ZAMM • Z. angew. Math. Mech. 77 (1997) 6, 467-475
Vrahatis, M. N.; Grapsa, T. N.; Ragos, O.; Zafiropoulos, F. A.

On the Localization and Computation of Zeros of Bessel Functions

Abstract

The topological degree of a continuous mapping is implemented for the calculation of the total number of the simple real zeros within any interval of the Bessel functions of first and second kind and their derivatives. A new algorithm, based on this implementation, is given for the localization and isolation of these zeros. Furthermore, a second algorithm is presented for their computation employing a modified bisection method. The only information required for this computation is the algebraic signs of function values. Moreover, lower and upper bounds of a zero can also be obtained.

MSC (1991): 33C10, 65D20, 34B30

1. Introduction

The study of the Helmholtz equation in cylindrical coordinates eventually leads to the well-known Bessel equation

$$
\begin{equation*}
x^{2} u^{\prime \prime}(x)+x u^{\prime}(x)+\left(x^{2}-v^{2}\right) u(x)=0, \tag{1}
\end{equation*}
$$

the solutions of which are
a) the Bessel function of order v and argument x of the first kind given by the series

$$
\begin{equation*}
J_{\nu}(x)=\frac{x^{\nu}}{2^{v}} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m} m!\Gamma(v+m+1)} \tag{2}
\end{equation*}
$$

which converges for every x and
b) the Bessel function of order \boldsymbol{v} and argument x of the second kind expressible in terms of functions of the first kind by the formula

$$
Y_{\nu}(x)=\left\{\begin{array}{cl}
\frac{J_{v}(x) \cos v \pi-J_{-v}(x)}{\sin v \pi}, & v \text { non-integral } \tag{3}\\
\lim _{n \rightarrow \nu} \frac{J_{n}(x) \cos n \pi-J_{-n}(x)}{\sin n \pi}, & v=0,1,2, \ldots
\end{array}\right.
$$

Regarding the zeros $j_{v}, j_{v}^{\prime}, y_{v}$, and y_{v}^{\prime} of the functions $J_{\nu}(x), J_{v}^{\prime}(x), Y_{v}(x)$, and $Y_{v}^{\prime}(x)$, respectively, the following holds (cf., e.g., $[5,28]$): For any real value of v these functions have infinitely many real zeros all of which are simple, with the possible exception of $x=0$. Especially, for $v \geq-1, J_{\nu}(x)$ has only real zeros. If $v \geq 0$, all zeros of $J_{v}^{\prime}(x)$ are real.

For non-negative ν, the k-th positive zeros of the above functions are denoted correspondingly by $j_{v, k}, j_{v, k}^{\prime}, y_{v, k}$, and $y_{v, k}^{\prime}$. They are interlaced according to the inequalities

$$
\begin{aligned}
& j_{v, 1}<j_{v+1,1}<j_{v, 2}<j_{v+1,2}<j_{v, 3}<\ldots \\
& y_{v, 1}<y_{v+1,1}<y_{v, 2}<y_{v+1,2}<y_{v, 3}<\ldots \\
& v \leq j_{v, 1}^{\prime}<y_{v, 1}<y_{v, 1}^{\prime}<j_{v, 1}<j_{v, 2}^{\prime}<y_{v, 2}^{\prime}<y_{v, 2}^{\prime}<j_{v, 2}<j_{v, 3}^{\prime}<\ldots
\end{aligned}
$$

The mathematical problem of localizing and computing zeros of Bessel functions, encountered in many fields in science and engineering, has drawn a lot of attention and has evolved to a rather specialized branch of mathematics.

In the present paper we implement the concept of the topological degree to calculate the total number of real roots of Bessel functions within a predetermined interval and to isolate each one of them. For this purpose we use Picard's extension [16, 17, 7, 8, 21] and either Kronecker theory or KEarfott's degree computation method. Once a zero is isolated, it can be computed numerically, utilizing a modified bisection method, to any accuracy (subject to relative machine precision). Thus, we propose two algorithms, one for the isolation and one for the computation of a real zero of a Bessel function. Upper and lower bounds for any root can also be produced.

2. The topological degree for the localization of zeros

Definition 1: Suppose that the function $F_{n}=\left(f_{1}, \ldots, f_{n}\right): \overline{\mathscr{Z}}^{n} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is twice continuously differentiable in the domain \mathscr{D}^{n} the boundary of which is denoted by $b\left(\mathscr{D}^{n}\right)$. Suppose further that the solutions of the equation

$$
\begin{equation*}
F_{n}(x)=\mathcal{O}_{n} \tag{4}
\end{equation*}
$$

where $\mathcal{O}_{n}=(0, \ldots, 0)$ denotes the origin of \mathbb{R}^{n}, are not located on $b\left(\mathscr{D}^{n}\right)$, and they are simple, i.e., the Jacobian determinant of F_{n} at these solutions is non-zero. Then the topological degree of F_{n} at \mathcal{O}_{n} relative to \mathscr{D}^{n} is denoted by $\operatorname{deg}\left[F_{n}, \mathscr{D}^{n}, \mathscr{O}_{n}\right]$ and can be defined by the following sum:

$$
\begin{equation*}
\operatorname{deg}\left[F_{n}, \mathscr{D}^{n}, \mathcal{O}_{n}\right]=\sum_{x \in F_{n}^{-1}\left(\mathcal{O}_{n}\right)} \operatorname{sgn} J_{F_{n}}(x) \tag{5}
\end{equation*}
$$

where $J_{F_{n}}$ indicates the determinant of the Jacobian matrix, and sgn defines the well known sign function with values

$$
\operatorname{sgn} \psi=\left\{\begin{aligned}
-1, & \text { if } \quad \psi<0 \\
0, & \text { if } \quad \psi=0 \\
1, & \text { if } \quad \psi>0
\end{aligned}\right.
$$

The above definition can be generalized when F_{n} is only continuous [6, 14].
Kronecker's theorem $[2,6,14]$ states that equation (4) has at least one root in \mathscr{D}^{n} if $\operatorname{deg}\left[F_{n}, \mathscr{D}^{n}, \mathcal{O}_{n}\right] \neq 0$.
The definition of the topological degree actually indicates that its value is equal to the number of simple solutions of equation (4) for which the Jacobian determinant is positive, minus the number of simple solutions for which the Jacobian is negative. Evidently, if all of them give the same Jacobian sign, then the total number \mathcal{N}^{r} of simple roots of $F_{n}(x)$ can be obtained by the value of $\operatorname{deg}\left[F_{n}, \mathscr{D}^{n}, \mathcal{O}_{n}\right]$. To this end PICARD has considered the following extensions of the function F_{n} and the domain \mathscr{D}^{n} :

$$
\begin{equation*}
F_{n+1}=\left(f_{1}, \ldots, f_{n}, f_{n+1}\right): \mathscr{D}^{n+1} \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \tag{6}
\end{equation*}
$$

where $f_{n+1}=y J_{F_{n}}$ and \mathscr{D}^{n+1} is the direct product of the domain \mathscr{D}^{n} with an arbitrary interval of the real y-axis containing the point $y=0$. Then the following system of equations,

$$
\begin{align*}
& f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, n \\
& y J_{F_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \tag{7}
\end{align*}
$$

possesses the same simple roots with $F_{n}(x)$, provided $y=0$. Also, it is easily seen that the Jacobian of (7) is equal to $J_{F_{n}(x)}^{2}$ which is always positive. Thus we conclude that the total number \mathcal{N}^{r} of solutions of equation (4) is

$$
\begin{equation*}
\mathscr{N}^{r}=\operatorname{deg}\left[F_{n+1}, \mathscr{D}^{n+1}, \mathscr{O}_{n+1}\right] \tag{8}
\end{equation*}
$$

2.1 Kronecker integral approach

The topological degree can be represented by the Kronecker integral as follows:

$$
\begin{equation*}
\operatorname{deg}\left[F_{n}, \mathscr{\mathscr { X }}^{n}, \mathscr{O}_{n}\right]=\frac{1}{\Omega_{n}} \iint_{b\left(\mathscr{\mathscr { O }}^{n}\right)} \cdots \int^{\sum_{i=1}^{n} A_{i} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{i-1} \mathrm{~d} x_{i+1} \ldots \mathrm{~d} x_{n}}\left(f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}\right)^{n / 2} \quad, \tag{9}
\end{equation*}
$$

where A_{i} define the following determinants:

$$
A_{i}=(-1)^{n(i-1)}\left|\begin{array}{ccccccc}
f_{1} & \frac{\partial f_{1}}{\partial x_{1}} & \ldots & \frac{\partial f_{1}}{\partial x_{i-1}} & \frac{\partial f_{1}}{\partial x_{i+1}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}} \\
f_{2} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{2}}{\partial x_{i-1}} & \frac{\partial f_{2}}{\partial x_{i+1}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
f_{n} & \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{i-1}} & \frac{\partial f_{n}}{\partial x_{i+1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right|,
$$

and Ω_{n} denotes the surface of a hypersphere in \mathbb{R}^{n} with radius one, i.e.: $\Omega_{n}=2 \pi^{n / 2} / \Gamma(n / 2)$.
The Kronecker integral has been numerically approximated with Gauss-Legendre quadrature [13].
In the present paper we study the zeros of a Bessel function, so we focus on the problem of calculating the total number of simple roots of a real function $f(x)$, defined in a predetermined interval $[a, b]$ and twice continuously differentiable in (a, b), where a and b are arbitrarily chosen so that $f(a) f(b) \neq 0$.

According to Picard's extension we consider the function $F_{2}=\left(f_{1}, f_{2}\right): \mathscr{P}^{2} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and the corresponding system

$$
\begin{equation*}
f_{1}(x, y)=f(x)=0, \quad f_{2}(x, y)=y f^{\prime}(x)=0 \tag{10}
\end{equation*}
$$

where the prime denotes differentiation, and \mathscr{P}^{2} is the rectangular parallelepiped $[a, b] \times[-\xi, \xi]$ in the (x, y)-plane with ξ an arbitrary positive constant. Since the roots are simple, which means $f^{\prime}(x) \neq 0$ for $x \in f^{-1}(0)$, it is easily seen that the solutions of system (10) in \mathscr{P}^{2}, and those of $f(x)=0$ in (a, b) are the same. Also, since $J_{F_{2}}=f^{\prime 2}$, the total
number of simple zeros \mathscr{N}^{r} of $f(x)$ in (a, b) is given by

$$
\begin{equation*}
\mathcal{N}^{r}=\operatorname{deg}\left[F_{2}, \mathscr{P}^{2}, \mathcal{O}_{2}\right] \tag{11}
\end{equation*}
$$

For the computation of the topological degree of F_{2} we apply Kronecker's integral (9) for $n=2$. Using the relations $\mathrm{d} f_{j}=\frac{\partial f_{j}}{\partial x_{1}} \mathrm{~d} x_{1}+\frac{\partial f_{j}}{\partial x_{2}} \mathrm{~d} x_{2}, j=1,2$, we obtain

$$
\begin{equation*}
\mathscr{N}^{r}=\frac{1}{2 \pi} \oint_{b\left(\mathscr{P}^{2}\right)} \frac{f_{1} \mathrm{~d} f_{2}-f_{2} \mathrm{~d} f_{1}}{f_{1}^{2}+f_{2}^{2}}=\frac{1}{2 \pi} \oint_{b\left(\mathscr{P}^{2}\right)} \mathrm{d} \arctan \left(\frac{f_{2}}{f_{1}}\right) . \tag{12}
\end{equation*}
$$

Replacing f_{1} and f_{2} by virtue of (10) and performing the integration in (12) we finally get

$$
\begin{equation*}
\mathscr{N}^{r}=-\frac{1}{\pi}\left[\xi \int_{a}^{b} \frac{f(x) f^{\prime \prime}(x)-f^{\prime 2}(x)}{f^{2}(x)+\xi^{2} f^{\prime 2}(x)} \mathrm{d} x-\arctan \left(\frac{\xi f^{\prime}(b)}{f(b)}\right)+\arctan \left(\frac{\xi f^{\prime}(a)}{f(a)}\right)\right] \tag{13}
\end{equation*}
$$

Remark 1: It has been explicitly shown by Picard [16, 17] that relation (13) is independent of the value of ξ. The above developed method is applied in the sequel for the localization of the simple real zeros of the Bessel functions of the first kind, $J_{v}(x)$. In this case relation (13) becomes

$$
\begin{equation*}
\mathscr{N}^{r}=-\frac{1}{\pi}\left[\xi \int_{a}^{b} G(x) \mathrm{d} x-\arctan \left(\frac{\xi J^{\prime} v(b)}{J_{\nu}(b)}\right)+\arctan \left(\frac{\xi J_{v}^{\prime}(a)}{J_{\nu}(a)}\right)\right] \tag{14}
\end{equation*}
$$

where the function $G(x)$, by means of equation (1), can be expressed in the following form:

$$
\begin{equation*}
G(x)=\frac{\left(\frac{v^{2}}{x^{2}}-1\right) J_{v}^{2}(x)-\frac{1}{x} J_{v}(x) J_{v}^{\prime}(x)-J_{v}^{\prime 2}(x)}{J_{v}^{2}(x)+\xi^{2} J_{v}^{\prime 2}(x)} \tag{15}
\end{equation*}
$$

2.2 Kearfott's approach

We could use any one of the degree computation methods (see e.g. [22, 13, 10, 11, 23, 24]) to determine the total number of zeros by virtue of equation (11). Here we use KEARFOTT's method [10, 11, 12] which compares favorably to other methods, in efficiency. This method is briefly described below.

Suppose that $S^{n-1}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ is an $(n-1)$-simplex $[22,10,11]$ in \mathbb{R}^{n} and assume $F_{n}=$ $\left(f_{1}, f_{2}, \ldots, f_{n}\right): S^{n-1} \rightarrow \mathbb{R}^{n}$ is continuous. Then the range simplex associated with S^{n-1} and F_{n}, denoted by $\mathscr{R}\left(S^{n-1}, F_{n}\right)$, is an $n \times n$ matrix with elements $\varrho_{i j}, 1 \leq i, j \leq n$, given by

$$
\varrho_{i j}=\left\{\begin{align*}
& 1, \text { if } \tag{16}\\
& f_{j}\left(x_{i}\right) \geq 0 \\
&-1, \text { if } \\
& f_{j}\left(x_{i}\right)<0
\end{align*}\right.
$$

$\mathscr{R}\left(S^{n-1}, F_{n}\right)$ is called usable if one of the following conditions hold:
a) the elements $\varrho_{i j}$ of $\mathscr{R}\left(S^{n-1}, F_{n}\right)$, are:

$$
\varrho_{i j}=\left\{\begin{align*}
1, & \text { if } \quad i \geq j \tag{17}\\
-1, & \text { if } \quad j=i+1
\end{align*}\right.
$$

b) $\mathscr{R}\left(S^{n-1}, F_{n}\right)$ can be put into this form by a permutation of its rows.

When $\mathscr{R}\left(S^{n-1}, F_{n}\right)$ is usable, then the parity $\operatorname{Par}\left(\mathscr{R}\left(S^{n-1}, F_{n}\right)\right)$ is defined to be 1 , if the number of the permutations of the rows required to put $\mathscr{R}\left(S^{n-1}, F_{n}\right)$ into the form (17) is even. If this number is odd then $\operatorname{Par}\left(\mathscr{R}\left(S^{n-1}, F_{n}\right)\right)$ is defined to be -1 . For all other cases, we set $\operatorname{Par}\left(\mathscr{R}\left(S^{n-1}, F_{n}\right)\right)=0$. Suppose that \mathscr{P}^{n} is an n-dimensional polyhedron for some $n \geq 2$, and that $\left\{S_{i}^{n-1}\right\}_{i=1}^{m}$ is a finite set of ($n-1$)-simplexes with disjoint interiors such that $\sum_{i=1}^{m} S_{i}^{n-1}=b\left(\mathscr{P}^{n}\right)$; then, under some assumptions regarding S_{i}^{n-1}, the value of the topological degree of F_{n} at \mathcal{O}_{n} relative to \mathscr{P}^{n} can be obtained by the following relation:

$$
\begin{equation*}
\operatorname{deg}\left[F_{n}, \mathscr{P}^{n}, \mathscr{O}_{n}\right]=\sum_{i=1}^{m} \operatorname{Par}\left(\mathscr{R}\left(S_{i}^{n-1}, F_{n}\right)\right) \tag{18}
\end{equation*}
$$

Remark 2: Kearfott's degree computation method is very efficient and has the advantage that it requires only the signs of function values to be correct.

2.3 Isolating a zero

With the above discussion in mind we give a description of our algorithm, in "pseudo-Pascal" (see e.g. [15]), independently of the degree computation method. In this algorithm $F_{\nu}(x)$ indicates the considered Bessel function of order \boldsymbol{v}, and (a, b) is a predetermined interval. It results in the total number \mathscr{N}^{r} of roots which exist within (a, b). Besides, it isolates one of them, bisecting the initial interval, and gives a lower bound a_{k} and an upper one, b_{k}, for this root. If the isolation of the rest of them is required, the whole procedure has to be repeated successively for the remaining intervals $\left(a, a_{k}\right)$ and ($\left.b_{k}, b\right)$.

Algorithm degree_isolate (a, b, \mathscr{N}^{r});

\{comment: This algorithm results in the total number \mathcal{N}^{r} of roots of $F_{\nu}(x)$ in (a, b) and isolates one of them \}.
procedure degree $\left(a_{k}, b_{k}, \mathscr{N}_{k}^{r}\right)$; \{comment: computes the total number of zeros\}
begin
Find \mathscr{N}_{k}^{r}, the number of zeros in (a_{k}, b_{k});
end \{degree\}
procedure isolation $\left(a_{k}, b_{k}, \mathcal{N}_{k}^{r}\right) ;\left\{\right.$ comment: isolates a zero of $F_{\nu}(x)$ in $\left.\left(a_{k}, b_{k}\right)\right\}$
begin
while $\mathcal{N}_{k}^{r}>1$ do
begin
degree $\left(a_{k}, \frac{a_{k}+b_{k}}{2}, \mathscr{N}_{1}^{r}\right) ;$
$\mathscr{N}_{2}^{r}:=\mathscr{N}_{k}^{r}-\mathscr{N}_{1}^{r} ;$
if $\mathscr{N}_{2}^{r}=0$ then isolation $\left(a_{k}, \frac{a_{k}+b_{k}}{2}, \mathscr{N}_{1}^{r}\right)$;
if $\mathscr{N}_{1}^{r}<\mathscr{N}_{2}^{r}$ and $\mathscr{N}_{1}^{r} \neq 0$ then isolation $\left(a_{k}, \frac{a_{k}+b_{k}}{2}, \mathscr{N}_{1}^{r}\right)$
else isolation $\left(\frac{a_{k}+b_{k}}{2}, b_{k}, \mathscr{N}_{2}^{r}\right)$;
end \{while\}
end \{isolation\}
begin \{degree_isolate $\}$
input a, b
degree $\left(a, b, \mathscr{N}^{r}\right)$;
$\mathcal{N}^{r}{ }_{*}^{r}:=\mathcal{N}^{r}$;
if $\mathscr{N}^{r}>1$ then isolation $\left(a, b, \mathscr{N}^{r}\right)$;
output $a, b, \mathcal{N}_{*}^{r}$
end. \{degree_isolate $\}$

3. Computing roots of Bessel functions

Having isolated one root of a Bessel function within an interval, we can use a modified version of the bisection method to compute it, as described in $[25,26]$. It is reported there that, in order to compute a solution of $f(x)=0$, where $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, the following iterative formula can be used:

$$
\begin{equation*}
x_{i+1}=x_{i}+c \operatorname{sgn} f\left(x_{i}\right) / 2^{i+1}, \quad i=0,1, \ldots \tag{19}
\end{equation*}
$$

with $x_{0}=a$ and $c=\operatorname{sgn} f(a)(b-a)$. The iterations (19) converge to a root $r \in(a, b)$ if for some $x_{i}, i=1,2, \ldots$, there holds $\operatorname{sgn} f\left(x_{0}\right) \operatorname{sgn} f\left(x_{i}\right)=-1$.
The number of iterations, η, which are required in obtaining an approximate root r^{*} such that $\left|r-r^{*}\right| \leq \varepsilon$ for some $\varepsilon \in(0,1)$, is given by

$$
\begin{equation*}
\eta=\left\lceil\log _{2}\left((b-a) \varepsilon^{-1}\right)\right\rceil \tag{20}
\end{equation*}
$$

where the notation $\lceil\cdot\rceil$ refers to the smallest integer not less than the real number quoted.
It is evident from (19) that the only computable information required by the bisection method consists in the algebraic signs of the function f; so it can be applied to problems with imprecise function values. Moreover, the bisection method is a globally convergent method, it always converges within the given interval, and it is optimal [19, 20] in the sense that it possesses asymptotically the best rate of convergence. Also, it can be efficiently implemented for the computation of all the zeros and extrema of a function [9].

To apply our method, as previously mentioned, we only need the algebraic signs of the function values to be correct. The following results suggest the number of terms necessary in order to determine the algebraic signs of $J_{v}(x)$.

Proposition 1: The sign of the Bessel function J_{v} for $v>-1$ is the same as the sign of the sum

$$
\begin{equation*}
L_{v}(x)=\frac{x^{\nu}}{2^{\nu}} \sum_{m=0}^{M+K+1}(-1)^{m} a_{m} \tag{21}
\end{equation*}
$$

where a_{m} are given by

$$
\begin{equation*}
a_{m}=\frac{x^{2 m}}{2^{2 m} m!\Gamma(\nu+m+1)} \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
M=\left\lceil\frac{-v-2+\sqrt{\nu^{2}+x^{2}}}{2}\right\rceil \tag{23}
\end{equation*}
$$

and K is defined so that the following relation holds:

$$
\begin{equation*}
\left|a_{M+K+1}\right|<\left|\sum_{k=0}^{M+K}(-1)^{k} a_{k}\right| \tag{24}
\end{equation*}
$$

Proof: We observe that
a) $a_{m}>0$,
b) $\lim _{m \rightarrow \infty} a_{m}=0$,
c) $a_{m} \geq a_{m+1} \Leftrightarrow 4(m+1)(\nu+m+1)>x^{2}$.

Thus, the series

$$
\begin{equation*}
R_{\nu}(x)=\sum_{m=M}^{\infty} \frac{(-1)^{m} x^{2 m}}{2^{2 m} m!\Gamma(v+m+1)} \tag{25}
\end{equation*}
$$

is an alternating series which satisfies the three conditions of Leibniz's Theorem provided that

$$
\begin{equation*}
m>\frac{-v-2+\sqrt{v^{2}+x^{2}}}{2} \tag{26}
\end{equation*}
$$

The Alternating Series Estimation Theorem ensures that the absolute value of the ($M+K+1$)-th term is larger than that of the remainder of the series $R_{v}(x)$. Furthermore, the signs of the $(M+K+1)$-th term and of the remainder of the series $R_{v}(x)$ are the same. Now, by assumption (24) (which is fulfilled for some term a_{i} since the sequence $\left\{a_{i}\right\}$ tends to zero when $i \rightarrow \infty$), the sign of the Bessel function $J_{v}(x)$ is the same as the corresponding sign of $L_{v}(x)$. Thus the proposition is proved.

We can now give a description of our algorithm that computes, within a predetermined accuracy ε, a real root of the Bessel function $J_{v}(x)$, which has been isolated in the interval $\left(a_{k}, b_{k}\right)$.

Algorithm compute_zero (a, b);
\{comment: This algorithm computes a zero of $J_{\nu}(x)$ in (a, b). It uses (19) and requires $\left.\Gamma(x), \varepsilon\right\}$.
procedure sign $(x, s) ;$ comment: finds the sign s of $\left.J_{v}(x)\right\}$
begin
$M:=\left\lceil\left(-v-2+\sqrt{\nu^{2}+x^{2}}\right) / 2\right\rceil ;$
$S:=0$;
for $m:=0$ to M do $S:=S+(-1)^{m} x^{2 m+v} /\left(2^{2 m+v} m!\Gamma(v+m+1)\right)$;
$m:=M+1$;
$T:=(-1)^{m} x^{2 m+v} /\left(2^{2 m+v} m!\Gamma(v+m+1)\right) ;$
while $|T| \geq|S|$ do
begin
$S:=S+T ;$
$m:=m+1$;
$T:=(-1)^{m} x^{2 m+v} /\left(2^{2 m+v} m!\Gamma(v+m+1)\right) ;$

$$
\text { end }\{\text { while }\}
$$

Find $s:=\operatorname{sign}(S+T)$;
end $\{\operatorname{sign}\}$
begin $\{$ compute_zero $\}$
input $a_{k}, b_{k}, \varepsilon$
$x_{0}:=a_{k} ;$
$\operatorname{sign}\left(x_{0}, s_{0}\right)$;
$c:=s_{0}\left(b_{k}-a_{k}\right)$;
for $i:=0$ to $\left\lceil\log _{2}\left(\left(b_{k}-a_{k}\right) \varepsilon^{-1}\right)\right\rceil$ do

begin

$$
\operatorname{sign}\left(x_{i}, s_{i}\right)
$$

$$
x_{i+1}:=x_{i}+s_{i} c / 2^{i+1}
$$

end
output x_{i+1}
end. $\{$ compute_zero $\}$

Remark 3: In order to obtain zeros of other Bessel functions, the above algorithm has to be adapted accordingly.

Evidently, utilizing the above results we are able to produce bounds for any real zero of a Bessel function. The following proposition proves it.

Proposition 2: Suppose that $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and (a,b) contains only one simple zero x^{*} of f. Consider the sequence (19) and its subsequences $\left\{x_{i}^{-}\right\},\left\{x_{i}^{+}\right\}$such that $\operatorname{sgn} f\left(x_{i}^{-}\right)=\operatorname{sgn} f(a)$, $\operatorname{sgn} f\left(x_{i}^{+}\right)=-\operatorname{sgn} f(a)=\operatorname{sgn} f(b)$. Then, a_{η} and b_{η}, determined so that

$$
\begin{equation*}
a_{\eta}=\max _{0 \leq i \leq \eta}\left\{x_{i}^{--}\right\}, \quad b_{\eta}=\min _{0 \leq i \leq \eta}\left\{x_{i}^{+}\right\}, \tag{27}
\end{equation*}
$$

where η is given by equation (20), for any $\varepsilon \in(0,1)$, constitute a lower and an upper bound of the zero x^{*} with $b_{\eta}-a_{\eta}<\varepsilon$.

Remark 4: The function f can be replaced by any of the Bessel functions considered in this paper.

4. Applications

We have tested our algorithms with several random intervals (a, b) and various Bessel functions. In each case we have calculated the total number \mathscr{N}^{r} of roots of the respective Bessel function existing within (a, b). For this calculation we have used both Kronecker's integral applied to Picard's extension and Kearfott's method. The computation of the integral of equation (14) depends on the integration method used. We have tried various integration methods. Here we exhibit the results obtained by Romberg's integration method. Also, we have observed that the speed of the numerical computation of the integral in equation (14) depends on the value of ξ. Our experience is that the fastest computation (using Romberg's method) can be obtained for $0.8 \leq \xi \leq 1.2$ while for other values the computational time increases (see Fig. 1). Kearfott's method is independent of the choice of ξ, but its speed depends on a stopping parameter p and the maximum tree depth MD [11]. In our case, we have obtained accurate results even for small values of p and MD, as for instance $p=1, \mathrm{MD}=2$.

Table 1 presents the number of zeros of Bessel functions of various orders v existing within some given intervals (a, b), as well as the respective subintervals $\left(a_{k}, b_{k}\right)$, where exactly one root, r_{k}, exists.

In Table 2 we give the first ten zeros of several Bessel functions, chosen at random, computed by Algorithm compute_zero.

Table 1

	a	b	\mathcal{N}^{+}	a_{k}	b_{k}	r_{k}
J_{0}	1	100	32	1.0000	4.09375	2.404825557695773
$J_{0.3}$	1	100	31	81.4375	87.62500	84.509788949453324
$J_{2.5}$	1	100	30	1.0000	7.18750	5.763459196894550
J_{10}	10	100	27	10.0000	15.62500	14.475500686554542
$J_{13,3}$	10	100	25	10.0000	21.25000	18.131465204981082
J_{50}	50	100	11	50.0000	62.50000	57.116899160119190
J_{0}^{\prime}	1	100	31	13.3750	19.56250	16.500922441528084
$J_{0.3}^{\prime}$	1	100	32	1.0000	4.09375	1.308699363719847
${ }^{\prime} J_{2.5}^{\prime}$	1	100	31	1.0000	7.18750	3.959527916501095
J_{10}	10	100	27	10.0000	15.62500	12.128927704415439
$J_{13,3}^{\prime}$	10	100	26	10.0000	15.62500	15.617873137336602
J_{50}^{\prime}	50	100	11	50.0000	56.25000	53.502858820400364
Y_{0}	1	100	31	13.3750	19.56250	16.470630050877633
$Y_{0.3}$	1	100	31	1.0000	7.18750	4.301991992307308
$Y_{2.5}$	1	100	31	1.0000	7.18750	3.632797319831763
Y_{10}	10	100	27	10.0000	15.62500	11.770876674955581
$Y_{13.3}$	10	100	26	10.0000	15.62500	15.242738650014224
Y_{50}	50	100	11	50.0000	56.25000	52.997640387316651
Y_{0}^{\prime}	1	100	32	1.0000	4.09375	2.197141326031016
$Y_{0,3}^{\prime}$	1	100	31	81.4375	87.62500	84.503872394936382
$Y_{2.5}^{\prime}$	1	100	30	1.0000	7.18750	5.634296563929559
Y_{10}^{10}	10	100	27	10.0000	15.62500	14.353013743699869
$Y_{13.3}^{1}$	10	100	25	10.0000	21.25000	18.006479815952494
Y_{50}^{\prime}	50	100	11	50.0000	62.50000	56.962904275167517

Fig. 1. Time required for the computation of the topological degree using Kronecker's integral versus ξ and comparison with Kearfott's method

Table 2. Zeros of various Bessel functions computed by Algorithm compute_zero

J_{0}	2.404825557695773	$J_{2.5}$	5.763459196894550	J_{50}	57.116899160119190
	5.520078110286310		9.095011330476354		62.807698764835380
	8.653727912911011		12.322940970566584		67.697408410764783
	11.791534439014282		15.514603010886749		72.190366544011145
	14.930917708487784		18.689036355362817		76.437072182667940
	18.071063967910918		21.853874222709777		80.513239317465752
	21.211636629879254		25.012803202289602		84.463252949061289
	24.352471530749303		28.167829707993626		88.315711749199524
	27.493479132040244 .		31.320141707447189		92.090274456391647
	30.634606468431967		34.470488331285007		95.801108265953272
J_{0}^{\prime}	3.957678419314857	$J_{2.5}^{\prime}$	3.959527916501094	J_{50}^{\prime}	53.502858820400364
	7.086051060301773		7.451610064214504		60.112444427740558
	10.222345043496417		10.715647375791513		65.317141149297498
	13.361097473872762		13.921686012308782		69.981432989702090
	16.500922441528084		17.103359117208743		74.338747166755810
	19.641309700887942		20.272369140216535		78.493210918315127
	22.782028047291558		23.433926142067801		82.501961830679640
	25.922957653180932		26.590716631086269		86.400289204160094
	29.064030252728390		29.744270680556565		90.211743342930555
	32.205204116493269		32.895525188224304		93.952927913983330
Y_{0}	3.831705970207513	$Y_{2.5}$	3.632797319831762	Y_{50}	
	7.015586669815619		7.367008971566918		60.026319332799442
	10.173468135062721		10.663561390481999		65.272723327026940
	13.323691936314222		13.883369775209742		69.951692734372273
	16.470630050877633		17.072848832681667		74.316349977805003
	19.615858510468247		20.246944819393926		78.475187454486474
	22.760084380592769		23.412099866421985		82.486831848982885
	25.903672087618386		26.571579024683013		86.387212778756663
	29.046828534916836		29.727222608526206		90.200199617262318
	32.189679910974398		32.880149822147309		93.942572252611562
Y_{0}^{\prime}		$Y_{2.5}^{\prime}$	5.634296563929560	Y_{50}^{\prime}	56.962904275167517
	5.429681040794136		9.030901729624809		62.748881669459305
	8.596005868331170		12.278862551656813		67.661781418302983
	11.749154830839879		15.480654965172806		72.164827720771193
	14.897442128336724		18.661308999166464		76.417109157783180
	18.043402276727858		21.830389858741036		80.496796665401667
	21.188068934142211		24.992411488536626		84.449230155149340
	24.331942571356901		28.149798292577922		88.303453538378357
	27.475294980449235		31.303973776577955		92.079360103387758
	30.618286491641110		34.455830546321302		95.791251970104038

Fig. 2. The number of terms to be added for the determination of the sign of $J_{v}(x)$ versus x for $\nu=0,10.5,20,50,100,200$

By virtue of Proposition 1, we have obtained the number of terms of J_{v} required to obtain the corresponding algebraic sign for various values of the order v and the argument x. As it is shown in Fig. 2, the number of terms decreases as the order increases.

5. Concluding remarks

An efficient method for locating, isolating, and computing real zeros of Bessel functions is described in this paper. It has been implemented and tested, and our experience is that it behaves predictably and accurately.

The first phase of this method (algorithm degree_isolate) exploits topological degree theory and especially Picard's extension to calculate the total number of real roots of Bessel functions within a predetermined interval and to isolate one of them. This procedure can be repeated for the isolation of each one of the zeros in this interval.

Once a zero is isolated, the second phase (algorithm compute_zero) is applied for its computation to any accuracy (subject to relative machine precision). This algorithm utilizes a modified bisection method. The only computable information required consists in the algebraic signs of the function and, consequently, it is not affected by imprecise function values. Moreover, it always converges rapidly to a zero within the initially specified region independently of the starting guess. It is also a globally convergent method, it can be applied to nondifferentiable continuous functions and does not involve derivatives or approximations of such derivatives. Furthermore, the number of iterations needed to compute a zero to a predetermined accuracy is a priori known.

The rootfinding portion of our method requires the smallest amount of function value information which is its algebraic sign. Using this and the stopping criterion (20), it computes a zero of a Bessel function within a given accuracy.

We have been able to calculate the total number of zeros by computing the value of the topological degree of (11) utilizing efficient methods such as Stenger's [22], Stynes' [23, 24], or Kearfott's method [10, 11] (see also [1]), which are based only on sign calculations.

For large argument x, one can use the usual asymptotic expressions for Bessel functions [28]. Moreover, if one would like to compute zeros of a combination of Bessel functions which may not be an alternating series, the van Wijngaarden transformation can be used to convert this new series into an alternating one [18]. Furthermore, very accurate function values for the Bessel functions can be obtained by employing Steed's and Temme's methods [18], or, alternatively, by means of Coulomb functions, employing Barnett's procedure [3, 4].

When just one root is required, the isolation portion of our method can be avoided if the function values at the endpoints of the given interval are opposite (see [27] for extensions). This is so because, in this case, the modified bisection method always converges to a zero.

Since the first derivatives of Bessel functions are available, it is at the user's disposal to apply any other rootfinding method, as for instance Newton's method, to accelerate the convergence within the predetermined interval. In such a case, though, unless the starting point is close enough to a zero and certainly away from an extremum of the function, convergence is not ensured. Thus, a few initial steps of our method should be performed so that these conditions are satisfied.

At last, for any given interval $\left(a_{k}, b_{k}\right)$ containing a single zero of a Bessel function, Proposition 2 can provide a lower and an upper bound for this zero, theoretically as close to it as one desires, but practically as close to it as the accuracy of the calculations permits.

Acknowledgements: We are indebted to Professor Ralph Baker Kearfott for kindly providing his Fortran version of a program described in [10].

References

1 Aberth, O.: Computation of topological degree using interval arithmetic, and applications. Math. Comput. 62 (1994), 171-178.
2 Alexandroff, P.; Hopf, H.: Topologie. Springer-Verlag, Berlin 1935; reprinted: Bronx, Chelsea, New York 1965.
3 Barnett, A. R.: KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Commun. 24 (1981), 141-159.

4 Barnett, A. R.: COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed's method. Comput. Phys. Commun. 27 (1982), 147-166.
5 Courant, R.; Hilbert, D.: Methods of mathematical physics. Vol. 1. Wiley-Interscience, New York 1953.
6 Cronin, J.: Fixed points and topological degree in nonlinear analysis. Mathematical Surveys No. 11, Amer. Math. Soc., Providence, Rhode Island 1964.
7 Hoenders, B. J.; Slump, C. H.: On the calculation of the exact number of zeroes of a set of equations. Computing 30 (1983), 137-147.
8 Hoenders, B. J.; Slump, C. H.: On the determination of the number and multiplicity of zeros of a function. Computing 47 (1992), 323-336.

9 Kavvadias, D.; Vrahatis, M. N.: Locating and computing all the simple roots and extrema of a function. SIAM J. Sci. Comput. 17 (1996), 1232-1248.
10 Kearfott, R. B.: Computing the degree of maps and a generalized method of bisection. Ph. D. dissertation, Department of Mathematics, University of Utah, S.L.C. 1977.
11 Kearfott, R. B.: An efficient degree-computation method for a generalized method of bisection. Numer. Math. 32 (1979), 109-127.
12 Kearfott, R. B.: private communication.
13 O'Neil, T.; Thomas, J.: The calculation of the topological degree by quadrature. SIAM J. Numer. Anal. 12 (1975), 673-680.
14 Ortega, J. M.; Rheinbolt, W. C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York 1970.

15 Papadimitriou, C. H.; Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1982.
16 Picard, E.: Sur le nombre des racines communes à plusieurs équations simultanées. J. de Math. Pure et Appl., 4^{e} série 8 (1892), 5-24.
17 Picard, E.: Traité d'analyse. 3rd ed., chap. 4.7, Gauthier-Villars, Paris 1922.
18 Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, W. T.: Numerical recipes, the art of scientific computing. 2nd ed. Cambridge University Press, New York 1992.
19 Sikorski, K.: Bisection is optimal. Numer. Math. 40 (1982), 111-117.
20 Sikorski, K.; Trojan, G. M.: Asymptotic near optimality of the bisection method. Numer. Math. 57 (1990), 421-433.
21 Slump, C. H.; Hoenders, B. J.: The determination of the location of the global maximum of a function in the presence of several local extrema. IEEE Trans. Inform. Theory IT-31 (1985), 490-497.
22 Stenger, F.: Computing the topological degree of a mapping in \mathbb{R}^{n}. Numer. Math. 25 (1975), 23-38.
23 Stynes, M.: An algorithm for the numerical calculation of the degree of a mapping. Ph. D. dissertation, Department of Mathematics, Oregon State University, Corvallis 1977.
24 STYNES, M.: An algorithm for numerical calculation of topological degree. Appl. Anal. 9 (1979), 63-77.
25 Vrahatis, M. N.: Solving systems of nonlinear equations using the nonzero value of the topological degree. ACM Trans. Math. Software 14 (1988), 312-329.
26 Vrahatis, M. N.: ChabIS: A mathematical software package for locating and evaluating roots of systems of nonlinear equations. ACM Trans. Math. Software 14 (1988), 330-336.
27 Vrahatis, M. N.: A short proof and a generalization of Miranda's existence theorem. Proc. Amer. Math. Soc. 107 (1989), 701-703.
28 Watson, G. N.: A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge 1966.
Received July 24, 1995 at ZAA; received at ZAMM September 1, 1995, accepted May 7, 1996
Address: Prof. Dr. M. N. Vrahatis, Dr. T. N. Grapsa, Dr. O. Ragos, Dr. F. A. Zafiropoulos, Department of Mathematics, University of Patras, GR-26110 Patras, Greece

