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On the Localization and Computation of Zeros of Bessel Functions 

The topological degree of a continuous mapping is implemented for the calculation of the total number of the simple real 
zeros within any interval of the Bessel functions of first and second kind and their derivatives. A new algorithm, based 
on this implementation, is given for the localization and isolation of these zeros. Furthermore, a second algorithm is 
presented for their computation employing a modified bisection method. The only information required for this computa- 
tion i s  the algebraic signs of function values. Moreover, lower and upper bounds of a zero can also be obtained. 
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1. Introduction 

The study of the Helmholtz equation in cylindrical coordinates eventually leads to the well-known Bessel equation 

2 2 U N ( X )  + xu/(x) + ( x 2  - v2) u(x) = 0 , (1) 

the solutions of which are 
a) the Bessel function of order v and argument x of the first kind given by the series 

which converges for every x and 

kind by the formula 
b) the Bessel function of order v and argument x of the second kind expressible in terms of functions of the first 

Jv(x) cosvn - J p V ( X )  , v non-integral , 

, v = O ,  1, 2, . . .  

sin v n  
Jn(2) C O S ~ ~  - J-n(x) 

sin nn 

Y v ( x )  = 

n - v  

(3) 

Regarding the zeros jv, j : ,  yy, and y!! of the functions JV(x), J i ( x ) ,  Yv(x), and C(x), respectively, the following 
holds (cf., e.g., [5 ,  281): For any real value of v these functions have infinitely many real zeros all of which are simple, 
with the possible exception of II: = 0. Especially, for v 2 -1, Jy(x) has only real zeros. If v 2 0, all zeros of Jb(x) are 
real. 

For non-negative v, the k-th positive zeros of the above functions are denoted correspondingly by j v , k ,  j:,,, y v , k l  

and d,k.  They are interlaced according to the inequalities 

jY,1 < j v + l , l  < jY ,2  < j v + 1 , 2  < 5 5 3  

Yv, l  < Y v + l , l  < Yv,2 < Y v + l , 2  < Yv,3 < . . . 1 

. . . 1 

v I j:,1 < Yv, l  < Y:,l < j v , l  < j:,2 < Yv,2 < y:,2 < j v , 2  < j:,3 < . . . . 

The mathematical problem of localizing and computing zeros of Bessel functions, encountered in many fields in science 
and engineering, has drawn a lot of attention and has evolved to a rather specialized branch of mathematics. 

In the present paper we implement the concept of the topological degree to calculate the total number of real 
roots of Bessel functions within a predetermined interval and to isolate each one of them. For this purpose we use 
PICARD'S extension [16, 17, 7, 8, 211 and either Kronecker theory or KEARFOTT'S degree computation method. Once a 
zero is isolated, it can be computed numerically, utilizing a modified bisection method, to any accuracy (subject to 
relative machine precision). Thus, we propose two algorithms, one for the isolation and one for the computation of a 
real zero of a Bessel function. Upper and lower bounds for any root can also be produced. 

2. The topological degree for the localization of zeros 

Definition 1: Suppose that the function F,, = (fi, . . . , f n )  : an C lR" ---t IR" is twice continuously differentiable 
in the domain 9' the'boundary of which is denoted by b ( 9 " ) .  Suppose further that the solutions of the equation 

F n ( x )  = o n  (4) 

31* 
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where Lo, = (0, . . . , 0) denotes the origin of R', are not located on b(gn), and they are simple, i.e., the Jacobian 
determinant of F, at these solutions is non-zero. Then the topological degree of F, at 0, relative to  9, is denoted by 
deg [F,, gn, On] and can be defined by the following sum: 

where JF,, indicates the determinant of the Jacobian matrix, and sgn defines the well known sign function with values 

-1, if v / < O ,  
sgnty= 0, if w = 0 ,  { 1, if v/ > 0 .  

The above definition can be generalized when F, is only continuous [6, 141. 
Kronecker's theorem [a1 6, 141 states that equation (4) has at least one root in 9' if deg [F', P, Lo,] # 0. 
The definition of the topological degree actually indicates that its value is equal to the number of simple solu- 

tions of equation (4) for which the Jacobian determinant is positive, minus the number of simple solutions for which 
the Jacobian is negative. Evidently] if all of them give the same Jacobian sign, then the total number M' of simple 
roots of F,(x) can be obtained by the value of deg [F,, W ,  0'1. To this end PICARD has considered the following 
extensions of the function F, and the domain 9,: 

F,,+1 = (f1, . .  . ,  f,, f n + l )  : W+l c IRn+l + lR71+l ,  (6) 

where fr1+1 = ~ J E ,  and 9,'' is the direct product of the domain 9' with an arbitrary interval of the real y-axis 
containing the point y = 0. Then the following system of equations, 

possesses the same simple roots with F,(z), provided y = 0. Also, it is easily seen that the Jacobian of (7) is equal to 
Jin(z ,  which is always positive. Thus we conclude that the total number N r  of solutions of equation (4) is 

1 Lon+1]. (8) 
.Air = deg[F,+I, a r k  + 1 

2.1 Kronecker integral approach 

The topological degree can be represented by the Kronecker integral as follows: 

where Ai define the following determinants: 

?f 1 af 1 

a X i  - 1 

, 

and S Z ,  denotes the surface of a hypersphere in Rn with radius one, i.e.: SZn = 2nn/2/r(n/2). 
The Kronecker integral has been numerically approximated with Gauss-Legendre quadrature [13]. 
In the present paper we study the zeros of a Bessel function, so we focus on the problem of calculating the total 

number of simple roots of a real function f(x) ,  defined in a predetermined interval [a,  b] and twice continuously diffe- 
rentiable in ( a ,  b ) ,  where a and b are arbitrarily chosen so that f ( a )  f ( b )  # 0. 

According to Picard's extension we consider the function F2 = (f1, fi) : 9' c R2 --i R2 and the corresponding 
system 

where the prime denotes differentiation, and Y2  is the rectangular paraIIelepiped [u, b] x [ -E,  61 in the (x, y)-plane 
with 5 an arbitrary positive constant. Since the roots are simple, which means f'(x) # 0 for x E f-'(O), it is easily seen 
that the solutions of system (10) in @, and those of f (x)  = 0 in (a ,  b )  are the same. Also, since JF2 = f f 2 ,  the total 
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number of simple zeros N' of f (x) in ( a ,  b) is given by 

,lr' = deg [Fz, Y', 0 2 1 .  (11) 

For the computation of the topological degree of F 2  we apply Kronecker's integral (9) for n = 2. Using the relations 

d f . - a f3  d x l + d f ,  d x a , j = 1 , 2 , w e o b t a i n  
- (3x1 (3x2 

Replacing f1 and f 2  by virtue of (10) and performing the integration in (12) we finally get 

Remark 1: It has been explicitly shown by PICARD [16, 171 that relation (13) is independent of the value of 5. 
The above developed method is applied in the sequel for the localization of the simple real zeros of the Bessel 

functions of the first kind, Jv(x).  In this case relation (13) becomes 

S J / v ( b )  6JXa)  G ( x )  dx - arctan - 
n ( Jv(b)  ) + arctan (m)] ' 

where the function G(z), by means of equation (l), can be expressed in the following form: 

1 ($ - 1) J , ' (X )  -; Jv(X) J h ( X )  - J:"(x) 
G ( x )  = 

J,2(2) + ,E2J;2(X) 

2.2 KEARFOTT'S approach 

We could use any one of the degree computation methods (see e.g. [22, 13, 10, 11, 23, 241) to determine the total 
number of zeros by virtue of equation (11). Here we use KEARFOTT'S method [lo, 11, 121 which compares favorably to 
other methods, in efficiency. This method is briefly described below. 

Suppose that S"-' = (XI, 2 2 ,  . . . ,  2,) is an (n- 1)-simplex [22, 10, 111 in IR" and assume F, = 
( f l ,  f 2 ,  , . . , f,) : Sn-l + lRn is continuous. Then the range simplex associated with S"-' and F,, denoted by 
B(S"-', F,), is an n x n matrix with elements eij, 15 i, j 5 n, given by 

1, if f j ( 4  2 0 ,  
-1, if f j ( I c % )  < 0 .  ez3 = 

92(Sn-', F,) is called usable if one of the following c o n d i t i o n s  hold: 
a) the elements eZ3 of 92(Sn-', F,), are: 

1, if i > j ,  i -1, if j = i + l .  Q2J = 

b) B(SrL- ' ,  F,) can be put into this form by a permutation of its rows. 

When B(Sn- ' ,  F,) is usable, then the pari ty  Par (92(Sn-', F,)) is defined to be 1, if the number of the permuta- 
tions of the rows required to put 9 ( S n - ' ,  F,) into the form (17) is even. If this number is odd then Par ( 9 ( S n - ' ,  F,)) 
is defined to be -1. For all other cases, we set Par (92(Sn-', F,)) = 0. Suppose that Yn is an n-dimensional poly- 
hedron for some n 2 2, and that {S:-l}y=l is a finite set of (n - 1)-simplexes with disjoint interiors such that 

S:-' = b ( 9 ' " ) ;  then, under some assumptions regarding Sr-', the value of the topological degree of F, at Lo, 
1 = 1  

relative to 9'' can be obtained by the following relation: 

Remark 2: Kearfott's degree computation method is very efficient and has the advantage that it requires only 
the signs of function values to be correct. 
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2.3 Isolating a zero 

With the above discussion in mind we give a description of our algorithm, in "pseudo-Pascal" (see e.g. [15]), independently 
of the degree computation method. In this algorithm Fv(z )  indicates the considered Bessel function of order Y, and (a ,  b)  is 
a predetermined interval. It results in the total number JV' of roots which exist within (a ,  b ) .  Besides, it isolates one of 
them, bisecting the initial interval, and gives a lower bound ak and an upper one, b k ,  for this root. If the isolation of the 
rest of them is required, the whole procedure has to be repeated successively for the remaining intervals (a ,  ak) and ( b k ,  b ) .  

{comment: This algorithm results in the total number A'' of roots of Fv(z)  in (a ,  b )  and isolates one of them}. 
procedure degree ( a k ,  b k ,  M i ) ;  {comment: computes the total number of zeros} 

A l g o r i t h m  degree-isolate (a ,  b ,  M ' ) ;  

begin 

end {degree} 

begin 

Find Jfi, the number of zeros in ( a k ,  b k ) ;  

procedure isolation ( a k ,  b k ,  . I rk) ;  {comment: isolates a zero of Fv(z) in ( a k ,  b k ) }  

while M i  > 1 do 
begin 

degree a k ,  - 
a k + b k  2 

&";:=Mi - J f ; ;  
if M ;  = 0 then isolation 

if JI < Jf; and Jfi  # 0 then isolation a k ,  - 
a k + b k  2 

end {isolation} 
begin {degree-isolate} 

input a,  b 
degree (a ,  b, M ' ) ;  
Jff '* := Jf r ; 
if M' > 1 then isolation (a, b, N ' ) ;  
output a,  b ,  

end. {degree-isolate} 

3. Computing roots of Bessel functions 

Having isolated one root of a Bessel function within an interval, we can use a modified version of the bisection method 
to compute it, as described in [25, 261. It is reported there that, in order to compute a solution of f(x) = 0, where 
f :  [a, b] c IR lR is continuous, the following iterative formula can be used: 

z l+ l  = z i + ~ s g n f ( z , ) / 2 ' + ~ ,  i = o ,  1, . . .  , (19) 
with 20 = a and c = sgn f ( a )  ( b  - a). The iterations (19) converge to a root r E (a ,  b )  if for some z,, i = 1, 2, . . . , there holds 

The number of iterations, 9, which are required in obtaining an approximate root r* such that Ir - r*l 5 E for some 
E E (0, l), is given by 

sgn f(xo) sgnf (z I )  = -1. 

71 = [log, ( ( b  - a )  &-l)l 1 (20) 
where the notation 1.1 refers to the smallest integer not less than the real number quoted. 

It is evident from (19) that the only computable information required by the bisection method consists in the 
algebraic signs of the function f ;  so it can be applied to problems with imprecise function values. Moreover, the bisec- 
tion method is a globally convergent method, it always converges within the given interval, and it is optimal [19, 201 in 
the sense that it possesses asymptotically the best rate of convergence. Also, it can be efficiently implemented for the 
computation of all the zeros and extrema of a function [9]. 

To apply our method, as previously mentioned, we only need the algebraic signs of the function values to be 
correct. The following results suggest the number of terms necessary in order to determine the algebraic signs of J,,(z). 

Proposition 1: The sign of the Bessel function J, for v > -1 as the same as the sign of the sum 
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where a,  are given by 

with 

and K is defined so that the following relation holds: 

P roof  : We observe that 
a) am > 0, 
b) lim a,  = 0, 

c) a ,  2 am+l * 4(m+ 1) (v+m+ 1) > x2. 
m i c c  

Thus, the series 

is an alternating series which satisfies the three conditions of Leibniz's Theorem provided that 

-v - 2 + 4G-7 
2 

m >  

(23) 

(24)  

The Alternating Series Estimation Theorem ensures that the absolute value of the ( M  + K + 1)-th term is larger than that 
of the remainder of the series R,,(z). Furthermore, the signs of the ( M  + K + 1)-th term and of the remainder of the series 
&(z) are the same. Now, by assumption (24) (which is fulfilled for some term ai since the sequence {a i }  tends to zero when 
i + CQ) , the sign of the Bessel function J,,(x) is the same as the corresponding sign of L y ( z ) .  Thus the proposition is proved. 

We can now give a description of our algorithm that computes, within a predetermined accuracy E ,  a real root of 
the Bessel function J,,(z), which has been isolated in the interval (ak, bk) .  

A l g o r i t h m  compute-zero (a ,  b ) ;  
{comment: This algorithm computes a zero of J,,(z) in ( a ,  b) .  It uses (19) and requires T ( z ) ,  E } .  

procedure sign (z, s); {comment: finds the sign s of J,,(z)} 
begin 

M := [( --Y - 2 + @-Ti?) /21 ; 
s:= 0; 
for m:=O to Mdo S : = S + ( - 1 ) " z 2 m + y / ( 2 2 m f v ~ ! ~ ( ~ + ~ + 1 ) ) ;  
m:=M+ 1; 
T:=( - l )mx2m+v/ (22m+"m!~(v+m + 1)); 
while \TI 2 IS( do 

S:=S+T; 
m:=m + 1; 
T:= (-l)m 22m+Y/(22m+vm!r(v + m + 1)); 

begin 

end {while} 
Find s := sign (S + 2') ; 

end {sign} 
begin {compute-zero} 

input Uk, b k ,  E 

2 0  := ak; 

sign ( Z O l  so); 
c:=s& - a k ) ;  

for i := 0 to [log, ((bk - a k )  ~ - l ) l  do 
begin 

sign (xz, st) ; 
xz+l:=x, +szc/2z+1; 

end 
output 2, + 1 

end. {compute-zero} 
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Remark 3: In order to obtain zeros of other Bessel functions, the above algorithm has to be adapted accord- 

Evidently, utilizing the above results we are able to produce bounds for any real zero of a Bessel function. The 
ingly. 

following proposition proves it. 

Proposition 2: Suppose that f : [a,  b] c IR --f IR is  a continuous function and ( a ,  b) contains only one simple 
zero z of f .  Consider the sequence (19) and its subsequences {z;}, {x:} such that sgnf(z,) = sgn f (a ) ,  
sgn f ( z t )  = -sgn f ( a )  = sgn f ( b ) .  Then,  av and b,, determined so that 

* 

a, = max {z;} , 
05Z<rl  

b - min {z:}, , - o < i j ,  

where 7 is  given by equation (20), for any E E (0, l), constitute a lower and a n  upper bound of the zero z* with 
b, - a,, < E .  

Remark 4: The function f can be replaced by any of the Bessel functions considered in this paper. 

4. Applications 

We have tested our algorithms with several random intervals (a ,  b) and various Bessel functions. In each case we have 
calculated the total number J ’ of roots of the respective Bessel function existing within (a, b). For this calculation we 
have used both Kronecker’s integral applied to Picard’s extension and Kearfott’s method. The computation of the 
integral of equation (14) depends on the integration method used. We have tried various integration methods. Here we 
exhibit the results obtained by Romberg’s integration method. Also, we have observed that the speed of the numerical 
Computation of the integral in equation (14) depends on the value of E .  Our experience is that the fastest computation 
(using Romberg’s method) can be obtained for 0.8 5 6 5 1.2 while for other values the computational time increases 
(see Fig. 1). Kearfott’s method is independent of the choice of 6, but its speed depends on a stopping parameter p and 
the maximum tree depth MD [ll]. In our case, we have obtained accurate results even for small values of p and MD, 
as for instance p = 1, MD = 2. 

Table 1 presents the number of zeros of Bessel functions of various orders v existing within some given intervals 
(a ,  b), as well as the respective subintervals (ak, bk), where exactly one root, r k ,  exists. 

In Table2 we give the first ten zeros of several Bessel functions, chosen at  random, computed by Algorithm 
compute-zero. 

T a b l e  1 

a b 

1 
1 
1 

10 
10 
50 

1 
1 
1 

10 
10 
50 

1 
1 
1 

10 
10 
50 

1 
1 
1 

10 
10 
50 

100 
100 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 

-,Ifr a k  

32 1.0000 
31 81.4375 
30 1.0000 
27 10.0000 
25 10.0000 
11 50.0000 

31 13.375 0 
32 1.0000 
31 1.0000 
27 10.0000 
26 10.000 0 
11 50.0000 

31 13.375 0 
31 1.0000 
31 1.000 0 
27 10.000 0 
26 10.0000 
11 50.0000 

32 1.0000 
31 81.4375 
30 1.0000 
27 10.000 0 
25 10.000 0 
11 50.0000 

4.093 75 
87.62500 

7.18750 
15.62500 
21.250 00 
62.50000 

19.56250 
4.09375 
7.18750 

15.625 00 
15.62500 
56.25000 

19.56250 
7.18750 
7.18750 

15.62500 
15.625 00 
56.25000 

4.093 75 
87.625 00 
7.18750 

15.62500 
21.250 00 
62.50000 

2.404 825 557 695 773 
84.509 788 949 453 324 
5.763 459 196 894550 

14.475 500 686 554 542 
18.131 465204981 082 
57.116899160119190 

16.500922441 528084 
1.308699363719847 
3.959527916501 095 

12.128 927704415439 
15.617873 137336602 
53.502 858820400364 

16.470 630 050 877633 
4.301 991 992 307308 
3.632797319831 763 

11.770 876 674 955 581 
15.242 738650014224 
52.997640387316651 

2.197 141 326031 016 
84.503 872 394 936 382 

5.634 296 563929 559 
14.353 013 743 699869 
18.006479815952494 
56.962 904 275 167517 
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N = 3  1 

[a, a]=[ I, 1001 

, 

Kronecker 

Fig. 1. Time required for the computation of the to- 
pological degree using Kronecker's integral versus ( 
and comparison with Kearfott's method 

0 

Table 2. Zeros of various Bessel functions computed by Algorithm compute-zero 

Jo 2.404825557695 773 
5.520078 110286310 
8.653727912911 011 

11.791 534439 014 282 
14.930917708487784 
18.071 063967910918 
21.211636629879254 
24.352 471 530 749 303 
27.493 479 132 040 244 
30.634606468431 967 

3.957678 419 314 857 
7.086 051 060 301 773 

10.222345 043496417 
13.361 097473 872762 
16.500 922 441 528084 
19.641 309 700 887942 
22.782028047291 558 
25.922 957 653 180 932 
29.064 030 252 728 390 
32.205204116493269 

J6 

YO 3.831 705970207513 
7.015586669 815619 

10.173468 135062 721 
13.323691 936314222 
16.470630050 877633 
19.615 858510468247 
22.760 084 380 592 769 
25.903672087618386 
29.046 828 534 916 836 
32.189 679 910 974 398 

2.197141326031 016 
5.429681 040 794 136 
8.596 005 868 331 170 

11.749 154830 839 879 
14.897442 128336724 
18.043402276 727858 
21.188 068 934 142 211 
24.331 942 571 356901 
27.475 294980 449 235 
30.618286491 641 110 

J2.5 5.763459 196894550 
9.095011 330476354 

12.322940970566584 
15.514603010886 749 
18.689036 355362 817 
21.853874222709777 
25.012803202289 602 
28.167829 707993 626 
31.320141 707447189 
34.470 488 331 285 007 

J i .5  3.959527916501 094 
7.451 610064214504 

10.715647375791513 
13.921686012308782 
17.103359 117208 743 
20.272 369 140 216 535 
23.433926 142 067801 
26.590 716631 086 269 
29.744 270 680 556 565 
32.895 525 188 224304 

y2.5 3.632797319831 762 
7.367008971 566918 

10.663 561 390481 999 
13.883 369 775 209 742 
17.072848832681 667 
20.246 944 819 393 926 
23.412099866421 985 
26.571 579024683013 
29.727 222 608 526 206 
32.880 149 822 147 309 

5.634 296 563 929 560 
9.030 901 729 624 809 

12.278862551 656813 
15.480654965 172806 
18.661 308999 166464 
21.830389858741 036 
24.992 41 1 488 536 626 
28.149798292577922 
31.303973776577955 
34.455 830546 321 302 

Yi.5 

J50 57.116 899 160 119 190 
62.807698764835380 
67.697408410764783 
72.190 366 544 011 145 
76.437072 182667940 
80.513239317465752 
84.463 252 949061 289 
88.315711 749199524 
92.090 274456 391 647 
95.801 108 265 953 272 

JLO 53.502 858 820 400 364 
60.112 444427 740 558 
65.317141 149297498 
69.981 432 989 702 090 
74.338 747 166 755 810 
78.493210918315 127 
82.501 961830679640 
86.400 289 204 160 094 
90.211 743342930555 
93.952927913 983330 

Y S O  52.997640 387316 651 
60.026319332799442 
65.272 723327026940 
69.951 692 734 372 273 
74.316349977805003 
78.475 187454486474 
82.486831 848982885 
86.387212 778 756663 
90.200 199617262 318 
93.942 572 252611 562 

56.962904275167517 
62.748881 669459305 
67.661 781 418 302 983 
72.164 827720 771 193 
76.417109 157783 180 
80.496796665401 667 
84.449 230 155 149 340 
88.303453538378357 
92.079 360 103 387 758 
95.791251970104038 



474 ZAMM . Z. angew. Math. Mech. 77 (1997) 6 

M+K+ I 

roo3 

Fig. 2. The number of terms to be added for 
the determination of the sign of J v ( z )  versus 
x for v = 0, 10.5, 20, 50, 100, 200 

X 

By virtue of Proposition 1, we have obtained the number of terms of J ,  required to obtain the corresponding 
algebraic sign for various values of the order v and the argument x. As it is shown in Fig. 2 ,  the number of terms 
decreases as the order increases. 

5. Concluding remarks 

An efficient method for locating, isolating, and computing real zeros of Bessel functions is described in this paper. It 
has been implemented and tested, and our experience is that it behaves predictably and accurately. 

The first phase of this method (algorithm degree-isolate) exploits topological degree theory and especially Pi- 
card’s extension to calculate the total number of real roots of Bessel functions within a predetermined interval and to 
isolate one of them. This procedure can be repeated for the isolation of each one of the zeros in this interval. 

Once a zero is isolated, the second phase (algorithm compute-zero) is applied for its computation to any accu- 
racy (subject to relative machine precision). This algorithm utilizes a modified bisection method. The only computable 
information required consists in the algebraic signs of the function and, consequently, it is not affected by imprecise 
function values. Moreover, it always converges rapidly to a zero within the initially specified region independently of 
the starting guess. It is also a globally convergent method, it can be applied to nondifferentiable continuous functions 
and does not involve derivatives or approximations of such derivatives. Furthermore, the number of iterations needed 
to compute a zero to a predetermined accuracy is a priori known. 

The rootfinding portion of our method requires the smallest amount of function value information which is its 
algebraic sign. Using this and the stopping criterion (20)’ it computes a zero of a Bessel function within a given accuracy. 

We have been able to calculate the total number of zeros by computing the value of the topological degree of 
(11) utilizing efficient methods such as STENGER’S [22], STYNES’ [23, 241, or KEARFOTT’S method [lo,  111 (see also [l]), 
which are based only on sign calculations. 

For large argument 5 ,  one can use the usual asymptotic expressions for Bessel functions [28]. Moreover, if one 
would like to compute zeros of a combination of Bessel functions which may not be an alternating series, the van 
Wijngaarden transformation can be used to convert this new series into an alternating one [18]. Furthermore, very 
accurate function values for the Bessel functions can be obtained by employing STEED’S and TEMME’S methods [18], 
or, alternatively, by means of Coulomb functions, employing BARNETT’S procedure [3, 41. 

When just one root is required, the isolation portion of our method can be avoided if the function values at the 
endpoints of the given interval are opposite (see [27] for extensions). This is so because, in this case, the modified 
bisection method always converges to a zero. 

Since the first derivatives of Bessel functions are available, it is at the user’s disposal to apply any other rootfind- 
ing method, as for instance Newton’s method, to accelerate the convergence within the predetermined interval. In such 
a case, though, unless the starting point is close enough to a zero and certainly away from an extremum of the func- 
tion, convergence is not ensured. Thus, a few initial steps of our method should be performed so that these conditions 
are satisfied. 

At last, for any given interval (ak, b k )  containing a single zero of a Bessel function, Proposition 2 can provide a 
lower and an upper bound for this zero, theoretically as close to it as one desires, but practically as close to it as the 
accuracy of the calculations permits. 
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