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Abstract

The development of microarray technologies gives scientists the ability to examine, discover and monitor the
mRNA transcript levels of thousands of genes in a single experiment. Nonetheless, the tremendous amount of data
that can be obtained from microarray studies presents a challenge for data analysis. The most commonly used
computational approach for analyzing microarray data is cluster analysis, since the number of genes is usually very
high compared to the number of samples. In this paper, we investigate the application of the recently proposed
k-windows clustering algorithm on gene expression microarray data. This algorithm apart from identifying the
clusters present in a data set also calculates their number and thus requires no special knowledge about the data.
To improve the quality of the clustering, we employ various dimension reduction techniques and propose a hybrid
one. The results obtained by the application of the algorithm exhibit high classification success.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In any living cell that undergoes a biological process, different subsets of its genes are expressed.
A cell’s proper function is crucially affected by the gene expression at a given stage and their relative
abundance. To understand biological processes one has to measure gene expression levels in different
developmental phases, different body tissues, different clinical conditions and different organisms. This
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kind of information can aid in the characterization of gene function, the determination of experimental
treatment effects, and the understanding of other molecular biological processes [1].

Compared to the traditional approaches to genomic research, which rely on the collection and exami-
nation of data for a single gene locally, DNA microarray technologies have rendered possible to monitor
the expression pattern for thousands of genes simultaneously. Unfortunately, the original gene expression
data come along with noise, missing values and systematic variations due to the experimental procedure.
Several methodologies can be employed to alleviate these problems, such as singular value decomposition
based methods, weighted k-nearest neighbors, row averages, replication of the experiments to model the
noise, and/or normalization, which is the process of identifying and removing systematic sources of vari-
ation. After gene expression levels are measured, the data are represented by the real-valued expression
matrix X, where the rows of the matrix are vectors forming the expression patterns of genes, the columns
of the matrix represent samples from various conditions, and each cell, xij , is the measured expression
level of gene i in sample j.

Discovering the patterns hidden in gene expression microarray data is a tremendous opportunity and
challenge for functional genomics and proteomics [1]. A promising approach to address this task is to
utilize data mining techniques. Cluster analysis is a key step in understanding how the activity of genes
varies during biological processes and is affected by disease states and cellular environments. In particular,
clustering can be used either to identify sets of genes according to their expression in a set of samples
[2,3], or to cluster samples into homogeneous groups that may correspond to particular macroscopic
phenotypes [4]. The latter is in general more difficult because of the curse of dimensionality [5] (due to
the limited number of samples and the high feature dimensionality).

Generally, clustering can be defined as the process of “grouping a collection of objects into subsets or
clusters, such that those within one cluster are more closely related to one than objects assigned to different
clusters” [6]. Clustering is applied in various fields including data mining [7], statistical data analysis [8],
compression and vector quantization [9], global optimization [10,11], and image analysis among others.
Clustering is, also, extensively applied in social sciences [8]. Recently, clustering techniques have been
applied to gene expression data [2,12–16] and have proved useful for identifying biologically relevant
groupings of genes and samples. Thereby clustering techniques have further helped to address questions
such as gene function, gene regulation and gene expression differentiation under various conditions.

A fundamental issue in cluster analysis, independent of the particular clustering technique applied, is the
determination of the number of clusters present in a data set. This issue remains an open problem in cluster
analysis. For instance, well-known and widely used iterative techniques, like the k-means algorithm [17]
and the Fuzzy c-means algorithm [18], require from the user to specify the number of clusters present in
the data prior to the execution of the algorithm. Algorithms that have the ability to estimate the number
of clusters present in a data set fall in the category of unsupervised clustering algorithms.

In [1], a survey of various clustering methods is performed. Furthermore, subspace clustering techniques
are examined. In [19] a min–max cut hierarchical clustering method is presented that attempts to produce
clusters quite close to human expert labeling. Moreover, they employ the F-statistic test and the Principal
Component Analysis (PCA) technique for gene selection. For the same data set their approach exhibits
classification rates close to the ones presented in this paper. In the present work we extend previous
approaches by examining the performance of a method that attempts to perform dimension reduction,
estimate the number of clusters, and classify the data. To this end, we investigate the application of
the recently proposed clustering algorithm k-windows [20] on gene expression microarray data. The
unsupervised k-windows (UKW) in addition to partitioning the data into clusters, it also approximates the
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number of clusters during its execution. We have compared our approach against four other well-known
clustering algorithms and the results were satisfactory.

The rest of the paper is organized as follows: in the next section, we provide a brief literature review
and in Section 3 feature selection techniques are discussed. In Section 4, the UKW algorithm is presented,
and (for completeness purposes) we briefly describe the four other clustering algorithms tested. Next,
in Section 5 we present results from the application of the clustering algorithms on gene expression
microarray data. The paper ends with concluding remarks.

2. Brief literature review

Although numerous clustering algorithms exist [21], mostly hierarchical clustering methods have
been applied to microarray data. Hierarchical clustering algorithms construct hierarchies of clusters in a
top–down (agglomerative) or bottom-up (divisive) fashion. This kind of algorithms have proved to give
high quality results. One of the most representative hierarchical approaches is the one developed by Eisen
et al. [2]. In that work, the authors employed an agglomerative algorithm and adopted a method for the
graphical representation of the clustered dataset. This method has been widely used by many biologists
and has become the most widely used tool in gene expression data analysis [12,22,23]. Nonetheless, the
high sensitivity of agglomerative methods to small variations of the inputs and the high computational
requirements, usually prevents their usage in real applications, where the number of samples and their
dimensionality is expected to be high (the cost is quadratic to the number of samples).

Partitioning clustering algorithms, start from an initial clustering (that may be randomly formed) and
create flat partitionings by iteratively adjusting the clusters based on the distance of the data points from
a representative member of the cluster. The most commonly used partitioning clustering algorithm is
k-means. k-means initializes k centers and iteratively assigns each data point to the cluster whose centroid
minimizes the Euclidean distance from the data point. Although, k-means type algorithms can yield
satisfactory clustering results at a low cost, as their running time is proportional to kn, where n is the
number of samples, they heavily depend on the initialization.

Graph theoretical clustering approaches construct a proximity graph, in which each data point cor-
responds to a vertex, and the edges among vertices model their proximity. Xing and Karp [16], de-
veloped a sample-based clustering algorithm named Clustering via Iterative Feature Filtering (CLIFF)
which iteratively employs sample partitions as a reference to filter genes. The selection of genes through
this approach relies on the outcome of an NCut algorithm, which is not robust to noise and
outliers.

Another graph theoretical algorithm, Clustering Identification via Connectivity Kernels (CLICK)
[13], tries to recognize highly connected components in the proximity graph as clusters. The authors
demonstrated the superior performance of CLICK to the approaches of Eisen et al. [2], and the self
organizing map [24] based clustering approach. However, as claimed in [1], CLICK has little guar-
antee of not generating highly unbalanced partitions. Furthermore, in gene expression data, two clus-
ters of co-expressed genes, C1 and C2, may be highly intersected with each other. In such situa-
tions, C1 and C2 are not likely to be split by CLICK, but would be reported as one highly connected
component.
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Finally, Alter et al. [25], by examining the projection of the data to a small number of principal
components obtained through a principal component analysis, attempt to capture the majority of gene
variations. However, the large number of irrelevant genes does not guarantee that the discriminatory
information will be highlighted to the projected data. For an overview of the related literature see [1]
and [26].

3. Feature selection techniques

An important issue in any classification task is to identify those features that significantly contribute
to the classification of interest, while at the same time discarding the least significant and/or erroneous
ones. This procedure is also referred to as dimension reduction. The problem of high dimensionality is
often tackled by user specified subspaces of interest. For example, in [4] the authors manually identified
a subset consisting of 50 out of 7129 genes from 72 leukemia patients. However, user-identification
of the subspaces is error-prone and time consuming, especially when no prior domain knowledge is
available.

Another way to address high dimensionality is to apply a dimension reduction method to the data
set. Methods such as the principal component analysis [27], optimally transform the original data
space into a lower dimensional space by forming dimensions that are linear combinations of given
attributes. The new space has the property that distances between points remain approximately the same
as before.

PCA is a powerful multivariate data analysis method. Its main purpose is to reduce and summarize
large and high dimensional data sets by removing redundancies and identifying correlation among a set
of measurements or variables. It is a useful statistical technique that has found numerous applications in
different scientific fields such as face recognition, image processing and compression, molecular dynam-
ics, information retrieval, and recently gene expression analysis. PCA is used in gene expression analysis
mainly to compute an alternative representation of the data using a much smaller number of variables, as
well as, to detect characteristic patterns in noisy data of high dimensionality. More specifically, PCA is a
way of identifying patterns in data and expressing the data in such a way as to highlight their similarities
and differences. Since patterns in high dimensional data can be hard to find, PCA is a powerful tool of
analysis, especially when the visualization of the data is not possible.

Although PCA may succeed in reducing the dimensionality, the new dimensions can be difficult to
interpret. Moreover, to compute the new set of dimensions information from all the original dimensions
is required. The selection of a subset of attributes in the context of clustering is studied in [28,29]. In the
context of classification, subset selection has also been studied [27].

Another approach is to employ clustering techniques to perform dimension reduction [30]. Specifically,
we applied the UKW clustering algorithm to identify features of interest. The clustering algorithm was
applied over the entire data set to identify meaningful clusters of features and to select the most informative
ones that will be used for classification. Feature selection was accomplished by extracting from each
cluster one representative feature, based on the Euclidean distance among the feature values and the
identified cluster center. The feature with the minimum distance from the cluster center was selected. It
must be noted that the UKW algorithm automatically approximates the number of clusters present in the
data set.
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Fig. 1. (a) Sequential movements of the initial window M1 that result to the final window M4. (b) Sequential enlargements of
the initial window M4 that result to the final window E2.

4. Clustering algorithms

In this section we present the k-windows clustering algorithm [20,31] along with its complexity issues
and how it is extended to endogenously approximate the number of clusters present in a data set. Addi-
tionally, we briefly describe the four well-known clustering algorithms tested in this paper, namely, (a)
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm [32],
(b) the Principal Direction Divisive Partitioning (PDDP) clustering algorithm [33], (c) the Fuzzy c-means
(FCM) clustering algorithm [18], and (d) the Growing Neural Gas (GNG) [34].

4.1. The UKW clustering algorithm

Here we outline the basic concepts of the UKW algorithm that generalizes the k-windows clustering
algorithm [20]. Suppose that we have a set of points in the Rd space. Intuitively, the k-windows algorithm
tries to place a d-dimensional window (box) containing all patterns that belong to a single cluster; for all
clusters present in the data set. At first, k points are selected (possibly in a random manner). The k initial
d-ranges (windows), of size a, have as centers these points. Subsequently, the patterns that lie within
each d-range are identified. Next, the mean of the patterns that lie within each d-range (i.e. the mean
value of the d-dimensional points) is calculated. The new position of the d-range is such that its center
coincides with the previously computed mean value. The last two steps are repeatedly executed as long
as the increase in the number of patterns included in the d-range that results from this motion satisfies
a stopping criterion. The stopping criterion is determined by a variability threshold �v that corresponds
to the least change in the center of a d-range that is acceptable to recenter the d-range. This process is
illustrated in Fig. 1(a).

Once the movement is terminated, the d-ranges are enlarged to capture as many patterns as possible
from the cluster. Enlargement takes place at each dimension separately. The d-ranges are enlarged by �e/l

percent at each dimension, where �e is user defined, and l stands for the number of previous successful
enlargements. After the enlargement in one dimension is performed, the window is moved, as described
above. Once movement terminates, the proportional increase in the number of patterns included in the
window is calculated. If this proportion does not exceed the user-defined coverage threshold, �c, the
enlargement and movement steps are rejected and the position and size of the d-range are reverted to
their prior to enlargement values. Otherwise, the new size and position are accepted. If enlargement is
accepted for dimension d ′�2, then for all dimensions d ′′, such that d ′′ < d ′, the enlargement process is
performed again assuming as initial position the current position of the window. This process terminates
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Fig. 2. The merging procedure. Windows W1 and W2 fulfill the similarity condition and thus window W1 is disregarded. Windows
W3 and W4 have many points in common thus they are considered to belong to the same cluster. Finally, windows W5 and W6
capture two different clusters.

if enlargement in any dimension does not result in a proportional increase in the number of patterns
included in the window beyond the threshold �c. An example of this process is illustrated in Fig. 1(b).

To automatically determine the number of clusters, the original k-windows algorithm is applied using
a sufficiently large number of initial windows. The windowing technique allows for a large number of
initial windows to be efficiently examined, without any significant overhead in time complexity. Once
all the processes of movement and enlargement for all windows are terminated, all overlapping windows
are considered for merging. The merge operation is guided by a merge threshold �m. Having identified
two overlapping windows, the number of patterns that lie in their intersection is calculated. Next the
proportion of this number to the total patterns included in each window is calculated. If the mean of
these two proportions exceeds �m, then the windows are considered to belong to a single cluster and
are merged, otherwise not. This operation is illustrated in Fig. 2. In Fig. 2(a) the extent of overlapping
between windows W1 and W2 exceeds the threshold criterion, both are considered to capture the same
cluster, and therefore W1 is deleted. On the other hand, in Fig. 2(b) windows W3 and W4 are considered
to capture parts of the same cluster. Finally, in Fig. 2(c) windows W5 and W6, are considered to capture
two different clusters.

To summarize, the UKW algorithm is a robust unsupervised clustering algorithm and its performance
is predictable. The algorithm takes as input six easily tuned user-defined parameters. In this study no
effort has been made to fine-tune these parameters. Instead, default values have been used in all the
experiments. More specifically, the initial window size was a=5; the enlargement threshold, was �e=0.8;
the merging threshold, was �m = 0.1; the coverage threshold, was �c = 0.2; and the variability threshold,
was �v = 0.02.

The computational complexity of the UKW algorithm depends on the complexity of determining the
points that lie in a specific window. This is the well studied orthogonal range search problem [35].
Numerous Computational Geometry techniques have been proposed [35–38] to address this problem.
All these techniques employ a preprocessing stage at which they construct a data structure that stores
the patterns. This data structure allows them to answer range queries fast. For applications of very high
dimensionality, data structures like the Multidimensional Binary Tree [35], and Bentley and Maurer [37]
seem more suitable. On the other hand, for low dimensional data with a large number of points the
approach of Alevizos [36] appears more attractive. For the multidimensional binary tree used here, the
time complexity is O(ckdn1/d), where c is the iteration number, k is the number of initial windows used,
n is the number of samples, and d is the dimension of the data.

The UKW algorithm has been successfully applied in numerous applications including bioinformatics
[39–41], medical diagnosis [42,43], time series prediction [44] and web personalization [45]. In [46] the
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UKW is presented in detail and several modifications for different distributed environments and dynamic
databases are proposed.

4.2. The DBSCAN clustering algorithm

The DBSCAN algorithm [32,47] relies on a density-based notion of clusters and is designed to discover
clusters of arbitrary shape, as well as, to distinguish noise. More specifically, the algorithm is based on
the idea that for each point in a cluster at least a minimum number of objects (Mints) should be contained
in a neighborhood of given radius (ESP) around it. Thus by iteratively scanning all the points in the data
set it forms clusters of points that are connected through chains of ESP-neighborhoods of at least Mints
points each.

4.3. The PDDP clustering algorithm

The PDDP algorithm [33], is a divisive clustering algorithm. The key component in this algorithm
is the computation of the principal directions of the data. Starting with an initial cluster of all the data
points, the algorithm iteratively splits the clusters. The use of a distance or similarity measure is limited
to deciding which cluster should be split next, but the similarity measure is not used to perform the actual
splitting. In detail, all the data points are projected onto the leading eigenvector of the covariance matrix
of the data. Based on the sign of that projection the algorithm splits an initial cluster into two. This fact
enables the algorithm to operate on extremely high dimensional spaces. PDDP, as well as PDDP(l) [48],
which is a recent generalization of PDDP, does not provide a direct estimation for the number of clusters.
Proposed methods that provide such estimations through these algorithms are based on scattering of the
data around their centroids. Nonetheless, they tend to overestimate the true number of clusters resulting
in rigid clustering [33,48].

4.4. The fuzzy c-means clustering algorithm

The FCM algorithm [18], considers each cluster as a fuzzy set. It firstly initializes a number of c
prototype vectors (centroids) pj over the data set. Each centroid represents the center of a cluster. At
a next step it computes the degree of membership of every data vector, xi , to each cluster using the
membership function:

�j (x
i) =

(
c∑

l=1

(‖xi − pj‖
‖xi − pl‖

)1/r−1
)−1

which takes values in the interval [0, 1], where r ∈ (1, ∞) determines the fuzziness of the partition. If r
tends to 1+, then the resulting partition asymptotically approaches a crisp partition. On the other hand, if
r tends to infinity, the partition becomes a maximally fuzzy partition. Next the c prototypes are updated
using the following equation:

P j =
∑n

i=1[mj(x
i)]rxi∑n

i=1[mj(xi)]r .
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This procedure is iteratively executed until the measure of distortion:

d =
c∑

j=1

n∑
i=1

[mj(x
i)]r‖xi − pl‖2,

changes less than a user defined threshold.

4.5. Growing neural gas

GNG [34] is an incremental neural network. It can be described as a graph consisting of k nodes, each
of which has an associated weight vector, wj , defining the node’s position in the data space and a set of
edges between the node and its neighbors. During the clustering procedure, new nodes are introduced
into the network until a maximal number of nodes is reached. GNG starts with two nodes, randomly
positioned in the data space, connected by an edge. Adaptation of weights, i.e. the nodes position, is
performed iteratively. For each data object the closest node (winner), s1, and the closest neighbor of a
winner, node s2, are determined. These two nodes are connected by an edge.

An age variable is associated with each edge. At each learning step the ages of all edges emanating
from the winner are increased by 1. When the edge connecting s1 and s2 is created its age is set to 0.
By tracing the changes of the age variable inactive nodes are detected. Any nodes having no emanating
edges and edges exceeding a maximal age are removed.

The neighborhood of the winner is limited to its topological neighbors. The winner and its topological
neighbors are moved in the data space toward the presented object by a constant fraction of the distance,
defined separately for the winner and its topological neighbors. There is no neighborhood function or
ranking concept. Thus, all topological neighbors are updated in the same manner.

5. Experimental results

To investigate the performance of the UKW algorithm on gene expression microarray data we primarily
used data from a previous study that examined mRNA expression profiles from 72 leukemia patients to
develop an expression-based classification method for acute leukemia [4]. This data set contains a large
number of patients and has been well characterized. We performed two sets of experiments. In the first
set, the UKW algorithm was applied on two previously published gene subsets as well as their union. The
comparative results indicate that the UKW exhibits the best performance, among the clustering algorithms
tested.

The second set of experiments, we do not use class information for the gene selection. To this end, the
PCA technique, as well as, the UKW algorithm were used to perform dimension reduction. Subsequently,
UKW was applied on the reduced data set to group samples into clusters. The second set of experiments
is closer to real life applications where no class information is a priori known, and the UKW exhibited
robust performance and promising results. Moreover, a hybridization of UKW and the PCA technique is
evaluated.

The hybrid scheme was able to provide results equivalent to those obtained with the supervised gene
selection. Thus this scheme is applied on three other datasets in a third set of experiments.



1134 D.K. Tasoulis et al. / Computers in Biology and Medicine 36 (2006) 1126–1142

5.1. Clustering based on supervised gene selection

In the data set each sample is measured over 7129 genes. The first 38 samples were used for the
clustering process (train set), while the remaining 34 were used to evaluate the clustering result (test set).
The initial 38 samples contained 27 acute myeloid leukemia (AML) samples and 11 acute lymphoblastic
leukemia (ALL) samples. The test set contained 20 ALL samples and 14AML samples. Golub et al. in [4]
applied the Self Organizing Map [49] (SOM) based clustering approach on the training set, selecting 50
highly correlated genes with the ALL-AML class distinction. SOM automatically grouped the 38 samples
into two classes, one containing 24 out of the 25 ALL samples, and the other containing 10 out of the
13AML samples.

Generally, in a typical biological system, it is often not known how many genes are sufficient to
characterize a macroscopic phenotype. In practice, a working mechanistic hypothesis that is testable
and largely captures the biological truth, seldom involves more than a few dozens of genes. Therefore,
identifying the relevant genes is critical [16]. Initially we applied the UKW algorithm over the train set
using all 7129 genes as well as various randomly selected gene collections ranging from 10 to 2000. The
algorithm produced clusters that often contained both AML and ALL samples. Typically, at least 80% of
all the samples that were assigned to a cluster were characterized by the same leukemia type.

To improve the quality of the clustering, it proved essential to identify sets of genes that significantly
contribute to the partition of interest. Clearly, there exist many such sets and it is difficult to determine the
best one. To this end, we tested the clustering algorithm on two previously discovered sets of significant
genes. The first set has been published in the original paper of Golub et al. [4] (we call it GeneSet1),
while the second set has been statistically discovered by Thomas et al. [50] (GeneSet2). Each dataset
contains 50 genes. Furthermore, we tested the clustering algorithms on the union of the above gene sets
(GeneSet3), consisting of 72 genes.

Regarding the second set of genes (GeneSet2), the 50 most highly correlated genes with the ALL-AML
class distinction (top 25 differentially expressed probe sets in either sample group) have been selected.
More specifically, the selection approach is based on well-defined assumptions, uses rigorous and well-
characterized statistical measures, and accounts for the heterogeneity and genomic complexity of the
data. The modeling approach uses known sample group membership to focus on expression profiles of
individual genes in a sensitive and robust manner, and can be used to test statistical hypotheses about
gene expression.

The first step in the statistical analysis of microarray expression profiles is preprocessing and/or trans-
formation of the data. This includes removal of the spiked inoculated controls. The second step is to
estimate correction factors for sample-specific heterogeneity, as well as for chip-specific heterogene-
ity, and to use these factors to normalize the data. The final step is to perform a regression analysis to
estimate the relevant model parameters for each gene transcript using robust statistical techniques in
order to assess the confidence level that the corresponding gene is differentially expressed between the
two groups.

Applying the UKW algorithm on those 3 gene train sets, each produced 6 clusters containing ALL or
AML samples. Table 1 exhibits the results. More specifically, the algorithm using GeneSet1 discovered
4 ALL clusters and 2 AML clusters (3 misclassifications), while using GeneSet2 discovered 4 clusters
containing only ALL samples and 2 clusters containing only AML samples (0 misclassifications). The
algorithm discovered 4 ALL clusters and 2 AML clusters (1 misclassification) when applied to GeneSet3.
GeneSet2 yielded the best results in the training set (followed by GeneSet3).
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Table 1
The performance of the UKW algorithm for the different train sets

Leukemia type ALL clusters AML clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

Clustering result for the train set GeneSet1
ALL accuracy: 87.5 %—AML accuracy: 100 %
ALL 4 4 12 4 3 0
AML 0 0 0 0 4 7

Clustering result for the train set GeneSet2
ALL accuracy: 100.0 %—AML accuracy: 100 %
ALL 10 3 10 4 0 0
AML 0 0 0 0 8 3

Clustering result for the train set GeneSet3
ALL accuracy: 95.83 %—AML accuracy: 100 %
ALL 8 9 5 4 0 1
AML 0 0 0 0 7 4

Table 2
The performance of the UKW algorithm for the different test sets

Leukemia type ALL clusters AML clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

Clustering result for the test set GeneSet1
ALL accuracy: 60.00 %—AML accuracy: 92.85 %
ALL 2 0 7 3 8 0
AML 1 0 0 0 8 5

Clustering result for the test set GeneSet2
ALL accuracy: 100 %—AML accuracy: 78.57 %
ALL 8 0 9 3 0 0
AML 0 0 3 0 8 3

Clustering result for the test set GeneSet3
ALL accuracy: 90 %—AML accuracy: 100 %
ALL 10 4 3 1 0 2
AML 0 0 0 0 5 9

To further evaluate the clustering results each sample from each test set was assigned to one of the
clusters discovered in the train set according to its distance from the cluster center. Specifically, if an
ALL (AML) sample from the test set was assigned to an ALL (AML, respectively) cluster then that
sample was considered correctly classified. From the results exhibited in Table 2 it is evident that using
the clustering from GeneSet1 1 AML and 8 ALL samples from the test set were misclassified, resulting in
a 73.5% correct classification. The clusters discovered using GeneSet2 resulted in 3 misclassified AML
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Table 3
Comparative results for the test set GeneSet3

Misclassified samples Number of clusters Accuracy (%)

Train set Test set Train set Test set AML ALL

DBSCAN 1 3 4 4 78.5 100
FCM 1 2 4 4 85.7 100
GNG 1 3 3 3 78.5 100
PDDP 2 4 6 6 71.4 100
UKW 1 2 6 6 100.0 90.0

samples (91.2% correct classification), while GeneSet3 clusters yielded the best performance with only
2 misclassified ALL samples (94.1% correct classification).

In Table 3 we present comparative results from the test set GeneSet3 only, as all algorithms exhibited
improved classifications performance on this dataset. The best performance was achieved by the UKW
algorithm and the FCM, followed by the DBSCAN and GNG algorithms. Notice that the FCM requires
from the user to supply the number of clusters (supervised algorithm) and that the DBSCAN algorithm
did not classify 7 samples of the train set and 5 samples of the test set (all of them belonging in the AML
class), since it characterized them as outliers.

Although the PDDP algorithm exhibited the worst classification performance, it must be noted that it
was the only algorithm capable of using all the 7129 genes to cluster the samples. Using the complete set
of genes, the PDDP algorithm misclassified 2 samples from the training set and 8 samples from the test
set.

5.2. Clustering based on unsupervised gene selection

In this section we investigate the performance of the proposed UKW algorithm on data sets selected
using unsupervised methods (no class information is necessary). We only use the UKW algorithm, since
the other algorithms tested above are not suitable for unsupervised clustering. Firstly, we compute a new
data set using the UKW algorithm and then the same algorithm is used to group the samples (biclustering).
More specifically, the UKW algorithm was applied over the entire data set to select clusters of genes.
Feature selection was accomplished by extracting from each cluster one representative feature, based on
the Euclidean distance among the feature values and the identified cluster center. The feature with the
minimum distance from the cluster center was selected. This approach produced a new subset containing
293 genes (GeneSet4).

The UKW algorithm was then applied on GeneSet4 to group the samples. The results are illustrated
in Table 4. From this table it is evident that high classification accuracy is possible even when class
information is not known. Specifically, UKW exhibited accuracy of 93.6% and 76% for the ALL and the
AML samples, respectively.

A second set of experiments is performed using the PCA technique for dimension reduction.A common
problem when using PCA is that there is no clear answer to the question of how many factors should
be retained for the new data set. A rule of thumb is to inspect the scree plot, i.e. plot all the eigenvalues
in decreasing order. The plot looks like the side of a hill and “scree” refers to the debris fallen from the
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Table 4
The performance of the UKW algorithm for the GeneSet4 data set

Leukemia type ALL clusters AML cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 1

Clustering result for the set GeneSet4
ALL accuracy: 93.61 %—AML accuracy: 76 %
ALL 12 5 8 16 3 3
AML 2 0 3 0 1 19
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Fig. 3. Plot of the 70 first eigenvalues in decreasing order (left) and the corresponding classification accuracies (right).

top and lying at its base. The scree test suggests to stop analysis at the point the mountain (signal) ends
and the debris (error) begins. However, for the considered problem the scree plot was indicative, but not
decisive. The scree plot, exhibited in Fig. 3 (left), suggests that the contributions are relatively low after
approximately ten components. In our experiments, we tried all the subsets using factors from 2 to 70.
The classification accuracy is shown in Fig. 3 (right). The best performance was attained when 25 factors
were used (84.72%).

Although, the PCA technique optimally transforms the data set, with limited loss of information, to a
space of significantly lower dimension, the classification accuracy, was not as high as when supervised
methods for gene selection were used (see Section 5.1). Next, we study the hybridization of the UKW
algorithm and the PCA technique.

To this end, the entire data set is firstly partitioned into clusters of features using the UKW algorithm.
Next, each feature cluster is independently transformed to a lower dimension space through the PCA
technique. Regarding the number of factors selected from each cluster many approaches could be followed.
In our experiments only two factors from each cluster were selected, resulting in GeneSet5. Experiments
conducted using scree plots exhibited identical results. Our experience is that the number of selected
factors from each cluster is not critical, since the entire data set has already been clustered. Finally,
the UKW algorithm is again applied to group the samples into clusters and the results are exhibited in
Table 5. The UKW exhibited accuracy 97.87% and 88% for the ALL and the AML samples, respectively.
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Table 5
The performance of the UKW algorithm for the GeneSet5 data set

Leukemia type ALL clusters AML clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

Clustering result for the set GeneSet5
ALL accuracy: 97.87 %—AML accuracy: 88 %
ALL 7 14 14 11 1 0
AML 0 0 3 0 13 9

Overall, the obtained experimental results indicate that using GeneSet1 and GeneSet2, yields very
satisfactory results. The best results were obtained using the union of the genes in GeneSet1 and GeneSet2.
The drawback of this feature selection scheme is that it relies on human expertise (GeneSet1) and requires
class information (GeneSet2) to construct the final dataset (GeneSet3). On the other hand, performing
unsupervised gene selection using either PCA or UKW results in a lower classification accuracy. The
hybridization of the two approaches yielded results comparable to those obtained through the first three
gene sets. The main drawback of this approach is that it requires information from all the genes.

5.3. Evaluation of the hybrid approach

The evaluation of the hybrid approach is performed through three publicly available data sets.

• The COLON data set [12] consists of 40 tumor and 22 normal colon tissues. For each sample
there exist 2000 gene expression level measurements. The data set is available at http://microarray.
princeton.edu/oncology.

• The PROSTATE data set [51] contains 52 prostate tumor samples and 50 nontumor prostate samples.
For each sample there exist 6033 gene expression level measurements. It is available at
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

• The LYMPHOMA dataset [22] that contains 62 samples of the 3 lymphoid malignancies samples
types. The samples are measured over 4026 gene expression levels. This dataset is available at
http://genome-www.stanford.edu/.

For each dataset, the hybrid approach is being compared with the PCA technique as a dimension reduction
method. While the hybrid approach automatically determines the number of reduced dimensions only the
screen plot can provide such an information for the PCA technique. Although the scree plots, reported
in Fig. 4, provide an indication they are not conclusive. Generally, in all three cases the contributions are
relatively low after approximately twenty components.

In our experiments, we tried all available factors for each datasets. The classification accuracy of
the UKW clustering result for the three datasets and all the available factors are reported in Fig. 5.
For the COLON dataset the best classification accuracy obtained was 80.64% employing 16 factors.
For the PROSTATE dataset the best result was 82.35% classification accuracy, using 71 factors. Fi-
nally, for the LYMPHOMA dataset the best result was 98.38% classification accuracy using only
3 factors.

http://microarray.princeton.edu/oncology
http://microarray.princeton.edu/oncology
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
http://genome-www.stanford.edu/
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Fig. 4. Plot of the first eigenvalues in decreasing order, for the COLON (left), PROSTATE (middle) and the LYMPHOMA (right)
datasets.
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Fig. 5. Classification accuracy for all the factors, for the COLON (left), PROSTATE (middle) and the LYMPHOMA (right)
datasets.

Table 6
The performance of the hybrid approach for the COLON, PROSTATE and LYMPHOMA datasets

Dataset Number of factors used Classification accuracy (%)

COLON 229 82.25
PROSTATE 84 83.3
LYMPHOMA 103 99.01

The results of the hybrid approach, for the three datasets, are presented in Table 6. As it is evident, the
classification accuracy of the resulting partitions increases in all three cases. The high number of factors
that the hybrid scheme decides to use, does not impose a problem to the algorithm since they originate in
different clusters, and they are not correlated to each other. Furthermore, the additional advantage of the
automatic determination of the required factors, exhibits a robust result that is not possible through the
PCA technique. The classification accuracies obtained are considered very high, in comparison to other
methods [52].
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6. Concluding remarks

DNA microarray technologies measure gene expression levels for a very large number of genes covering
the entire genome. However, the number of genes is usually very high compared to the number of data
samples. In machine learning terminology these data sets are called undersampled, since they have very
high dimension and small sample size. To cope with the performance and accuracy problems associated
with high dimensionality and noise, the data are transformed, with limited loss of information, to a space
of significantly lower dimension containing only the most relevant genes.

Cluster analysis presented here groups leukemia samples into clusters based on similar gene expression
microarray data. More specifically, we have applied the unsupervised version of the recently proposed
k-windows clustering algorithm, since it has already been proved successful in similar settings [39–41].
We have compared our approach against four well-known clustering algorithms and the results were
satisfactory.

The first data set used for the experiments was provided by the center of genome research, Whitehead
Institute [4]. From the 7129 genes provided, 3 different gene sets were considered. The first set was
published in the original paper of Golub et al. [4], while the second gene set was proposed by Thomas
et al. [50]. The third gene set was constructed from the union of the two previously mentioned gene sets.
The results were evaluated using an independent test set. The clusters discovered using the sets GeneSet1
and GeneSet2 exhibited 73.5% and 91.2% classification success, respectively. However, the best results
were obtained using GeneSet3 (94.1%).

However in a practical setting it is not possible to have an a priori class information. To this end, we
employed techniques for unsupervised dimension reduction. In detail, we compared the performance of the
UKW clustering algorithm against the PCA dimension reduction technique and we proposed a new hybrid
system that utilizes both PCA and UKW for the automatic classification of gene expression microarray
data sets. The hybrid system was capable of performing dimension reduction and classification, exhibiting
high accuracy and robust performance. It is important to note that no class information is used, which
implies that the proposed system is best suited for real world gene data sets. We have demonstrated, the
performance of the proposed approach in three other datasets. The experiments indicate the hybrid scheme
is able to provide results that are comparable with those obtained through supervised approaches [52].
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