of a GMM-based classifier. However, when more training
data are available the best absolute performance was
achieved by the GMM classifier with diagonal covariance
matrix.



ARTICLE IN PRESS

Table 5

The EER and DCFopt for the PNN, GLR PNN, and GMM classifiers

when more training data are available

PNN GLR PNN GMM GMM GMM

N ¼ 1 Sph.

diag. 128

Diag.

covar. 128

Full

covar. 128

EER (%) 3.43 3.07 3.01 2.60 8.14

DCFopt 0.227 0.213 0.219 0.176 0.778

Table 4

The EER and DCFopt for the GMM-based classifier

Kernel Spherical diagonal Diagonal covariance Full covariance

# mix. 32 64 128 8 16 32 2 4 8

EER (%) 4.93 4.56 4.60 5.44 4.77 6.64 7.23 8.34 11.2

DCFopt 0.271 0.280 0.442 0.400 0.307 0.388 0.423 0.429 0.613

T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–1438 1437
8. Conclusion

Introducing the generalized locally recurrent PNN, we
extended the traditional PNN architecture to exploit the
temporal correlation among the features extracted from
successive speech frames. When compared to earlier work,
a further development of the GLR PNN architecture and a
revised training method was presented. Comparative
experimental results for text-independent speaker verifica-
tion (SV) confirmed the practical value of the proposed
GLR PNN. For both male and female speakers, a better
speaker verification performance expressed as a relative
reduction of the EER with 9% was achieved, without
significantly increasing the operational complexity of the
original PNN, and without requiring additional training
data. This work focused on the PNN-based structures
(PNN, LR PNN, GLR PNN, etc). Due to their simpler
training, the ability to learn from small amounts of data,
and the intrinsic parallel architecture, they are very
attractive for hardware implementations.
References

[1] A.D. Back, A.C. Tsoi, FIR and IIR synapses, a new neural network

architecture for time series modeling, Neural Comput. 3 (3) (1991)

375–385.

[2] T. Bayes, An essay towards solving a problem in the doctrine of

chances, Philos. Trans. R. Soc. London 53 (1763) 370–418.

[3] M. Berthold, J. Diamond, Constructive training of probabilistic

neural networks, Neurocomputing 19 (1–3) (1998) 167–183.

[4] T. Cacoullos, Estimation of multivariate density, Ann. Instit. Statist.

Math. 18 (1966) 179–189.

[5] P. Campolucci, A. Uncini, F. Piazza, B.D. Rao, On-line learning

algorithms for locally recurrent neural networks, IEEE Trans. Neural

Networks 10 (2) (1999) 253–271.

[6] B.J. Cain, Improved probabilistic neural networks and its

performance relative to the other models, in: Proceedings SPIE,
Applications of Artificial Neural Networks, vol. 1294, 1990,

pp. 354–365.

[7] T. Ganchev, N. Fakotakis, G. Kokkinakis, Text-independent speaker

verification based on probabilistic neural networks, in: Proceedings of

the Acoustics 2002, Patras, Greece, September 30th–October 1st,

2002, pp. 159–166.

[8] T. Ganchev, N. Fakotakis, G. Kokkinakis, Comparative evaluation

of various MFCC implementations on the speaker verification task,

in: Proceedings of the SPECOM-2005, vol. 1, 2005, pp. 191–194.

[9] T. Ganchev, I. Potamitis, N. Fakotakis, G. Kokkinakis, Text-

independent speaker verification for real fast-varying noisy environ-

ments, Int. J. Speech Technol. 7 (2004) 281–292.

[10] T. Ganchev, D.K. Tasoulis, M.N. Vrahatis, N. Fakotakis, Locally

recurrent probabilistic neural networks for text independent speaker

verification, in: Proceedings of the EuroSpeech-2003, pp. 1673–1676.

[11] T. Ganchev, D.K. Tasoulis, M.N. Vrahatis, N. Fakotakis, General-

ized locally recurrent probabilistic neural networks for text indepen-

dent speaker verification, in: Proceedings of the ICASSP-2004, vol. 1,

2004, pp. 41–44.

[12] V.L. Georgiou, N.G. Pavlidis, K.E. Parsopoulos, Ph.D. Alevizos,

M.N. Vrahatis, Optimizing the performance of probabilistic neural

networks in a bioinformatic task, in: Proceedings of the EUNITE

2004, 2004, pp. 34–40.

[13] J.A. Hartigan, M.A. Wong, A k-means clustering algorithm, Appl.

Statist. 28 (1) (1979) 100–108.

[14] J. Hennebert, H. Melin, D. Petrovska, D. Genoud, Polycost: a

telephone-speech database for speaker recognition, Speech Commun.

31 (1–2) (2000) 265–270.

[15] T. Jan, T. Yu, J. Debenham, S. Simoff, Financial prediction using

modified probabilistic learning network with embedded local linear

model, in: Proceedings of the IEEE International Conference on

Computational Intelligence for Measurement Systems and Applica-

tions, CIMSA 2004, Boston, MD, USA, 14–16 July, 2004.

[16] C.C. Ku, K.Y. Lee, Diagonal recurrent neural networks for

dynamic system control, IEEE Trans. Neural Network 6 (1) (1995)

144–156.

[17] M.W. Mak, S.Y. Kung, Estimation of elliptical basis function

parameters by the EM algorithm with application to speaker

verification, IEEE Trans. Neural Networks 11 (4) (2000) 961–969.

[18] T. Masters, Practical Neural Network Recipes in C++, Academic

Press, London, UK, 1993.

[19] W. Meisel, Computer-Oriented Approaches to Pattern Recognition,

Academic Press, New York, 1972.

[20] A.M. Mood, F.A. Graybill, D.C. Boes, Introduction to the Theory of

Statistics, McGraw-Hill, New York, USA, 1962.

[21] M. Musavi, K. Kalantri, W. Ahmed, Improving the performance of

probabilistic neural networks, in: Proceedings of IEEE International

Joint Conference on Neural Networks, Baltimore, MD, USA, vol. 1,

June 7–11, 1992, pp. 595–600.

[22] NIST, The NIST year 2002 speaker recognition evaluation plan,

National Institute of Standards and Technology of USA, February

2002, hhttp://www.nist.gov/speech/tests/spk/2002/doc/2002-spkrec-

evalplan-v60.pdfi.

[23] E. Parzen, On estimation of a probability density function and mode,

Ann. Math. Stat. 33 (3) (1962) 1065–1076.

[24] L.R. Rabiner, M.J. Cheng, A.E. Rosenberg, C.A. McGonegal, A

comparative performance study of several pitch detection algorithms,

in: IEEE Transactions on Acoustics Speech and Signal Processing,

vol. 24(5), 1976, pp. 399–418.

[25] D. Reynolds, R. Rose, Robust text-independent speaker identifica-

tion using gaussian mixture speaker models, in: IEEE Transactions

on Speech and Audio Processing, vol. 3(1), 1995, pp. 72–83.

[26] M. Slaney, Auditory Toolbox. Version 2, Technical Report 1998-010,

Interval Research Corporation, 1998.

[27] D.F. Specht, Probabilistic neural networks, Neural Networks 3 (1)

(1990) 109–118.

[28] D.F. Specht, A general regression neural network, IEEE Trans.

Neural Networks 2 (6) (1991) 568–576.

http://www.nist.gov/speech/tests/spk/2002/doc/2002-spkrec-evalplan-v60.pdf.
http://www.nist.gov/speech/tests/spk/2002/doc/2002-spkrec-evalplan-v60.pdf.


ARTICLE IN PRESS
T.D. Ganchev et al. / Neurocomputing 70 (2007) 1424–14381438
[29] D.F. Specht, Enhancements to probabilistic neural networks, in:

Proceedings of the IEEE International Joint Conference on Neural

Networks, Baltimore, MD, June 7–11, 1992.

[30] D.F. Specht, H. Romsdahl, Experience with adaptive PNN and

adaptive GRNN, in: Proceedings of the IEEE International

Conference on Neural Networks, Orlando, FL, vol. 2, June 28–July

2, 1994, pp. 1203–1208.

[31] R. Storn, K. Price, Differential evolution—a simple and efficient

adaptive scheme for global optimization over continuous spaces,

J. Global Optim. 11 (1997) 341–359.

[32] B. Tian, M.R. Azimi-Sadjadi, T.H. Vonder Haar, D. Reinke,

Temporal updating scheme for probabilistic neural network with

application to satellite cloud classification, IEEE Trans. Neural

Networks 11 (4) (2000) 903–920.

[33] Z.R. Yang, S. Chen, Robust maximum likelihood training of

heteroscedastic probabilistic neural networks, Neural Networks 11

(4) (1998) 739–748.

[34] A. Zaknich, The modified probabilistic neural network for signal

processing and pattern recognition, Ph.D. Dissertation, Department

of Electrical and Electronics Engineering, University of Western

Australia, Nedlands, May 1995.

[35] A. Zaknich, C. deSilva, Y. Attikiouzel, The probabilistic neural

network for nonlinear time series analysis, in: Proceedings of the

IEEE International Joint Conference on Neural Networks, Singa-

pore, November 17–21, 1991, pp. 1530–1535.

Todor D. Ganchev received his Diploma Engineer

degree in Electrical Engineering from the Tech-

nical University of Varna, Bulgaria, in 1993.

From February 1994 to August 2000, he was with

Technical University of Varna, where he conse-

quently occupied engineering, research, and

teaching staff positions. During the period, his

research activities were mainly in the area of low-

bit-rate speech coding. Since September 2000, he

is with the Wire Communications Laboratory,
University of Patras, Greece. In 2005 he received his Ph.D. degree in the

area of Speaker Recognition. Presently, he is a post-doctoral researcher at

the same laboratory. His current research interests include Speech

Processing, Neural Networks, and Differential Evolution.

Dimitris K. Tasoulis received his Degree in

Mathematics form the Department of Mathe-

matics, University of Patras, Greece in 2000. He

is currently a post-graduate student in the post-

graduate course ‘‘Mathematics of Computers and

Decision Making’’ from which he was awarded a

postgraduate fellowship. His research activities

focus on Unsupervised Clustering, Neural Net-

works, Data-Mining and Applications. He was a

Visiting Research Fellow at the INRIA, Sophia-
Antipolis, France, in 2003. He is co-author of more than 50 publications

(12 of which are published in international refereed journals). His research

publications have received more than 40 citations.
Michael N. Vrahatis is a Professor at the

Department of Mathematics, University of Pa-

tras, Greece, since August 2000. He received the

Diploma and Ph.D. degrees in Mathematics from

the University of Patras, in 1978 and 1982,

respectively. He is the author or (co-author) of

more than 270 publications (more than 120 of

which are published in international refereed

journals) in his research areas, including compu-

tational mathematics, optimization, neural net-
works, evolutionary algorithms, data mining, and artificial intelligence.

His research publications have received more than 1000 citations. He has

been a principal investigator of several research grants from the European

Union, the Hellenic Ministry of Education and Religious Affairs, and the

Hellenic Ministry of Industry, Energy, and Technology. He is among the

founders of the ‘‘University of Patras Artificial Intelligence Research

Center (UPAIRC)’’, established in 1997, where currently he serves as

director. He is the founder of the ‘‘Computational Intelligence Laboratory

(CI Lab)’’, established in 2004 at the Department of Mathematics of

University of Patras, where currently he serves as director.

Nikos D. Fakotakis received the B.Sc. degree in

Electronics from the University of London (UK)

in 1978, the M.Sc. degree in Electronics from the

University of Wales (UK), and the Ph.D. degree

in Speech Processing from the University of

Patras, Greece, in 1986. From 1986 to 1992 he

was lecturer in the Electrical and Computer

Engineering Department of the University of

Patras, from 1992 to 1999 Assistant Professor,

from 2000 to 2003 Associate Professor, and since
2004 he has been Professor in the area of Speech and Natural Language

Processing and Head of the Speech and Language Processing Group at the

Wire Communications Laboratory. He is author of over 200 publications

in the area of Signal, Speech and Natural Language Processing. His

current research interests include Speech Recognition/Understanding,

Speaker Recognition, Speech Modeling, Spoken Dialogue Processing,

Natural Language Processing and Optical Character Recognition.

Dr. Fakotakis is a member of the Executive Board of ELSNET (European

Language and Speech Network of Excellence), Editor-in-Chief of the

‘‘European Student Journal on Language and Speech’’, WEB-SLS.


	Generalized locally recurrent probabilistic neural networks with application to text-independent speaker verification
	Introduction
	Theoretical foundations of the PNN
	The generalized locally recurrent PNN architecture
	The GLR PNN training
	The SV task
	GLR PNNs in the context of the SV task
	WCL-1: A text-independent SV system
	SV performance assessment

	Speaker recognition database
	Experiments and results
	Experimental set-up
	Study of six variation operators for training the recurrent layer weights
	The GLR PNN performance depending on the recurrence depth N
	Performance comparison between the original PNN and the GLR PNN
	Comparing the fully linked recurrent layer with other recurrent structures
	Comparison of the GLR PNN with a GMM-based classifier

	Conclusion
	References


