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Simplex Bisection and Sperner Simplices

MICHAEL N. VRAHATIS

Abstract: An efficient numerical method for locating and computing solutions of
systems of nonlinear algebraic and transcendental equations is described and the re-
lationship between this method and the Sperner lemma is analyzed. Although our
method is based on the existence of a Sperner simplex, the method avoids construc-
tions of Sperner simplices by making sure that the existence of a Sperner simplex is
retained at every iteration. Thus, a fast bisection algorithm results. Our method
always converges rapidly to a solution, independently of the initial guess, and is par-
ticularly useful, since the only computable information required is the algebraic signs
of the components of the function. s 2
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1. Introduction

Many problems require the solution of the following equation:
Fu(z) = ", (1)

where O™ = (0,0,...,0) is the origin of R™ and F,, = (f1, f2,...,f2):D C R* — R*
is a continuous nonlinear function from a domain D C R” into R®. These systems
of nonlinear equations arise in a large number of applications for which a solution
(or sometimes all solutions) is of practical significance. Methods mainly of a contrac-
tion mapping type such as Newton’s method and related classes of algorithms [28]
require the starting point to be within the immediate vicinity of the eventual solu-
tion. The necessity of having a good approximation to the solution of an unknown
solution is obviously a severe disadvantage. Furthermore, in many cases, these meth-
ods fail, due to the nonexistence of derivatives or poorly behaved partial derivatives.
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Also, Newton’s method, as well as Newton-like methods, often converge to a solu-
tion almost independently of the initial guess, while there may exist several solutions
nearby, all of which are desired for the application [1]. For the fractal-like geome-
try of the basin of convergence of these methods see [3,4]. Because of these reasons,
various approaches based upon topological degree theory and generalized bisection
methods have been investigated (8,13, 16-20, 22, 37, 39, 40, 43, 47, 50]. According to
these methods one establishes the existence of at least one solutlon of System (1),
where F, = (f1, fa,-.., fa):D C R™ — R™ is continuous on the closure D of D and
such that F;,(z) # ©" for any « on the boundary 9D of D, by computing the. topolog-
ical degree of F, at O™ relative to D, denoted by deg [Fy,, D, O] and defined by the
following sum:

deg[Fn,D,6% = )  sgndetJp, (),
zeF1(6™)

where det J,, indicates the determinant of the Jacobian matrix and sgn defines the
sign function. Now, if a nonzero value of deg[F,,D, ©7] is obtained then, by the
Kronecker's existence theorem [28], it follows that there is at least one root in D.

In many applications, such as numerical simulations, precise values are either im-

possible or time consuming to obtain [23]. These problema can be dealt with by

~ bisection based methods that do not require precise function values [9,12, 14, 15, 25—
27,43,45,46,48-54]. The main advantage of the generalized bisection methods is that
they can be applied to imprecise problems since they require only the algebraic signs
of the components of the function.

In this contribution, we present a generalized bisection method applied on n-
dimensional simplexes which can be used to solve large and imprecise problems.

2. Fixed point theorems and labelling lemmas

One of the most important theorems in the field of nonlinear equations is Brouwer's
fixed point theorem. If we rewrite a system of nonlinear equations in fixed point form,
then the theorem states that under mild assumptions we will have a fixed point, i.e.
a solution. This theorem has been used for many years to prove the existence of a
solution of complicated systems of nonlinear equations [10,29, 36,41].

Brouwer’s fixed point theorem [6] states that: any continuous mapping F, : o™ —
o™ from an n-simplex ¢" C R" into itself has at least one fixed point z*, that is
Fy(z*) = z*. A proof of Brouwer’s theorem for the simplex was given by Knaster, Ku-
ratowski and Mazurkiewicz in 1929 [21]. The Knaster, Kuratowski and Mazurkiewicz
covering lemma states that: if C;, i € Ng = {0,1,...,n} is a family of closed subsets
of o™ satisfying the following conditions:

1. o™ = UiENg C; and
2. f0#ZCNoand J=No—1Zthen ez 0™ CUesCi-

Then holds that:
niGNa Ci ?é @l
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where o™ = {20,03,..., 0"}, 01 .. u"} determines the ith face of o".

Scarf and Hansen in 1973 [30] proved a lemma similar to the above lemma. Also,
an interesting generalization of the Knaster, Kuratowski and Mazurkiewicz lemma has
been given by Gale [11].

The Sperner lemma is the basis for a proof of the Brouwer fixed point theorem [31,
32|. Before stating the Sperner lemma we give several concepts which are needed in
the lemma.

Let v%,v%,...,v" denote the vertices of 0™. A k-face of o™ determined by the
vertices v, v* ... v is called the carrier of a point v if v lies on this k-face and
not on any subface of this k—face. A function A(v) defined on a o™ is called a proper
labeling function if it satisfies the following conditions [2):

a) A(v)e {0,1,...,n},

b) {)\(UOLA(UEL oAM= {0,1,...,n},

c¢) If the i-face determined by the vertices v*°,vk1, ... v*¢ is the carrier of v then
A (v) € {X (v*), A (v*1),..., A (vF)}).

Let {w° w!,...,w*} denote the vertices of a k-simplex, k < n, of a simplicial subdi-
vision of o™. This k-simplex is said to have a complete set of labels if the following
relation holds:

{AW), Aw'), ..., Aw*)} = {0,1,...,k}.

The Sperner’s lemma [31] states that: for any simplicial subdivision and proper
labelling function of o™ there is at least one n-simplex of the subdivision with a
complete set of labels.

A Sperner simplex is this n-simplex with a complete set of labels. For well-
behaved continuous functions and a fine enough simplicial subdivision, the vertices
of such a simplex approximate a fixed point or a root of the mapping. One can
use Sperner’s lemma to give a constructive proof of Brouwer’s fixed point theorem.
Yoseloff in 1974 [56] proved that the Sperner’s lemma can be derived from Brouwer’s
fixed point theorem, and therefore are equivalent. Also, a constructive proof of a
permutation based generalization of Sperner’s lemma has been given in [5].

Sperner in 1980 [33] gave a very general labelling lemma which states that: let the
n-simplex o™ be triangulated. Label each vertex of the simplices in the triangulation
by an integer from the set {0,1,...,n}. Then the number of (n — 1)-simplices on the
boundary with labels {0,1,...,n — 1} is equal to the number of n-simplices in the
interior with labels {0,1,...,n}. All simplices are counted with orientation.

3. The simplex bisection method

Bisection methods for finding solutions of systems of equations depend on a crite-
rion which guarantees that a solution lies within a given region. Then this region is
subdivided in such a way that the criterion can again be applied to the new refined
one. By implementing topological degree theory we are able to give a criterion for
the existence of a solution of System (1) within a given region. -An existence criterion
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has been given in (39,40, 50] which is based on the construction of a “characteristic
polyhedron” within a scaled translation of the unit cube.

To define a Characteristic Polyhedron (CP), let B} be the n-digit binary repre-
sentation of the integer (k— 1), 1 < k < 2™ counting the leftmost digit first. Then the
n-binery matric M, = [C}l,i = 1,...,2", j = 1,...,n, is the matrix whose entry in
the ith row and jth column is the jth digit of B'. By replacing each zero element
in the matrix M}, by —1 we get a new 2" x n matrix M, = [Cj;], which we call an

. n-complete matrix. For example for n = 2 we have:

B =00 B? 00 -1 -1

B2 =01 . | B |on 1 1

B} =10 ¥y = B2| |10 Ma=1 1

B} =11 B? 11 1 1
Suppose now that II™ = (v!,2%,...,0%") is an oriented n-polyhedron in R" with

2" vertices and let Fr, = (f1, f2y..., fa): II® C R®™ — R™. Then the matriz of signs
associated with F,, and IT", denoted by S(F,;II"), is the 2" x n matrix whose
entries in the ith row are the corresponding coordinates of the vector sgnF, (v') =

- (sgnfir{v)),sgnfa(v?),. ., sgnfr(rt)). -An n-polyhedron II" is a CP if S(FE,;/I") =
M... Under some suitable assumptions on its boundary, a CP always contains at least
one solution of the system F,(X) = 6" (CP-criterion), since the absolute value of
deg[F,, CP,©"] is equal to one [50]. In order to approximate this solution, a general-
ized bisection method is used, in combination with the CP-criterion outlined above,
which bisects a CP in such a way that the new refined n-polyhedron is also a CP. To
do this, we compute the midpoint of a “proper 1-simplex” [39] of II™ and use it to
replace that vertex of IT™ for which the vectors of their signs are identical. We call this
procedure characteristic bisection. Finally, the number B of characteristic bisections of
the edges of a IT™ required to obtain a new refined CP, IT], whose longest edge length,
A(IT}), satisfies A(II}) < ¢, for some ¢ € (0, 1), is given by B = [logy(A(IT™) e~1)],
(for details see [39, 40, 50]).

It is important to notice that the CP-criterion avoids all calculations concerning
the topological degree since it requires not its exact value but only its nonzero value.
Also, it is quite efficient, since the only computable information required is the alge-
braic signs of the components of the function. Thus, it is not affected by the function
evaluations taking large or imprecise values. This method is primarily useful for small
dimensions (n < 10), since the computational effort for the construction of a charac-
teristic polyhedron [39,40] grows exponentially with the dimension. The CP method
has been applied successfully to various problems (7,9,42,45, 46,48, 49, 51-55].

By replacing the n-dimensional polyhedron by an n—-dimensional simplex we obtain
a generalized bisection method especially useful for large dimensions (cf. (mutatis
mutandis) [24,44]). In what follows we briefly present this method.

Consider the sets V = {1,2,...,(n+ 1)} and C =41,2,...,n}. Then the corre-
sponding n-binary matriz, M;, = [C};],4 € V,j € C, is the (n+ 1) x n matrix whose

" . entry in the ith row and jth column is the jth digit of B, where m = 2"*1~%, Now,
- ..—if we replace each zero element in the matrix M} by —1 we shall come up with the
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corresponding n—proper matrix, My = [Cy;], € V,j € C. For example, for n = 1,2, 3

we have, respectively:

pal: Bi=1
Ml
Bl =0 :

n=2;: Bi=11
B}=01 — M3

B2=00

n=3: Bi=111
B} =011 .
Bi=o01 M

B3 =000

r B%
Bi

-B:‘;-
B3
| BY |
-Bg-.
B}
B3

Ba

(11
01
(00

(111
Uil 1
1001
000

—_— Mg.‘:

-—bMaz

[ 1
-1t
3 1
-1 1];
| -1 -1
[ 1 1 1
=1 1 1
“fl =1 1
[ -1 -1 -1

An n-characteristic matriz X, = (xi],i € V,j € C is an (n + 1) X n matrix which

can become n-proper by permutations of its columns. An n-proper matrix is also

~ an n-characteristic matrix. For example, the following matrices are 3—characteristic
matrices:

1 1 1 T 1 1 1 1 1 1 1 1
-1 1 1 1 -1 1 1 1 -1 -1 1 1
-1 -1 1| | -1 -1 1}’ 1 -1 -1’ | -1 1 -1
-1 -1 -1 -1 -1 -1 =1 =1 =1 -1 -1 -1

Suppose, now that o™ = (0% 4!,...,0™) is an oriented n-simplex in R", and let
Fo=(fi,f2...,fn) : ™ C R™ — R™ be a nonlinear function from o™ into R®. Then
the matriz of signs associated with F,, and o™, denoted by S(Fy,;o™), is the (n+1) xn
matrix whkose entries in the kth row are the corresponding coordinates of the vector:

sgn Fp (v*) = (sgn f1(v%), sgn fo(v*),...,sgn fu (v¥)) .

An oriented n-simplex 0™ = (v%,v!,...,v") in R™ is called a characteristic n-simplez

relative to Fy, = (f1, f2,..., fa):0™ C R® — R", if the matrix of signs associated with
F, and o™, §(F,;0™), is identical with an n—characteristic matrix ;.

Suppose now that o™ is a characteristic n-simplex and that F, = (fi, fa,..., fa):
o™ C R™ — R" is continuous. Then, under suitable assumptions, including the appro-
priate representation of the oriented boundary of o™ which are similar to [16,18,34,35),
deg[Fn,0™,0"] = £1 # 0, which implies the existence of a solution inside ¢”. The
construction of characteristic n-simplex is similar to the construction of a character-
istic polyhedron described in [39]. The characteristic simplex has common features
with the Sperner simplex since by considering the following labeling function:

i,

{ if fi(z) >z and fj(z) <z; for all j<i,
Az) =

0, if fi(x)<zy for all j=1,2,...,m,
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on the vertices of a characteristic n-simplex it is easily seen that a characteristic
n-simplex is a Sperner simplex.

Next, we turn to the description of a generalized bisection method, used in combina-
tion with the characteristic simplex outlined above, for computing solutions to any ac-
curacy, subject to relative machine precision. In general a bisection procedure applied
on simplexes can be determined by the following [17,18]. Let o' = (v°,%%,...,v™)
be an oriented m-simplex in R™, m < n. Suppose that (v',v7) is the longest edge of
og* and let 7" = (v* + v7)/2 be the midpoint of (v%,v7). Then the bisection of of* is
the ordered pair of m~-simplexes (o7, 07;), where:

- 1 i~1 i+1 i m
ol = (W oh . ™ Lot o i, "),
m — (,,0 ,,1 i ji—1 j+1 m
R TR L | R e i TS TR L

The m~simplexes o7 and o7} will be called lower simplez and upper simplez, respec-
tively, corresponding to of*, while both o and o7} will be called elements of the
bisection of oF*. Suppose that of = (v°v',...,v™) is an oriented n-simplex in R
which includes at least one solution of System (1). Suppose further that (¢fy,07) is
the bisection of of and that there is at least one solution of (1) in some of its elements.
Then this element will be called selected n-simplex produced after one bisection of of
and it will be denoted by o} Moreover, if there is at least one solution of System (1)
in both elements, then the selected n—mmplex will be the lower simplex corresponding
to of. Suppose now that the bisection is applied with ¢ replacing of and thus ob-
taining 0. Suppose further that this process continues for p iterations. Then we call
oy the selected n-simplex produced after p iterations of the bisection of of .

In our case the selected n-simplex is obtained by bisecting the characteristic n—
simplex o™ in such a way that the new refined n-simplex is also a characteristic one
To do this the method computes the midpoint 7" = (v* + v7)/2 of an edge of o
and uses it to replace that vertex of this edge for which the vectors of their signs a.re
identical. If the vector of signs of 7" is identical with another vertex of o™, for example
v, then o is transformed by replacing v* with the point refv* = 2K} —v* which is
called the reflection of ¥ across the barycenter K of the k—th face of 6. Of course,
if the boundary of the simplex obeys the assumptions of the Knaster, Kuratowski
and Mazurkiewicz covering lemma then the reflection step is not necessary. These
assumptions are not explicitly checked, and the method thus uses heuristics in locating
the root. Also, when the thickness of the simplex [38] becomes small (the simplex is
long and thin) the method expands it properly.

For an error analysis, suppose that o7 is the selected n-simplex produced after
p bisections of the starting n-simplex o; then we use the barycenter K7 of o} to
approx;ma.te the solution r of System (1) which is included in op. The d1ameter bp of

ag; ie. the length of the largest edge of 0y, can be bounded by (17]:

6 < (v3/2) "™ o,

where &y is the diameter of of and the notation |-] refers to the largest integer which is
————less.than or equal to the real number.quoted. Now, for any point T" in o the following
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relationship is valid (37]:
. n lp/n]
IT- K7l < = (V3/2) " &
An error estimate €, for K} can be defined by the following quantity [37]:

n n—1 1/
W 1
i n+1 (6” 2n ,up) !

where pp is the microdiameter of o7, i.e. the length of the smallest edge of o}. Then
the following relations hold [37}:

Lp/n]
a) &< . 1 (\/5/2) 8o
lp/n]
b &< (v32) e
li = (),
c) Pt

N Ky =r.
p—oo

The above described characteristic bisection method applied on simplexes was im-
plemented using a new Fortran program. This has been applied to several test func-
tions and our experience is that the method behaves predictably and reliably even for
problems with very high dimensions.

Also, we have applied our method to problems which are very difficult to solve using
traditional methods. In particular, we have applied it to the numerical computation of
the periodic orbits of nonlinear mappings and we have succeeded to compute periodic
orbits of periods which reach up to hundred of thousands. The results obtained by
the new method are similar to those obtained by the CP method for small dimensions
exhibited in [7,42,48,51, 54, 55].

References

{1} Allgower E.L. and Jeppson M.M., The approximation of solutions of nonlinear
elliptic boundary value problems having several solutions, Springer Lecture Notes
333, 1-20 (1973).

[2] Allgower E.L. and Keller C.L., A search routine for a Sperner simplex, Comput-
ing 8, 157-165 (1971).

(3] Androulakis G.S. and Vrahatis M.N., OPTAC: A portable software package for an-
alyzing and comparing optimization methods by visualization, J. Comput. Appl.
Math., 72, 41-62 (1996).

(4] Androulakis G.S., Magoulas G.D. and Vrahatis M.N., Geometry of learning: visu-
alizing the performance of neural network supervised tra.lmng methods, Nonlinear

Anal., 30,.4539-4544, (1997). : : :



178 . Michael N. Vrahatis

[5] Bapat R.B., A constructive proof of a permutation-based generalization of

- Sperner’s lemma, Math. Program. 44, 113-120 (1989).

[6] Brouwer L.E.J. Uber Abbildungen von Mannigfaltigkeiten, Mathematische An-
nalen 71, 97-115 (1912).

[7] Drossos L., Ragos O., Vrahatis M.N. and Bountis T.C., Method for computing
long penodlc orbits of dynamical systems, Phys. Rev. E 53, 1206-1211 (1996).

[8] Eiger A., Sikorski K. and Stenger F., A bisection method for systems of nonlinear
equations, ACM Trans. Math. Softw. 10, 367-377 (1984).

[9] Emiris I.Z., Mourrain B. and Vrahatis M.N., Sign methods for counting and com-
puting real roots of algebraic systems, INRIA, Sophia Antipolis, France, Rapport
de recherche, n® 3669, April (1999).

[10] Foster W., Homotopy methods, In: Handbook of Global Optimization, R. Horst
and P.M. Pardalos eds., Kluwer Academic Publishers, Dordrecht The Nether-
lands, 669-750 (1995).

(11] Gale D., Equilibrium in a discrete exchange economy with money, Inter. J. Game
Theory 13, 61-64 (1984).

[12] Grapsa T.N. and Vrahatis M.N., A dimension-reducing method for unconstrained
optimization, J. Comput. Appl. Math. 66, 239-253 (1996).

[13] Greene J.M. Locatmg three-dimensional roots by a bisection method, J. Comput
Phys. 98, 194 198 (1992).

[14] Kavvadias D.J. and Vrahatis M.N., Locating and computing all the simple roots
and extrema of a function, STAM J. Sci. Comput. 17, 1232-1248 (1996).

[15] Kavvadias D.J., Makri F.S. and Vrahatis M.N., Locating and computing arbi-
trarily distributed zeros, SIAM J. Sci. Comput., in press.

[16] Kearfott R.B., Computing the degree of maps and a generalized method of bisec-
tion, Ph.D. dissertation, Department of Mathematics, University of Utah,(1977).

[17) Kearfott R.B., A proof of convergence and an error bound for the method of
bisection in R"™, Math. Comput. 32, 1147-1153 (1978).

(18] Kearfott R.B., An efficient degree-computation method for a generalized method
of bisection, Numer. Math. 32, 109-127 (1979).

(19] Kearfott R.B., Abstract generalized bisection and a cost bound, Math. Comput.
49, 187-2020 (1987).

[20] Kearfott R.B., Some tests of generalized bisection, ACM Trans. Math. Software

© 13, 197-220 (1987).

21] Knaster B., Kuratowski K. and Mazurkiewicz S., Ein Beweis des Fixpunktsatzes
fiir n-dimensionale Simplexe, Fundamente Math. 14, 132-137 (1929).

[22] Komineas St., Vrahatis M.N. and Bountis T.C., 2D universality of period-doubling
bifurcations in 3D conservative reversible mappings, Phys. A 211, 218-233 (1 994),

(23] Kupferschmid M. and Ecker J.G., A note on solution of nonlinear programming
problems with imprecise function and gra.d1ent values, Math. Program. Study 31,
129-138 (1987).

[24] Magoulas G.D., Vrahatis M.N. and Androulakis G.S., Effective backpropagation

— e training with variable stepsize, Neural Networks, 10, 69-82 (1997).



Simplex Bisection and Sperner Simplices 179

[25] Magoulas G.D., Vrahatis M.N. and Androulakis G.S., Improving the convergence
of the ba.ckpropagat:on algorithm using learning rate a.da.pta.txon methods, Neural
Computation, 11, 1769-1796 (1999).

[26] Magoulas G.D., Vrahatis M.N., Grapsa T.N. and Androulakis G.S., Neural net-
work supervised training based on a dimension reducing method, In: Mathematics
of Neural Networks, Models, Algorithms and Applications, S.W. Ellacott, et al.
eds., Kluwer Academic Publishers, Boston, Chapter 41, 245-249 (1997).

[27] Magoulas G.D., Vrahatis M.N., Grapsa T.N. and Androulakis G.S., An efficient
training method for discrete multilayer neural networks, In: Mathematics of Neu-
ral Networks, Models, Algorithms and Applications, S.W. Ellacott, et al. eds.,
Kluwer Academic Publishers, Boston, Chapter 42, 250-254 (1997).

[28] Ortega J.M. and Rheinbolt W.C., Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press New York, (1970).

[29] Scarf H., The approximation of fixed points of a continuous mapping, SIAM J.
Appl. Math. 15, 1328-1343, (1967).

[30] Scarf H. and Hansen T., Computation of economic eqmizbﬁa Yale University
Press, New Haven, (1973)

[31] Sperner E., Neuer Beweis-fiir die-Invarianz der Dimensionszahl und-des Gebietes,
Abh. Math. Sem. Univ. Hamburg 6, 265-272 (1928).

[32] Sperner E., Uber die Fixpunktfreien Abbildungen der Ebene, Abh. Math. .S'em
Univ. Hambmy 10, 1-48 (1934).

(33] Sperner E., Fifty years of further development of a combinatorial lemma, Part B,

In: Numerical solution of highly nonlinear problems, W. Forster ed., North Hol-
land, Amsterdam, 199-214 (1980).

[34] Stenger F., Computing the topological degree of a mapping in R™, Numer. Math.
25, 23-38 (1975)

(35] Stynes M., on the construction of sufficient refinements for computation of topo-
logical degree, Numer. Math. 37, 453-462 (1981).

[36] Todd M.J., The computation of fired points and applications. In : M. Beckmann,
H. P. Kiinzi eds., Lecture notes in Economics and Mathematical Systems, Math-
ematical Economics 124, Springer-Verlag, New York, (1976).

(37] Vrahatis M.N., An error estimation for the method of bisection in R™, Bull. Soc.
Math. Gréce 27, 161-174 (1986). '

[38] Vrahatis M.N., A variant of Jung’s theorem, Bull. Soc. Math. Gréce 29, 1-6
(1988).

[39] Vrahatis M.N., Solving systems of nonlinear equations using the nonzero value of
the bopologlca.l degree, ACM Trans. Math. Software 14, 312-329 (1988).

(40] Vrahatis M.N., CHABIS: A mathematical software package for locating and eval-
uating roots of systems of non-linear equations, ACM Trans. Math. Software 14,
330-336 (1988).

[41] Vrahatis M.N., A short proof and a generalization of era.nda s existence theorem,
Proc. Amer. Math Soc, 107,.701-703.(1989).




180 Michael N. Vrahatis

[42] Vrahatis M.N., An efficient method for locating and computing periodic orbits of
nonlinear mappings, J. Comput. Phys. 119, 105-119 (1995).

[43] Vrahatis M.N., A generalized bisection method for large and imprecise problems,
In: Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and
B. Lang eds., Akademie Verlag, Berlin, 186-192 (1996).

[44] Vrahatis M.N., Androulakis G.S., Lambrinos J.N. and Magoulas G.D., A class of
gradient unconstrained minimization algorithms with adaptive stepsize, J. Com-
put. Appl. Math. 110, (1999) in press.

[45] Vrahatis M.N., Androulakis G.S. and Manoussakis G.E., A new unconstrained
optimization method for imprecise function and gradient values, J. Math. Anal.
Appl. 197, 586-607 (1996).

(46] Vrahatis M.N. and Bountis T.C., An efficient method for computing periodic
orbits of conservative dynamical systems, In: International conference on Hamil-
tonian mechanics, Integrability and chaotic behavior, J. Seimenis ed., Plenum
Press, New York, 261-274 (1994).

[47] Vrahatis M.N., Bountis T.C. and Budinsky N., A convergence-improving itera-
tive method for computing periodic orbits near bifurcation points, J. Comput.
Phys. 88, 1-14 (1990).

(48]~ Vrahatis' M:N:; Bountis T.C. and Kollmann M.; Periodic orbits and invariant —
surfaces of 4-D nonlinear mappings, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6,
1425-1437 (1996).

[49] Vrahatis M.N., Grapsa T.N., Ragos O. and Zafiropoulos F.A., On the localization
and computation of zeros of Bessel functions, Z. Angew. Math. Mech. 77, 467-475
(1997). :

(50] Vrahatis M.N. and Iordanidis K.I., A rapid generalized method of bisection for
solving systems of nonlinear equations, Numer. Math. 49, 123-138 (1986).

[51] Vrahatis M.N., Isliker H. and Bountis T.C., Structure and breakdown of invariant
tori in a 4-D mapping model of accelerator dynamics, Internat. J. Bifur. Chaos
Appl. Sci. Engrg. 7, 2707-2722 (1997).

[52] Vrahatis M.N., Ragos O., Skiniotis T., Zafiropoulos F.A. and Grapsa T.N., The
topological degree theory for the localization and computation of complex zeros
of Bessel functions, Numer. Funct. Anal. Optim. 18, 227-234 (1997).

[53] Vrahatis M.N., Ragos O., Zafiropoulos F.A. and Grapsa T.N., Locating and com-
puting zeros of Airy functions, Z. Angew. Math. Mech. 76, 419-422 (1996).

[54] Vrahatis M.N., Servizi G., Turchetti G. and Bountis T.C., A procedure to compute
the fixed points and visualize the orbits of a 2D map, CERN SL/93-06 (AP),
(1993).

[65] Vrahatis M.N. and Triantafyllou E.C., Locating, characterizing and computing
the stationary points of a function, Reliab. Comput. 2, 187-193 (1996).

[56] Yoseloff M., Topological proofs of some combinatorial theorems, J. Comb. The-
ory (A) 17, 95-111 (1974). ,

Address:
_ Department of Ma.themat;cs, University of Patras, GR—261 10 Patras, Greece.





