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Abstract

Clustering methods are one of the key steps that lead to the transformation of data to knowledge. Clustering algorithms aim at
partitioning an initial set of objects into disjoint groups (clusters) such that that objects in the same subset are more similar to each
other than objects in different groups. In this paper we present a generalization of the k-Windows clustering algorithm in metric
spaces. The original algorithm was designed to work on data with numerical values. The proposed generalization does not assume
anything about the nature of the data per se, but only considers the definition of a distance function over the dataset. The efficiency
of the proposed approach is demonstrated in various datasets.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

An important issue in automated knowledge discovery from data is the partitioning of the data into disjoint and
homogeneous meaningful groups, clusters. Typical clustering applications include data mining [1], statistical data
analysis [2], compression and vector quantization [3], global optimization [4,5] and web personalization [6].

The first comprehensive foundation of clustering methods was published in 1939 [7], but the first references to
clustering date back to the fourth century B.C. by Aristotle and Theophrastos and in the 18th century to Linnaeus [8].

The increasing number of database applications in fields such as multimedia content-based retrieval, time series
and genome sequencing, involves data items expressed as discrete values without any ordering. The similarity among
objects of this kind is measured by a distance function that is defined on the application domain. To this end, clustering
algorithms capable of extracting rules in metric spaces need to be developed.

The unsupervised k-Windows clustering algorithm [9–11] is a recently proposed algorithm that has been
successfully applied in numerous applications including bioinformatics [12,13], medical diagnosis [14,15], time
series prediction [16,17] and web personalization [6]. The unsupervised k-Windows algorithm has been designed for
numerical data lying in a Euclidean d-dimensional space. In this contribution, we extend the k-Windows algorithm
to be directly applicable in metric spaces. The clustering performance of the proposed approach is demonstrated for
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various datasets. An important feature, of the k-Windows algorithm is its ability to provide an approximation for the
number of clusters present in the data. The proposed generalization also provides an efficient implementation of this
feature.

The rest of the paper is organized as follows: Section 2 is devoted to the presentation of related work on clustering
on metric spaces; Section 3 outlines the workings of the k-Windows clustering algorithm on numeric databases. The
proposed Generalized Unsupervised k-Windows algorithm is presented in Section 4 along with a discussion of its
computational complexity. In Section 5 the datasets employed for the evaluation of the algorithm, as well as, the
obtained experimental results are presented. The paper ends with conclusions.

2. Related work

Approaches similar to the present one involve algorithms that have the ability to cluster large datasets with mixed
categorical and numerical values under arbitrary metrics. Formally, we assume that each object in the database is
represented by the same set of attributes, A1, A2, . . . , Am . Each attribute describes the domain of values denoted
by DOM(Ai ). A domain is defined as categorical if it is finite and unordered. A numeric domain is represented
by continuous values. A numeric database contains objects that are described by numeric attributes. A categorical
database, on the other hand, contains objects which are described by categorical attributes. Finally, a database is
mixed if it contains both numeric and categorical attributes.

Various metrics have been proposed [18,19] that enable standard hierarchical clustering algorithms to handle mixed
databases. However, the non-linear time complexity typically associated with this kind of algorithms restrains their
application on large datasets.

Based on the k-means procedural scheme, several algorithms that attempt to tackle datasets with mixed attributes
have been proposed [20,21]. The main drawback of these approaches is that they require from the user to determine
the number of clusters prior to the execution of the algorithm.

More advanced approaches to clustering, like CLARANS [22], are able to provide high quality results, but require
a close to quadratic running time [23]. Furthermore, to provide an approximation to the number of clusters, these
algorithms require successive re-executions that render the total running time even larger.

Density based approaches like OPTICS [24] and GDBSCAN [23] appear to be the most effective. Their running
time however, under the assumption of a spatial indexing, is of the order O(n log(n)), that can also be considered
high. A further drawback of these approaches is the high memory requirements during their execution.

3. Unsupervised k-Windows algorithm

In this section, for completeness purposes, we briefly describe the Unsupervised k-Windows algorithm (UKW).
As previously mentioned, UKW assumes that the dataset contains numeric attributes solely. Thus, if A ⊂ Rd

denotes a d-dimensional dataset, the UKW algorithm utilizes d-dimensional ranges in Rd (windows) over A, to
identify the underlying clusters. A d-dimensional window Q is defined as the subset of Rd : Q = [a1, b1]× [a2, b2]×

· · · × [ad , bd ] with a j 6 b j .
The first step of the algorithm is the initialization of a number of windows over the dataset. Subsequently, by

identifying the points that are enclosed in each window, the algorithm employs three procedures to produce the
clustering result:

(1) Movement: This procedure aims at iteratively positioning each window as close as possible to the center of a
cluster. During this procedure each window is centered at the mean of the patterns that it includes.

(2) Enlargement: The enlargement process tries to augment each window so as to include as many patterns from the
cluster over which it is positioned as possible. Thus the range of each window, for each coordinate separately, is
enlarged as long as a significant number of additional points is enclosed by the window.

(3) Merging: During this operation for each pair of overlapping windows, the number of patterns that lie in their
intersection is computed. With respect to the proportion of this number to the total number of points contained in
each window, the algorithm can decide whether tp:
(a) Ignore one window if the proportion is very high.
(b) Consider the windows to contain parts of the same cluster if the proportion is relatively high.
(c) Consider the windows to capture different clusters, if the proportion is low.
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Fig. 1. (a) Sequential movements M2, M3, M4 of initial window M1. (b) Sequential enlargements E1, E2 of window M4. (c) W1 and W2 have a
very high overlap proportion thus W1 is discarded. (d) W3 and W4 have a significant overlap and are considered to belong to the same cluster. (e)
W5 and W6 have a small overlap and capture two different clusters.

Fig. 2. An example of the application of the k-Windows algorithm.

By iteratively executing the movement and enlargement procedures until they cease to alter any of the windows,
and subsequently executing the merging procedure, the algorithm identifies the clusters and provides an approximation
to their number. In Fig. 1 the three processes are illustrated.

An example of the overall workings of the algorithm is presented in Fig. 2. In Fig. 2(a) six windows initialized over
a dataset that contains three clusters are shown. In Fig. 2(b), after the merging operation has terminated, the algorithm
correctly identifies the three clusters.

The computationally demanding step of UKW is the determination of the points that lie in a specific window. This
is the well studied orthogonal range search problem [25]. Numerous Computational Geometry techniques have been
proposed [25–28] to address this problem. All these techniques employ a preprocessing stage in which they construct
a data structure that stores the patterns. This data structure allows them to answer range queries fast. In detail, for
applications of very high dimensionality, data structures like the Multidimensional Binary Tree [25] and Bentley and
Maurer [27] are appropriate. On the other hand, for cases with a large number of low dimensional points, the approach
of Alevizos [26] appears more attractive.

4. Generalized unsupervised k-Windows algorithm

In this section we present the Generalized Unsupervised k-Windows Algorithm (GUKW) that is designed to extend
UKW to metric spaces. The proposed generalization uses the algorithmic procedure of UKW but the data structures
employed are appropriate to the domain of the metric space. Subsequently, if we denote with (X, d) a metric space,
where X is a set of objects and d : X → R is a metric distance function, then a range Q of size r is defined only
around an object c ∈ X (center of the range), and it is defined as Q = {y ∈ X : d(c, y) 6 r}. Note that the size of a
range is determined by a single real value r .

Consequently, each of the three fundamental procedures of UKW, namely movement, enlargement, and merging,
need to be modified to be applicable to metric spaces. In the following we analyze each procedure separately.

Movement procedure: As previously mentioned, the movement procedure aims at re-centering each window to the
mean of the underlying cluster. The assumption of a metric space imposes on the algorithm to select as mean one of
the objects in X . Thus, in this case the window is re-centered around an object c ∈ Q that minimizes the equation:

D(c, Q) =

∑
∀x∈Q
x 6=c

d(x, c). (1)
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This step affects the complexity of the algorithm. The computation of the minimizer of Eq. (1), through a brute force
algorithm, imposes a quadratic time complexity with respect to the number of points included in each window. Huang
proposed in [20] a similarity metric that enables the computation of the minimizer (mode using Huang’s terminology)
in linear time. Due to its lower time complexity this approach is employed by the proposed algorithm.

In detail, following [20], we assume that X is composed of m categorical attributes, and we employ the following
metric:

d(x, y) =

m∑
i=1

δ(xi , x j ) ∀x, y ∈ X,

where,

δ(xi , x j ) =

{
0 (xi = y j )

1 (xi 6= y j )
.

Next, replace the centers of the windows with modes defined as:

Definition 1. A mode of a set Q = {Q1, . . . , Qn}, is a vector C = [c1, . . . , cm] that minimizes D(c, Q) =∑n
i=1 d(Qi , C).

In the above definition, we do not restrict the mode of the set to be one of the objects in Q. The computation of the
mode, is performed using the following theorem [20]:

Theorem 2. Let nvi, j , be the number of objects of a set Q, having the i th value vi, j , for attribute A j , and
fr (A j = vi, j | Q) = nvi, j /|Q| represent the relative frequency of value vi, j in Q. The function D(c, Q) is minimized
iff fr (A j = ci, j | Q) > fr (A j = vi, j | Q) for c j 6= vi, j for all j = 1, . . . , m.

This theorem enables the computation, of the mode of a set in linear time, and can be easily incorporated in the
k-Windows algorithm. In particular, a window’s center at each successive movement is computed as the mode of the
set of points included in it. The movement procedure terminates, when the distance between the mode of the included
points and the center of the window is lower than a user defined threshold θv .

Enlargement procedure: The enlargement procedure has a straightforward generalization to the metric space case. An
enlargement of a window with center c and of size r is possible only by enlarging r . In detail, r is increased by a user
defined proportion, θe. Next, the increase in the number of points included in the window is calculated. If this increase
exceeds θe ± δ, then the enlargement is considered valid. Otherwise, the enlargement and movement steps are rejected
and the center and size of the window revert to their pre-enlargement values. Note that before each enlargement is
examined for validity the movement procedure is invoked.

Merging procedure: The algorithm through this procedure is able to provide an approximation to the number of
clusters in the dataset. This is achieved as in the numeric attribute case through the examination of the proportion of
common points for every pair of overlapping windows, with respect to the total number of points included in each
window. Possible overlapping between two windows can be easily determined through the triangle inequality since we
refer to metric spaces. Thus, two windows, Wi , W j with centers ci , c j and sizes ri , r j , overlap if d(ci , c j ) 6 ri + r j .
Next, as in the numeric attribute case, the points in the intersection are counted, and using two user defined thresholds,
θs (similarity threshold) and θm (merging threshold), the merging decision is made. Specifically, if the proportion of
the number of common points to the total number of points contained in each window is larger, than θs the window
containing the fewer points is ignored. Otherwise, if it is larger than θm the windows are considered to contain parts
of the same cluster. In the case that the proportion is even smaller than θm , the windows are considered to capture
different clusters.

4.1. Computational complexity issues

The computational complexity of the GUKW algorithm, is determined by the cost of discovering the points that
reside in a window. The computational geometry approaches for the numeric domain case are not directly applicable
to metric spaces. This is because some essential geometric concepts, such as minimum bounding region and the area
of a region, are not valid for metric spaces [29]. Various methods specifically designed for metric spaces have been
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Table 1
Misclassification matrix for the soybean dataset using 4 initial windows through the vantage point tree initialization method

Disease
PR DSC CR RRR

Cluster 1 17 0 0 0
Cluster 2 0 10 0 0
Cluster 3 0 0 10 0
Cluster 4 0 0 0 10

Classification accuracy: 100%

proposed [30]. These methods can be categorized into two classes. In the first class an index data structure is directly
constructed from the distances among the objects; while in the second class the objects are mapped in a vector space.
Experimental results for these methods [29,31–34], indicate that range queries can be answered in sub-linear time
with respect to the database size.

5. Presentation of experiments

The evaluation of the results of a clustering algorithm relies on the assumption that there is an inherent grouping
structure in the database. The degree to which the clustering results verify this assumption and recover the underlying
grouping structure measures their efficiency. In this work we employ the external criterion discussed in [35]. This
criterion, also used in [20], measures the degree of correspondence between the resulting clusters and the classes
assigned a priori to each object. Therefore, the clustering accuracy, r , can be defined as:

r =
1
n

c∑
i=1

ai ,

where, c stands for the number of clusters, ai denotes the number of objects of the class with the largest representation
in cluster i ; and n is the total number of objects in the database.

The datasets used in this study include the Soybean Disease Data Set and the 1984 United States Congressional
Voting Records Database. Both datasets originate from the UCI Machine Learning Repository [36]. These datasets
have been used for the evaluation of a number of similar algorithms [20,37,38].

5.1. The soybean disease data set

The soybean data set consists of 47 records of 35 attributes. Each record is labeled as one of four diseases: Diaporthe
Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and Phytophthora Rot. Each disease is represented by 10 records,
with the exception of Phytophthora Rot that is represented by 17. From the 35 attributes only 21 have more than one
different value, and thus only these are considered by the clustering procedure.

The algorithm was applied on this dataset with an initial window size equal to 4. The values of the other parameters
were set to 1.0, 0.1, 0.1, 0.2, 0.8 for θv , θe, θc, θm , and θs , respectively.

The determination of the centers of the initial ranges can be performed through various approaches. The simplest
approach involves the random selection of points from the database as centers. It is also possible to select the nodes
of the index data structures, used for range searching, as initial points. In our implementation we used as an index
structure the Vantage Point Tree [39]. Specifically, we selected a breadth-first selection of the nodes of the tree, until all
windows were allocated. Moreover, we conducted 100 executions of the GUKW algorithm using randomly selected
points as centers to compare the two initialization schemes. The misclassification matrices presented in Table 1
report the results of the GUKW algorithm using the vantage-point tree initialization with four initial windows. The
labels PR, DSC, CR, and RRR, correspond to the four diseases Phytophthora Rot, Diaporthe Stem Canker, Charcoal
Rot, and Rhizoctonia Root Rot, respectively. This initialization scheme resulted in an accuracy of 100%, which was
unaltered by increasing the number of initial windows. In the boxplots exhibited in Fig. 3, we summarize the results
of the partitioning accuracy of the random initialization method. Each boxplot depicts the obtained values for the
classification accuracy in the 100 experiments. The box has lines at the lower quartile, median, and upper quartile
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Fig. 3. Classification accuracy of GUKW using random initialization with 4,8,16 and 32 initial windows.

Fig. 4. Classification accuracy of GUKW for varying initial window size.

values. The lines extending from each end of the box (whiskers) exhibit the range covered by the remaining data. The
outliers, i.e. the values that lie beyond the ends of the whiskers, are represented with crosses. Notches represent a
robust estimate of the uncertainty about the median.

As exhibited in Fig. 3, using random initialization the GUKW algorithm was able to achieve the 100% classification
accuracy achieved by the vantage point tree method. As the number of initial windows increases the median
classification accuracy also increases, and for 16 and 32 initial windows the probability of achieving the perfect
100% accuracy becomes very high.

The results of the GUKW were stable with respect to the parameters, with the only exception being the size of
the initial window, the choice of which bears a significant impact. To this end, in Fig. 4 we exhibit the classification
accuracy obtained for all the values in the range [4, 8] with a step of 0.2.

For comparative purposes, we conducted experiments for the GDBSCAN and the Principal Direction Divisive
Partitioning (PDDP) [40] clustering algorithms. PDDP algorithm, is based on PCA and hence can address effectively
problems involving high dimensional and sparse data. PDDP, as well as PDDP(l) [41], a recent generalization of
PDDP, do not provide a direct estimation for the number of clusters. Proposed methods that provide such estimations
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Table 2
Misclassification matrix for the soybean dataset for the GDBSCAN and PDDP clustering algorithms

GDBSCAN PDDP
Disease Disease
PR DSC CR RRR PR DSC CR RRR

Cluster 1 0 10 0 0 9 0 0 5
Cluster 2 0 0 10 0 8 0 0 5
Cluster 3 0 0 8 0 0 0 10 0
Cluster 4 11 0 0 0 0 10 0 0
Cluster 5 4 0 0 0
Outliers 2 0 0 2

Classification accuracy: 100% Classification accuracy: 78.72%

Table 3
Misclassification matrix using 32 initial windows through the vantage point tree initialization method

Voter party
Democrat Republican

Cluster 1 28 6
Cluster 2 26 7
Cluster 3 8 1
Cluster 4 21 148
Cluster 5 1 2
Cluster 6 183 4

Classification accuracy: 90.84%

with these algorithms are based on scattering of the data around their centroids. Nonetheless, these methods tend
to overestimate the true number of clusters resulting in rigid clustering. In Table 2, we present the misclassification
matrices for these two algorithms. The parameters for the GDBSCAN were set to Epts = 2.0, Minpts = 4, (refer
to [23] for a thorough discussion of the algorithm) since these provided the best results after extensive experimentation.
The PDDP algorithm was forced to return 4 clusters, but even for larger numbers of clusters the classification accuracy
did not improve. GDBSCAN results in 5 clusters with classification accuracy of 100% but for 91% of the objects in
the database since it regards 4 objects as outliers.

GUKW on the soybean dataset managed to provide high partitioning accuracy as the correspondence of each
cluster to the class label suggests. Moreover, the initialization using the vantage point tree seems to provide a robust
way of initializing cluster centers. The algorithm can yield an equivalent accuracy through a random initialization of
the windows’ centers, but in this case a larger number of windows is required.

5.2. The 1984 United States congressional voting records database

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key votes
identified by the CQA. The CQA lists nine different types of votes: voted for, paired for, and announced for (these
three simplified to yea), voted against, paired against, and announced against (these three simplified to nay), voted
present, voted present to avoid conflict of interest, and did not vote or otherwise made a position known (these three
simplified to an unknown disposition). Thus, the data are described by 16 attributes. The total number of objects is
435, 267 of which are labeled as democrats, while the remaining 168 as republicans.

Similarly with the soybean dataset 100 experiments were performed with the random initialization step. The results
are summarized in the boxplot exhibited in Fig. 5. As shown, for more than 16 initial windows the classification
accuracy stabilizes around 90%. In Table 3, the results of GUKW are exhibited utilizing the vantage point tree and 32
initial windows. GUKW manages to discover two clusters that contain mostly objects of one of the two parties. Three
more clusters are discovered that contain mostly Democrat labeled objects. Furthermore, one of the identified clusters
contains only 3 objects, and can be considered as an outlier. The effect of the initial window size on the classification
accuracy is demonstrated in Fig. 6.
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Fig. 5. Classification accuracy of GUKW using random initialization with 2,4,8,16,32 and 64 initial windows.

Fig. 6. Classification accuracy of GUKW for varying initial window size.

Finally, to provide a comparative evaluation of the performance of the algorithm on this dataset we present the
results from the application of the GDBSCAN and the PDDP algorithms in Table 4. The parameters for GDBSCAN
were set to Epts = 3.0, Minpts = 20, as these values resulted in the highest accuracy. After experimenting with
different values for the number of clusters, PDDP provided the best results for 5 clusters. The results of both
GDBSCAN and PDDP indicate that the structure identified by the GUKW algorithm reflects accurately the nature
of the data. For each party there exists one cluster with the highest concentration of objects that belong to this party. A
number of clusters that mostly contain democrat labeled objects (considered as outliers by the GDBSCAN algorithm)
are spread in the data.

6. Concluding remarks and discussion

As database technologies advance, an increasing number of complex applications arise. A common characteristic is
the description of each object with a mixture of numeric and discrete unordered values. Typical clustering algorithms
assume that the data are composed of numerical data. Thus, the development of algorithms that can handle efficiently
this complexity of the data is needed.
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Table 4
Misclassification matrix for the voting records database for the GDBSCAN and PDDP clustering algorithms

GDBSCAN PDDP
Voter party Voter party
Democrat Republican Democrat Republican

Cluster 1 193 6 61 2
Cluster 2 27 144 34 51
Cluster 3 18 103
Cluster 4 16 7
Cluster 5 138 5
Cluster 6
Outliers 47 18

Classification accuracy: 90.11% Classification accuracy: 84.83%

In this paper we presented a generalization of an unsupervised clustering algorithm for data in metric spaces. A
critical issue in cluster analysis is the determination of the number of clusters in a database. The k-Windows algorithm
has the capability to provide an approximation for this number. The proposed generalization is designed so as to
retain this feature. To establish a fast running time for the algorithm we utilized techniques proposed in [20,30]. The
experimental results on two real life datasets demonstrated that the algorithm is able to provide a high portioning
accuracy. Moreover, by employing the index structure, constructed for fast query processing, as a guidance for the
initialization, the algorithm yielded a robust partitioning performance.
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