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A procedure which accelerates the convergence of iterative methods for the numerical solution of 
systems of nonlinear algebraic and/or transcendental equations in Rn is introduced. This procedure uses 
a rotating hyperplane in Rnil, whose rotation axis depends on the current approximation of n -  1 
components of the solution. The proposed procedure is applied here on the traditional Newton's 
method and on a recently proposed "dimension-reducing" method [5] which incorporates the 
advantages of nonlinear SOR and Newton's algorithms. In this way, two new modified schemes for 
solving nonlinear systems are correspondingly obtained. For both of these schemes proofs of 
convergence are given and numerical applications are presented. 
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1. INTRODUCTION 

Perhaps the most familiar and often used method for solving a system of nonlinear 
equations 

where F = (f,, . . . , f,): 9 c Rn+ Rn is a Frechet differentiable mapping on an open 
neighborhood 9 * c 9  of a solution x * ~ 9  of the system (1.1), is Newton's iterative 
scheme, 

According to this scheme, if the Jacobian F1(x*) is nonsingular and F1(x) is 
Lipschitz continuous in g*, the iterates xP of (1.2) will converge quadratically to a 
solution of (1.1) x*, provided the initial guess x0 is sufficiently close to x* [lo, 121. 

The quadratic convergence of Newton's method is attractive. However, as is well 
known, the method depends on a good initial approximation [3] and requires in 
general n2 + n  function evaluations per iteration besides the solution of an n x n 
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linear system. Moreover, the behavior of Newton's method is problematic when 
F'(x*) is singular since, in that case, (1.2) does not converge quadratically and, in 
general, is not appropriate for approximations of x* with a high accuracy. For this 
reason there are procedures which under some assumptions (such as rank 
Ff(x*)=n- 1) can attain a highly accurate solution x* by enlarging the system 
(1.1) to one which is at least ( 2 n ~  1)-dimensional [24,25]. Also, Newton's method 
remains problematic when the values of F cannot be accurately achieved. Of 
course, this problem is common to all iterative procedures which directly depend 
on function evaluations. To  overcome it, one may resort to generalized bisection 
methods [2,6,7,18-231 since they only make use of the algebraic sign of the 
function involved in the equations. These methods, however, do not generally 
attain a quadratic convergence. 

There is a class of methods for the numerical solution of system (1.1) which arise 
from iterative procedures used for systems of linear equation [8,11-13,151. These 
methods use reduction to simpler one-dimensional nonlinear equations for the 
components f,, f,, . . . , f ,  of F. The best-known method of this type is the nonlinear 
successive overrelaxation (SOR) method which solves at the (p+ 1)st iteration the 
one-dimensional equation 

for xi and then sets 

provided that w ~ ( 0 , 1 ] .  Independent of the value of w, the above process is called 
SOR process even though this nomenclature is sometimes reserved for the case 
w > 1. Now, a large variety of combined methods can be constructed depending on 
a secondary iteration and the number of steps required for solving (1.3). Thus, for 
example, one can obtain the exact nonlinear SOR or m-step SOR-Newton process 
[12,15] and so on. Now, if the Jacobian of F at the solution x* of (1.1) is an A- 
matrix [12] the iterates of the above processes will converge linearly to x* 
provided that w ~ ( 0 , 1 ]  [12]. 

New methods which incorporate the advantages of nonlinear SOR and Newton 
algorithms have been recently proposed [4,5]. More specifically, although these 
methods use reduction to simpler one-dimensional nonlinear equations, they 
generate a quadratically converging sequence of points in Rn-'  which converges to 
n- 1 components of the solution, while the remaining component of the solution is 
evaluated separately using the final approximations of the other components. 
Moreover, these methods do not require a good initial guess for one component of 
the solution and do not directly need any function evaluation. Also these methods 
compare favourably with Newton's method when the Jacobian at the solution is 
singular (without making any enlargement of the system), or when the Jacobian is 
ill-conditioned, or when it is difficult to evaluate the function values accurately. 
They use tangent hyperplanes to the surfaces x, + , = f i (x) ,  i = 1,. . . , n at points on 
the x,, , O  hyperplane, (see [4] for a geometric interpretation). 
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In this paper, we derive and apply a new procedure which can accelerate the 
convergence of other algorithms used for the numerical solution of systems of 
nonlinear algebraic and/or transcendental equations in Rn. The proposed pro- 
cedure uses a "rotating" hyperplane in Rn+', whose rotation axis depending on the 
current approximation of (n-1) components of the solution. This procedure is 
applied here on the traditional Newton's algorithm as well as on a method 
proposed in [5], whence two new modified schemes are obtained. 

The new procedure is described in Section 2 of this paper. In Section 3 we give 
the new modified schemes which are derived by applying the proposed procedure 
on Newton's method and on the methods of [4,5] correspondingly. In the same 
section we also give the corresponding proofs of convergence. Finally, in Section 4 
we illustrate these modified schemes on a number of numerical applications. 

2. THE METHOD O F  ROTATING HYPERPLANES 

In this section we give a geometric interpretation of the proposed method in iWZ 
and present its generalization to n dimensions. We also illustrate the main 
differences between our new method and Newton's method, as well as the methods 
introduced in [4,5]. 

NOTATION 2.1 Throughout this paper Rn is the n-dimensional real space of 
column vectors x with components x,, x,, . . . , x,; (y; z) represents the column 
vector with components y,, y,, . . . , y,, z,, z,, . . . , z,; 8, f (x) denotes the partial 
derivative of f(x) with respect to the ith variable xi; d denotes the closure of the 
set d and f (x,, . . . ,x i -  ,, . , x i+  ,, . . . , x,) defines the mapping obtained by holding 
xl , .  . . , xi - ,, xi + l , .  . . , x, fixed. 

Let us start by writing the iterates (1.2) of Newton's method in the n = 2  case as 
follows 

(xp" -xf) alfi(xp) +(x4+' -xi)  8,f;.(xp) + fi(xp) =0, i =  1,2. (2.1) 

Now, the equations 

represent planes in the (x,,x2,x3)-space which are tangent to the surfaces 
x3 =fi(x), i = 1,2 at the points (x;, x$, fi(xP)), i = 1,2, respectively. Thus the point 
xP+' which is determined by the relationship (1.2) is the point of intersection of 
these two planes with the (x,,x,)-plane [4,12]. In the method of [4], instead of 
the above planes, we have considered the following ones 

where ~ $ 3 '  denotes the solutions of the equations fi(xf, . )=O, i =  1,2. The planes 
(2.3) are tangent to the surfaces x3  = f,(x), i =  1,2 at the points (xp, xq3',0), i =  1,2 
respectively. Then the point xP+l of the next iteration of the method of [4] is the 
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point of intersection of these two planes with the (x,, x2)-plane. Or, equivalently, 
xP+l is the intersection point of the following lines in (xi, x2)-space 

In this paper we introduce a rotating plane which in the (xl,x2,x3)-space has 
rotation axis x, =xp in the plane x3=0, and is used to modify (2.2) and (2.4) 
correspondingly. More specifically, we use the proposed plane so that the point 
xP+'  which is determined by Newton's method is now taken to be the projection 
on the (xl,x2)-plane of the point of intersection of the planes (2.2) with the 
proposed plane. We also use this rotating plane to modify the method of [4] so 
that the lines (2.4), in the (xl,x2)-plane, are now taken to lie on this rotating 
plane. The main idea, of course, is that, with suitable changes in the direction of 
this plane, we may be able to bring the corresponding projections on the plane 
x, = O  closer to the solution of (2.1) and thus achieve a more rapid convergence of 
the iterations. 

It is easy to derive the equation of this plane. Starting with the general equation 
of a plane in R3 

and requiring that it contain the line x, = x i  in the (xl,x2)-plane, we are led to the 
condition that the normal vector of (2.5), (Al,A2,A3), be perpendicular to the 
vector (0,1, O), i.e. 

or, equivalently, A, = 0. Thus, (2.5) becomes 

Now, since we have x, =xp for x,=O, we must also impose the condition 

whence (2.7) is further reduced to 

We assume now, without loss of generality, that A,#O. (Note that if A, = O  we 
only get a trivial modification of the method in [4].) Moreover, A, # O  allows this 
plane to rotate in R3 around the line x, =xp, x, =O.  So from (2.9) we finally have 

X, = At(xp -xl), for A'= A1/A3, (2.10) 

which determines the equation of the rotating plane. We, therefore, conclude that 
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the proposed modified methods obtain correspondingly the next approximation 
xP+'  of xP from the intersection point of the following two planes with the 
(xl, x2)-plane 

x3 = (xl - xp)(i?,fi(xP) + A') + (x2 - x$) a2fi(xP) + fi(xP), i = 1,2, (2.1 1) 

cf. (2.2) and from the intersection point of the following lines in (x,, x2)-space 

cf. (2.4). Clearly, the parameter A' in (2.11) and (2.12), corresponds to different 
directions of the rotating plane and offers an additional "degree of freedom": it 
may be suitably varied, in each problem, so as to reach an optimal value, at which 
the speed of the convergence of the iterations is maximized. 

Ultimately, of course, we wish to obtain an approximate solution of the system 
(1.1). To do this we need to extend the above ideas to n-dimensions and work with 
the equation of a hyperplane in Rn+' 

Assume now that the hyperplane (2.13) is parallel to some direction, for example 
to the nth coordinate of the basis of Fin+'. In this case, we shall have An=O and 
(2.13) becomes 

cf. (2.7) for n = 2. Let x0 =(xy,. . . , xj;') be an initial estimate. Suppose further, that 
the rotation axis of the hyperplane (2.14), is determined from the conditions 

x ~ + ~ = O ,  xi=xY for i = l ,  ..., n-1. (2.15) 

Thus we now use (2.15) to solve (2.14) for An+ , 

and substitute back in (2.14) to obtain 

cf. (2.9). Assuming now that An+, #O, we may rewrite (2.17) in the form 
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n -  1 

X , , + ~ = ~ A : ( . X ~ - X ~ ) ,  for A ; = A , / A , + , ,  i = l ,  ..., n-1, (2.18) 
i =  1 

which determines the required hyperplane, with n- 1 free parameters A:, 
i=  1 ,  ..., n-1. 

Of course, similar hyperplanes can be obtained using any one of the other 
coordinates i#n. Moreover, as we shall see later similar results can be obtained by 
considering a constant rotating axis, for example the nth coordinate of the basis of 
[ ~ n + l  

3. THE NEW MODIFIED ITERATIVE SCHEMES AND THEIR PROOF 
O F  CONVERGENCE 

The rotating hyperplane (2.18) can be used in an iterative procedure to obtain 
approximate solutions of the system (1.1). This can be done, by replacing the usual 
hyperplane x,,, =0, at every iteration, by this hyperplane, thus modifying 
Newton's method (1.2) to obtain 

Now, by replacing the x,., = O  hyperplane by the hyperplane (2.18) we get 

or, after some matrix manipulations, 

where G'(xP) = F'(xP) + Z and E = [ t i j ]  is the rank-1 n x n matrix with 

Finally, taking x as the new approximation of the solution we end up with the 
following modified Newton's scheme 

Now, the parameters A), j = 1,. . . , n - l can be chosen such that the "direction" 
of the hyperplane (2.18) be, for example, perpendicular to the hyperplanes which 
are tangent to the surfaces x,, , =fi(x) for i =  1,. . . ,n- 1 at the points 
(xy,. . . , x:, fi(xo)), i =  1,. . . , n- 1 respectively. One may also attempt to find 
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relations between A> and the curvature of particular curves on the surfaces 
x,+, = f,(x), i = 1,. . . , n. In a future paper, we intend to explore these possibilities in 
order to find out optimal AS values which will accelerate the convergence of 
Newton's method for any class of functions. That this is indeed possible is 
demonstrated in Section 4  on a number of numerical applications. Of course, the 
scheme (3.5) can be derived (see Theorem 3.2) using a constant rotation axis of the 
hyperplane, for example the nth coordinate of the basis of Rn". 

In order to give a convergence result for the modified scheme (3.5) the following 
lemma and theorem are needed: 

LEMMA 3.1 (Permutation Lemma, Banach Lemma) Let A be an n x n nonsingular 
matrix. If E is an n x n matrix and I I A - ' ~ ~  I IE~~< 1 ,  for any arbitrary norm, then the 
matrix A + E is nonsingular. 

Proof See [lo, 121. 

THEOREM 3.1 Suppose that F = ( fl, . . . , fk): B c Rk+Rk is twice-continuously differ- 
entiable on an open neighborhood &* c b of a point x* = (x?, . . . , x;) E & for which 
F(x*) = Ok and FJ(x*) nonsingular. Then the iterates xP, p = 0,1,. . . of Newton's 
method 

will converge to x* provided the initial guess x0 is sufficiently close to x*. Moreover, 
the order of conuergence will be two. 

Proof See [lo, l 4 , l 7 ] ) .  

We note here that the condition that F1(x) be Lipschitz continuous in B* (which 
we assumed in Section 1) is ensured since the component functions f ,  of F are all 
twice-continuously differentiable. We now proceed with the following convergence 
result. 

THEOREM 3.2 Suppose that F =( f,, . . . , f,): 9 c IWn+R" is twice-continuously differ- 
entiable on an open neighborhood 9* c 9 of a point x* =(xT,. . . , x:) E 9 for which 
F(x*) = 0 "  and F'(x*) nonsingular. Let E = [Cij] be the rank-l n x n matrix with 

where the vector A'= [ A ; ] ,  j=  1,. . . , n, Ah = O  determine the parameters of the 
rotating hyperplane (2.18) such that the inner product (x, A') = 0 V x E 9* and that 
IIF1(x*)-'II \ \ ~ [ \ < 1 .  Then the iterates xP, p=0, 1, ... of (3.5) will converge to x* 
provided the initial guess x0 is suflciently close to x*. Moreover the order of 
convergence will be two. 

Proof Consider the mapping 
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By the assumptions it is obvious that 

Moreover the Jacobian matrix G' of G is given by 

Hence, by Lemma 3.1 we obtain that G1(x*) is nonsingular. So for the above 
mapping G the conditions of Theorem 3.1 are fulfilled. Consequently the iterates 
xP, p=0, 1, . . .  of (3.5) converge quadratically to x*. Thus the theorem is 
proven. 0 

Of course, similar convergence results can be obtained by considering other 
mappings instead of (3.8). According to the above theorem we can estimate the 
free parameters A>, j =  1,. . . , n -  1 of the rotating hyperplane (2.18) in each 
iteration from the relationships 

by choosing n-2 arbitrary parameters and calculating at each iteration the 
( n  - 1)st parameter from (3.1 1). 

Now, we use the rotating hyperplane (2.18) to derive a modified scheme of the 
method in [ 5 ] .  This scheme is derived in such a way that it can incorporate the 
advantages of nonlinear SOR and Newton's method. It is important to note that 
although we shall use reduction to simpler one-dimensional nonlinear equations 
we will still produce a quadratically converging sequence of points in Rn- l .  

The following theorem and corollary are seminal to the development of our 
analysis. 

THEOREM 3.3 (Implicit Function Theorem) Suppose that F = ( f , ,  . . . , f,): 9 c Rm x 
Rn+Rn is defined and continuously differentiable on an open neighborhood g 0 c 9  
of a point ( xO;  yo) = (xy ,  . . . , x i ,  yy, . . . E 9 such that F(xO; yo) = O n  and that the 
Jacobian a( f,, . . . , f,)/a(y,, . . . , y,) is nonsingular at (xO;  Y O ) .  Then there exist open 
neighborhoods d l  c Rm and d2c  Rn of x0 and yo, respectively, such that, for any 
x E 2, there is a unique system on n mappings chi, i = 1,. . . , n defined and continuous 
on 2, such that Y ~ = ~ ~ ( x )  ~2~ for i= 1 , .  . . , n  and fi(x, 4 1 ( ~ ) , .  . . , +,(x))=O for 
i= 1,. . . , n and any x E 2,. Moreover the function @ =(4,, . . . ,4,) is continuously 
diferentiable in dl and the Jacobian matrix @'(x) is equal to - B - l C ,  where C 
(respectively B) is obtained by replacing yi by +,(x), i= 1,. . . , n in the Jacobian 
matrix [aJ;./dx,] (respectively [ajJayj]) .  
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Proof See [1,12]. 

A direct corollary of the above theorem is the following. 

COROLLARY 3.1 Suppose that f :  9 c Rn+ R is defined and continuously differen- 
tiable on an open neighborhood 9' c 9 of a point x0 = (xy ,  . . . , x t )  for which f ( x O )  = 0 
and a,  f ( x O )  ZO. Then there exist open neighborhoods d l  c Rn- -' and d2  c R of the 
points y O = ( x . ,  x )  and x t  respectively, such that, for any y= 
(x , ,  . . . , x,- ,) E d l  there is a unique mapping $ defined and continuous on d l  such 
that x n = $ ( y ) ~ d 2  and f ( y ;  &y))=O for any y €d l .  Moreover the mapping 
$: d, +R has continuous partial derivatives in d l  which are given by 

Of course, similar corollaries can be obtained using any one of the components 
x l , .  . . , x,, for example xi,  instead of x ,  and taking y =(x , ,  . . . , x i+  l ,  xi+ l , .  . . , x,). 

Assume now that F =( f l ,  . . . , f,): 9 c Rn+Rn is twice-continuously differentiable 
on an open neighborhood 9 *  c9 of a solution x* €9 of the system of nonlinear 
equations F(x)  =On. Our interest lies in obtaining a sequence { x P ) ,  p = O , 1 , .  . . of 
points in Rn which converges to x*. To do this we shall make use of the rotating 
hyperplane (2.18). For simplicity we shall assume that the rotating axis is the nth 
coordinate of the basis Rn+'. We assume further that for the vector A' of the 
parameters AS, j= 1,. . . , n-  1, Ab=O of the rotating hyperplane holds that the 
inner product ( x ,  A ' )  = 0 V x E 9 * .  Of course similar results can be obtained using 
any other similar rotating axis. Next, we define the mapping 

n - 1  

G = ( g l ,  . . . , g,): 9 c Rn+ Rn, by g i (x l ,  . . . , x,) = f , (xl , .  . . , x,) + AJx j .  (3.13) 
j =  1 

It is evident that the solutions of the equations gi(xp,. . . , x,P- ) = 0, for i = 1, . . . , n 
are identical with the corresponding solutions of fi(x$, . . . , x:- l ,  ) = 0 in 9 * .  
Moreover, it is obvious that gi(xT,. . . ,x,*) =f;,(xT,. . . , x,*) = O  for i= 1,. . . , n. Now 
working exactly as in 151, we consider the sets g i ,  i = 1,. . . , n to be those connected 
components of g i l ( 0 )  containing x* on which angi#0, for i= 1, .  . . , n respectively. 
Next, we apply Corollary 3.1 for each one of the components g,, i = 1, .  . . , n of G. 
So, according to the above corollary, there exist open neighborhoods dy c R"-l  
and df,ic R, i = 1,. . . , n of the points y* = ( x f ,  . . . , x,*- ,) and x,* respectively, such 
that for any y = ( x1 , .  . . , X ,  - E 2 7  there exist unique mappings +i defined and 
continuous in dT such that 

and 

Moreover there exist the partial derivatives j= 1 , .  . . , n -  1 in dT for each 44, 
i = 1, .  . . , n, they are continuous in 2 7  and they are given by 
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Suppose now that xO =(xy,. . . , x;) is an initial approximation of the solution x* 
where yo = (xy, . . . , x,O- ,) E 27, then using Taylor's formula we can expand the 
$i(y), i = 1,. . . , n about yo where y =(xi,. . . , xn- ,). So, we can obtain that 

Now, using the relationships (3.14) and (3.15) we 
equations, 

i=l, ..., n. (3.17) 

form the following system of 

where x;,' = i = 1,. . . , n are the corresponding solutions of the one- 
dimensional equations of one unknown gi(xy,. . . , x:- ,, . ) =0, i = 1,. . . , n which, as 
we have mentioned before, are identical with the corresponding solutions of the 
equations f;:(xy,. . . , x:- ,, ) =O. 

Now, using (3.13) we form the following system 

Next, from the nth equation of the above set of equations we can obtain that 

By substituting (3.20) in the remaining equations (3.19) we obtain the following 
system of n- 1 linear equations 

which, in matrix form, becomes 

where 
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Assuming that U, is nonsingular, the solution y of the linear system (3.22) gives a 
new approximation of the first n- 1 components of the solution x* of (1.1) and 
finally, by replacing y in (3.20) we can approximate the nth component of x*. Thus 
in general we can obtain the following iterative scheme for the computation of the 
n - 1 components of x* 

y p f l = y p + u p l v p ,  p=O, 1 ,..., 

where 

yP=[xf], i =  I , . .  .,n- 1, 

Finally, after a desired number of iterations of the above scheme, say p=m, using 
(3.20) we can approximate the nth component of x* using the following 
relationship 

Of course, relative procedures for obtaining x* can be constructed by replacing x, 
in Corollary 3.1 with any one of the components x,, . . . , x,- ,, for example xi, and 
taking y = (x,, . . . ,x i  - xi + ,, . . . , xn). 

We would like to mention here that the above process does not require the 
expressions $i but only the values x:,' which are given by the solution of the 
one-dimensional equations f,(xp,. . . , x:- . ) = 0. So, by holding yP = (xf, . . . , x:- 
fixed we can solve the equations 

for rf' in the interval (a, ci + p) with an accuracy 6. Of course, we can use any one of 
the well-known one-dimensional methods [12,14,15,17] to solve the above 
equations. Here we shall use the one-dimensional bisection, (see [2,16] for a 
discussion of its advantages), since frequently the steps j? are long and also a few 
significant digits are required for the computations of the roots of the equations 
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(3.27). A simplified version of the bisection method can be found in [18,2&23] 
and in the Appendix. 

We now end this section with a proof of the convergence of the new method 
described by the iterates (3.24) and the relationship (3.26). 

THEOREM 3.4 Suppose that F = ( f , ,  . . . , f,): 9 c Rn+ [Wn is twice-continuously differ- 
entiable on an open neighborhood 9 *  c9 of a point x* =(x:, . . . , x,*) E 9 for which 
F(x*)  =On. Let Bi, i = 1,. . . , n be those connected components of g; ' (0 ) ,  containing 
x* on which dngi # O  for i = 1,. . . , n respectively where the functions gi are defined in 
(3.13). Then the iterates of (3.24) and the relationship (3.26) will converge to x* 
provided the matrix U ,  which is obtained from the matrix U p  of (3.25) at x* is 
nonsingular and also provided the initial guess yo = (xy ,  . . . , x f -  ,) is sufficiently close 
to y* = ( xy ,  . . . , x,*_ ,). Moreover the iterates yP, p = O,l, .  . . of (3.24) have order of 
convergence two. 

Proof Obviously, the iterates (3.24) can be written as follows 

where 

or using (3.14) and (3.16) we can form Wp and Vp as follows 

Consider now the mapping, 
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Then for the above mapping A and for k = n - 1 the conditions of Theorem 3.1 are 
fulfilled. Consequently, the iterates yP, p = O ,  1,. . . of (3.24) converge to y* and the 
order of convergence is two. 

Suppose now that for some p, for example p  = m, we obtain ym = y*. Then from 
the relationship (3.26) we can obtain that 

Thus the theorem is proven. 0 

4. NUMERICAL APPLICATIONS 

The new methods described in Section 3 have been applied to several examples of 
nonlinear systems of different dimension. We found that the procedures behaved 
predictably and reliably and their speed of convergence was quite satisfactory. 
Here, we present some typical computational results comparing the new schemes 
to the dimension-reducing method [5] and also to the more familiar Newton's 
method on three examples (1.1) (studied also in [5]), with F =( fl, f,,. . . , fn) given 
by: 
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System (4.1) has two roots r ,  =(0.1,0.1,0.1) and r2 =(-0.1, -0.1, -0.1) within 
the cube [-0.1,0.113 and its Jacobian at these roots is nonsingular. However, this 
system has a particular difficulty since the function values at some points (for 
example at points close to origin) cannot be accurately achieved. On the other 
hand, the Jacobian of system (4.2) at its root r=(-0.99990001~10-4, 
-0.99990001. 0.99990001. is singular. While the system (4.3) is a 
well-known test case (Brown's almost linear system) [7,9]. It has roots of the form 
(a, a, a, a, a-4), where a satisfies the equation a4(5a - 6) + 1 = 0, and its Jacobian at 
these roots is nonsingular. The difficulty of this system is that its Jacobian at all 
the above roots is ill-conditioned. For this case we shall present results for the 
roots r, = ( l ,  I, l , l ,  l), r2=(0.91635458253385, ..., 1.41822708733080) and r3=  
(-0.57904308849412, . . . , 8.89521544247060) reported in the tables. 

In Tables 1, 2 and 3 we exhibit the number of iterations required to obtain a 
solution of the systems (4.1), (4.2) and (4.3) to accuracy l op7  and lO-I4 by using 
Newton's method, the dimension-reducing method and the iterative schemes (3.5) 
and (3.24)-(3.26) of this paper, for several starting points xO = (xy, . . . , x:) and 
values A;, j = 1,.  . . , n - 1 of the rotating hyperplane. We set arbitrary n - 2 values 
of the A; and we calculate the remaining (n- 1)st in each iteration such that 
(xP, A') =O. Note that the nth component of the vector A' is zero. 

In these tables "A" indicates the vector of the parameters of the rotating 
hyperplane, "j" indicates the coordinate for which the equation (xP, A1)=O is 
solved, ''2' indicates the required accuracy, "N" indicates the number of iterations, 
"FE" indicates the number of function evaluations, "AS" indicates the total 
number of algebraic signs that are required for applying the iterative scheme 
described in the Appendix and "r," denotes the root to which the corresponding 
method converges. 

We applied the above schemes using Crout's method with partial pivoting for 
the corresponding linear systems. Note that this is the reason for the slight 
difference between the results exhibited in [5] with the results of this paper 
regarding Newton's method and the dimension-reducing method. 

From the results shown in the tables we observe that the new modified schemes 
of this paper compare favourably with Newton's method and the dimension- 
reducing method of [5]. 

We also applied the new modified schemes to problems with precise function 
values for which the corresponding Jacobian was nonsingular and well-conditioned 
and we observed that the number of iterations of the new methods was less than 
or equal to the corresponding number of iterations of Newton's method and the 
dimension-reducing method. 
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Table 1 Results for system (4.1) 

Newton's method Modified Newton's method 

A'=(+O.OOOOl,O,O), j = 2  

X: x: x: E =  1 0 - 1 ~  &=lo - '  6' 1 0 1 4  

N FE ri N F E  ri N FE ri N FE ri 

-4 -2 1 36 432 r ,  33 396 r ,  24 288 r ,  25 300 r ,  
-2 -0.5 0.2 31 372 r ,  32 384 r ,  21 252 r ,  23 276 r ,  
-2 2 2 30 360 r ,  32 384 r ,  24 288 r ,  25 300 r, 
-1 -2 0.6 41 492 r ,  51 612 r ,  21 252 r ,  23 276 r ,  
-1 -2 1 42 504 r ,  29 348 r, 28 336 r ,  30 360 r, 
-0.5 0.5 -0.5 25 300 r ,  26 312 r ,  21 252 r ,  23 276 r ,  

0.4 0.5 0.5 28 336 r ,  53 636 r ,  17 204 r ,  19 228 r ,  
0.5 -0.5 2 27 324 r ,  28 336 r ,  27 324 r ,  28 336 r ,  
0.5 2 1 50 600 r ,  54 648 r ,  24 288 r ,  25 300 r ,  
2 -2 -2 38 456 r ,  43 516 r ,  16 192 r ,  21 252 r ,  
5 -2 -2 34 408 r ,  38 456 r ,  28 336 r ,  30 360 r ,  

10 -2 -2 38 456 r ,  39 468 r ,  31 372 r ,  33 396 r, 
- - 

Dimension-reducing Modified dimension-reducing 
method method 

A1=(O, -0.00001), j= 1 

5. CONCLUDING REMARKS 

The methods we have analysed in this paper compare favourably with Newton's 
method and the dimension-reducing method of [ 5 ] ,  since they have order of 
convergence two for any values of A; of the parameters of the rotating hyperplane, 
while, as we show for proper values of A> the convergence can be significantly 
accelerated. Of course, having some previous knowledge about the optimal values 
of AS, e.g. by relating them to curvature of particular curves on the surfaces 
x,, , = f i (x ) ,  i =  1,. . . , n, for any class of functions F =( f,, f,, . . . , f,) of (1.1) would 
significantly improve our methods. We hope to address this question in a future 
publication. 
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Table 2 Results for system (4.2) 

Newton's method Modified Newton's method 

A' = (0,1000, O), j = I 

xy x$ X9 ~ = 1 0 - '  & =  lo-' 8=10-l4 
-- 

N FE N FE N FE N FE 

-2 -2 -2 26 312 27 324 11 132 13 156 
-1 - 1 -1 28 336 29 348 7 84 9 108 
-1 I 1 26 312 27 324 22 264 24 288 
-0.5 -0.5 -0.5 39 468 40 480 6 72 8 96 
-0.5 -0.5 0.1 22 264 23 276 18 216 20 240 

0.5 0.5 0.1 41 492 42 504 41 492 42 504 
0.5 0.5 0.5 45 540 46 552 5 60 7 84 
1 -2 1 26 312 27 324 24 288 26 312 
1 -1 1 26 312 27 324 22 264 24 288 
1 1 1 2 6 3 1 2  2 7 3 2 4  6 72 8 96 
2 -2 2 34 408 35 420 32 384 34 408 
2 2 2 41 492 42 504 11 132 13 156 

- 

Dimension-reducing Modified dimension-reducing 
method method 

A1=(0, -3), j = l  

Also, although the second method of this paper uses reduction to simpler one- 
dimensional equations, it converges quadratically to n - 1  components of the 
solution, while the remaining component of the solution is evaluated separately 
using the final approximations of the other components. Thus it does not require a 
good initial estimate for one component of the solution. Moreover, this method 
does not directly perform function evaluations, while, using the modified bisection 
method described in the Appendix, it requires only their algebraic signs to be 
correct in finding the various $i(y). 
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Table 3 Results for system (4.3) 

Newton's method Modified Newton's method 

A' =( + 10000, + 10000, + 10000,0, O), 
j = 4  

Dimension-reducing Modified dimension-reducing 
method method 

A1=(+0.2, k0.2, f 0.2,0), j = 4  
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APPENDIX 

For completeness, we give here a brief description of the simplified version of the 
bisection method mentioned in Section 3. Hence, to solve an equation of the form 

where $: [y,, y,] c [W-IW is continuous, a simplified version of the bisection method 
leads to the following iterative formula 
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with to = y, and h = y, - y ,  and where for any real number a, 

Of course, (A.2) converges to a root t* ~ ( y , ,  y 2 )  if for some t,, k =0,1,. . . holds that 

sgn $ ( t o )  . sgn $(t,) = - 1. ('4.4) 

Also, the minimum number of iterations p, that are required in obtaining an 
approximate root 2 such that I?-t*] S E ,  for some EE(O, 1) is given by 

where the notation [v] refers to the least integer that is not less than the real 
number v. 




