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Abstract 

A portable software package, named RFSFNS, is presented for the localization and computation of the simple real zeros 
of the Bessel functions of  first and second kind, J,, ( z ) ,  Y~ (z ) ,  respectively, and their derivatives, where v > 0 and z > 0. 
This package implements the topological degree theory for the localization portion and a modified bisection method for 
the computation one. It localizes, isolates and computes with certainty all the desired zeros of the above functions in a 
predetermined interval within any accuracy (subject to relative machine precision). It has been implemented and tested on 
different machines utilizing the above Bessel functions of various orders and several intervals of the argument. 
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Bounds of zeros; Bisection method; Computation of zeros; Steed's method; Bamett's algorithm 

PROGRAM SUMMARY Programming language used: FORTRAN-77 

litle of program: RFSFNS 

Catalogue number: ADCK 

Program obtainable from: CPC Program Library, Queen's Uni- 
versity of Belfast, N. Ireland (see application form in this issue) 

Licensing provisions: none 

Computer for which the program is designed and others on which 
it has been tested: HP-715 (with a PA-Risc 7100/75 MHz 
processor) and PC IBM compatible (with an i486/66 MHz pro- 
cessor) 

Memory required to execute with typical data: Less than 60 
Kbytes (using double precision) 

No. of bits in a word: For Unix 32 bits. For MS-DOS it depends 
on the particular compiler used. 

No. of processors used: One 

Has the code been vectorised?: No 

No. of lines in distributed program, including test data, etc.: 1671 

CPC Program Library subprograms used: COULFG (Cat. no. 
ABNK; A.R. Barnett, Comput. Phys. Commun. 27 (1982) 147- 
166) 

Operating systems under which the program has been tested: 
UNIX, MS-DOS 
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Kronecker-Picard integral, localization of zeros, isolation of zeros, 
bounds of zeros, bisection method, computation of zeros, Steed's 
method, Barnett's algorithm 

Nature of physical problem 
Bessel functions and their zeros are encountered in many problems 
of Mathematical Physics, such as the cyclic membrane vibrations, 
the temperature distribution in a solid cylinder or in a solid sphere, 
the diffraction of a plane electromagnetic wave by a conducting 
cylinder, the quantum billiards, etc. 

Method of solution 
The total number of  real zeros of a Bessel function is obtained 
using Picard's extension and the Kronecker integral representa- 
tion of the topological degree. Subsequently, a modified bisection 
method is employed for the computation of these zeros. 

Restrictions on the complexity of the problem 
The functions considered here are Bessel functions of first and 
second kind and their first derivatives. Their order is real and 
non-negative while their argument has to be positive 

Typical running time 
On an HP-715 computer (with a PA-Risc 7100/75 MHz proces- 
sor) using the HP FORTRAN/9000 compiler, the elapsed CPU 
times for the computation of the total number of zeros in the 
given interval, their isolation and their computation, for the four 
test runs of Section 4, were as follows: (1) 9.02, 0.64, 29.56 
msec, (2)  11.53, 0.75, 39.58 msec, (3) 14.27, 0.89, 46.87 msec 
and (4) 32.81, 1.91, 94.33 msec. The corresponding times on 
a PC IBM compatible (with an i486/66 MHz processor) using 
Microsoft Fortran 5.10 were on average 0.20, 0.05, 0.60 sec. 

LONG WRITE UP 

1. Introduction 

The Bessel equation 

z2u"(z) + z u'(z) + (z 2 -  ~2) u(z) =o ,  ( l )  

where u is its order, is related to the solution of some boundary value problems or eigenvalue problems of 
partial differential equations by the method of separation of variables, as, for example, the wave equation in 
cylindrical or spherical coordinates. Its solutions are the Bessel function of order u and argument z of the first 
kind, J~ (z ) ,  and the Bessel function of order u and argument z of the second kind, Y, (z ) .  

The problem of localizing and computing zeros of Bessel functions has drawn a lot of attention since they 
are very important in many branches of physical sciences and technology. Specifically, they are involved in the 
problem of cyclic membrane vibrations, the temperature distribution in a solid cylinder or in a solid sphere, the 
diffraction of a plane electromagnetic wave by a conducting cylinder, the quantum billiards, etc. 

In the present paper we develop a portable package which localizes, isolates and computes zeros of J~ (z ) ,  
Y~(z) as well as their first derivatives. A theoretical background, development and further applications of the 
methods used here can be found in [1-3] .  

2. The methods 

For the computation of the total number of zeros of a Bessel function within an interval (a, b) we implement 
the concept of the topological degree of a continuous mapping following the process briefly described below 
(for details we refer the interested reader to [2] ). 

Let f ( z )  be a real function defined and twice continuously differentiable in a bounded interval [a, b] such 
that f ( a )  f ( b )  --g O. The notion of the topological degree can be used to calculate the total number J~r 
of simple solutions of f ( z )  = 0 within ( a ,b ) .  According to Picard's extension and the Kronecker integral 
representation of the topological degree, .IV" r is given by 
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.]~fr=_ f (  ) f  ( ) - - f  (Z) 1 Y f ( a ) f ' ( b ) - f ( b ) f ' ( a )  
o m / 7 ~ - r O ~ 7  dz + --arctanTr t f ( a ) f ( b ) +  y 2 f ( a ) f ' ( b )  ) (2) 

where "y is an arbitrary positive constant (for a detailed derivation of Eq. (2) see for example [2] ). 
In the case f ( z )  is a Bessel function, Eq. (2) has to be adapted accordingly. For example, if f ( z )  = J,,(z), 

then 

} J ,l':__ _ ,2 (y(J~,(a)J~(b)_ J, , (b)J~(a)))  . /v.r=_'Y ,,(Z) , , ( Z ) - J , ,  (Z) 1 
g a ju2(Z) ~_yZ]t~Z ) dz + --arctan,,7. t J,,(a)Ju(b) +y2J~(a)J~(b) " (3) 

Using the Bessel equation ( 1 ) we replace the second derivative J~' and after some straightforward calculations, 
Eq. (3) assumes the form 

N'r 
b (y(J~,(a)J~(b) J, , (b)J~(a)))  +' -_ 

= - arctan 
7r t J . (a)J . (b)  +y2J¢(a)J~(b) ) " 

o 

(4) 

where 

GI(z) = 

j ,  2. 1 ( v 2 ) 
v (Z) +-z Jt~'(z)J~'(z) + 1 - -~ J~,2(z) 

j~,2(Z ) ..FT 2 j,  2- ~ Z )  
(5) 

In the case f ( z )  = J ' ( z ) ,  Eq. (2) yields 

Arr i Y J,,(a)Jp (b) - J,,(b)J,, (a) 
3' G2 ( z ) d z  ÷ - -  a r c t a n  - - -  
• r ~ J ~ ( a ) J ~ ( b ) ~ - ~ 2 ~  

(1 

(6) 

where 

(,+,2),2 ,2) ( 
C2(z)  = 1 z i  J, ( z )  + + ~ J ' , ( z )g , , ( z )  + 1 - z2 j g,?(z) 

j ,2(z ) , ,  , +,y2 J',,(z) + 1 - J,,(z) 

Working similarly we extract relevant expressions for higher derivatives of J~ (z)  as well as for Y,,(z ) and its 
derivatives. 

Picard has shown that ,/~r is independent of the choice of % But we have observed that when y is close 
to zero, the computation time increases. Our experience, from all the test cases we have run, is that the most 
appropriate value of y is near to one. Fig. 1 presents examples of the way the computation time varies with % 
Yet, RFSFNS permits the user to make his own choice according to the application. 

Very accurate values for the Bessel functions are obtained utilizing Steed's and Temme's methods [4-6].  
Specifically, Steed's method calculates J , ,  J~, Y~ and Y" simultaneously employing the Wronskian relation 

, y , 2 
W ( z )  - J , , ( z )U( z )  - ~(z)J , , (z)  = - - ,  (8) 

7rZ 

as well as the following two continued fractions the first of which is real, while the second is complex: 
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Fig. 1. The variation of  the CPU time for the computation of .IV" ~ versus y. 

J ' ( z )  v J~+~(z) v 1 1 
f~(z) -- J .(z)  z J .(z)  z 2 ( v + l ) / z -  2 ( v + 2 ) / z -  (9) 

JP.(z)+iY'~(z) 1 i ( 1 / 2 ) 2 - v  2 ( 3 / 2 ) 2 - v  2 
p(z)  +iq(z)  - J.(z)  +iY.(z) = -2-z- + i +  . . . .  . (10) z 2 ( z + i ) +  2 ( z + 2 i ) +  

Efficient algorithms for the evaluation of such continued fractions are given in Barnett [7] and Lentz [8]. 
Relations (8),  (9) and (10) provide four equations to be solved for J~, f. ,  Y. and Yd. So, introducing the 

auxiliary variable 

p(z) - f . ( z )  
3 ( z )  = , ( l l )  

q(z) 

we obtain 

/ ]/2 
W ( z )  

Jr(z) =4- , (12) 
q(z) + f l ( z ) (p ( z )  -- f . ( z ) )  

f . ( z )  =f . ( z )J~(z ) ,  (13) 

Y.(z) =f l (z )J . (z ) ,  (14) 

, ( q(z) 7 r/ , (z)  =v.(z) p ( z )  + ~ - ~ - ~ / .  (15) 

The number of iterations of the continued fraction (9) is of order z for large z. The sign of J. is the same as 
the sign of the denominator of the continued fraction (9) once it has converged. For the derivation of (9) and 
(10) as well as for their rate of convergence, see [4,6]. 
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For the calculation of the values of Bessel functions we use here B arnett's algorithm [9,10] which computes 
Coulomb and Bessel functions and their derivatives for real arguments, utilizing Steed's method. His code 
COULFG loses accuracy when the argument is less than the turning point z~, which in the case of Bessel 
functions is defined as follows: 

zv = V/V 2 - 1/4.  (16) 

Obviously, z~ < v. Since the order v is a lower bound for all the positive zeros of the cylindrical Bessel 
functions [ 11 ] the arguments in our case should be bounded below by v. Therefore, we are able to avoid this 
inaccuracy problem. 

Once the total number .IV" r of simple roots has been computed, we isolate one arbitrary zero bisecting (a,  b) 
and using Bolzano's criterion so as to obtain a subinterval (am, bin) which contains exactly one zero of the 
considered function. Subsequently, we utilize a modified version of the bisection method, described in [ 12,13 ], 
in order to compute this particular root. The iterative formula used is the following: 

zi+l = zi + c s g n f ( z i ) / 2  i+l, z0 = a, i = 0, 1 . . . . .  (17) 

where c = s g n f ( a ) ( b -  a) and sgn defines the sign function with values 

-1  i f~b<  0, 
sgn~p= 0 i f 0 = 0 ,  (18) 

1 if g , >  0. 

The iterations (17) converge to a root r C (a,  b) if, for some zi, i = 1,2 . . . . .  the following holds: 

sgnf(z0) sgnf (  zi ) = - 1, ( 1 9 )  

which verifies the traditional Boizano's criterion in the interval (z0, zi). 
The number of iterations ( ,  which are required in order to obtain an approximate root r* such that J r - r *  I <_ ~, 

for some 6 E (0, 1), is given by 

~ = Ilog2(h ~ - ' ) ] ,  (20) 

where the notation ['1 refers to the smallest integer not less than the real number quoted. 
Instead of the iterative formula (17) we can also use the following one: 

z i + J = z i - c s g n f ( z i ) / 2  i+1, z 0 = b ,  i = 0 , 1  . . . . .  (21) 

with c = sgnf (b )  (b - a) .  
The bisection method is a global convergence method, it always converges within the given interval and it 

is optimal [14,15], in the sense that it possesses asymptotically the best rate of convergence. Furthermore, it 
has a known behavior concerning the number of iterations required when we seek a root with a predetermined 
accuracy. Last, but not least, it is the only method that can be applied to problems with imprecise function 
values. It is evident from (17) and (21) that the only computable information required by the bisection method 
is the algebraic signs of the considered function. 

For a generalization of the above process, as well as Bolzano's criterion, see [12,13,16[. 
Using the above modified bisection method we are also able to produce bounds for any real zero of a Bessel 

function as close to this zero as the user desires (subject to relative machine precision). 

3. Program description 

The package RFSFNS (Root-Finder of Special FuNctionS) is written for the numerical localization and 
computation of roots of special functions. It contains about 1,400 lines of code, 50 percent of which are 
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comments. The total storage required for RFSFNS is of the order of 4*MAXRT+2*MAXDIV+100 locations, where 
MAXRT determines the maximum number of roots requested in the given interval and MAXDIV is the maximum 
number of subdivisions of the interval for the isolation of these roots. RFSFNS is coded in ANSI standard 
FORTRAN (1977) [17], and has been tested on an HP-715 system as well as on a PC IBM compatible. 

RFSFNS consists of a set of six subprograms, namely the subroutines INTSUB, TOPDEG, IS0LAT and 
BISECT and the functions FNC and G. The user must call only the subroutine INTSUB; all the other subprograms 
are evoked by INTSUB. RFSFNS requires also the subroutine COULFG [9] of the CPC Program Library. 

INTSUB is an interface subroutine between the main program and the subroutines TOPDEG, ISOLAT and 
BISECT. 

The purpose of TOPDEG (topological degree) is to compute the total number NR of roots of a Bessel 
function in a given interval. It implements the topological degree of a continuous mapping and especially the 
Kronecker-Picard integral. The corresponding integration is performed by Romberg's method [6]. 

When the total number NR of roots is computed, ISOLAT (isolation of all the zeros) isolates the roots in NR 
intervals using Bolzano's criterion, so that each one of these intervals contains exactly one root. The left and 
right endpoints of these intervals are stored in the two columns of the matrix R00TIS. 

The purpose of BISECT (bisection) is to compute the roots which have been isolated by the subroutine 
ISOLAT. It utilizes the modified bisection method described by Scheme (17). The bisection portion of RFSFNS 
is normally evoked when the total number BR of roots is computed and their isolation is completed; but the 
user can compute a desired number of roots without involving TOPDEG or  ISOLAT (see description of input 
variable ICON below). 

The values of the Bessel functions are calculated by means of the function FNC. The relative definition 
statement is 

REAL*8 FUNCTION FNC( ICASE, X ) 
and the function calculates the corresponding Bessel function determined by the input parameter ICASE (see 
below) at X utilizing the COULFG subroutine. 

The function G calculates the values of the corresponding integrand function in Relation (2).  Its definition 
statement is 

REAL*8 FUNCTION G( ICASE, X ) 
Complete details for each one of the above subprograms are given in the RFSFNS documentation. 
RFSFNS must be supplied with the following input parameters: 

ICASE an integer variable specifying the desired Bessel function with values 
( 1 ) for the Bessei function of the first kind, J, 
(2) for the derivative of J, 
(3) for the Bessel function of the second kind, Y, 
(4) for the derivative of Y. 

XNU the order of the considered Bessel function. 
A the left endpoint of the given interval. If  A is less than DMAX1 (XNU, 0.5DO) then A becomes equal 

to DMAXI(XNU, O.5DO). 
B the right endpoint of the given interval. B should be greater than A. 
ICON a conditional integer variable with values 

( 1 ) for the calculation of the total number of roots in the given interval, only, 
(2) for the calculation of the total number of roots in the given interval and for isolating each one 

of them, 
(3) for the calculation of the total number of roots in the given interval, isolation and computation 

of each one of them, 
(4) for the calculation of NR roots in the given interval. 
Note that if ICON=4 the user must also supply the desired number of roots NR (see below). 

EPSILO the accuracy of the computation of the Kronecker-Picard integral. If  EPSlLO is less than the machine 
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precision EPSMCH, EPSILO becomes equal to 1 .D5*DSQRT(EPSMCH). EPSMCH is computed within 
RFSFNS. 

DELTA the accuracy of the computation of the roots of the function. If DELTA is less than the machine 
precision EPSMCH, DELTA becomes equal to EPSMCH. 

The default value of GAMMA, involved in Relation (2) ,  is chosen to be 1 .DO. But it is at the user's disposal 
to change it in his own main program. In this case, if the given value of GAMMA is less than O. O01DO, RFSFNS 
sets GAMMA equal to 1.DO. 

INTSUB is evoked by the following FORTRAN statement: 
CALL INTSUB( ICASE, A, B, ICON, EPSILO, DELTA, MAXRT, NR, 

+ ROOTIS, ROOTS, VAR ) 
The usage of some of its arguments ( ICASE, A, B, ICON, EPSILO, DELTA) has already been described above. 

The rest of these arguments are the following: 
MAXRT is a positive integer input variable which determines the maximum number of roots that may be 

requested in the given interval. 
NR is a positive integer variable which indicates the number of roots found. If TOPDEG is going to 

be used (ICON=I,2 or 3) then NR outputs the total number of roots within (A,B). In the case that 
ICON=4 it inputs the number of roots requested by the user. NR must be less than MAXRT. 

R00TIS is an output MAXRT×2 array. Its two columns provide lower and upper root bounds. 
ROOTS is an output array of length MAXRT. It contains the final approximate roots. 
VAR is an array of length MAXRT which outputs the function values at the final approximate roots. 

The program execution terminates normally after the completion of its task. This type of termination is 
indicated by the value 1 of the conditional output variable INF. If the value of this parameter is not equal to 1, 
the termination of the program is abnormal. 

The cases of abnormal termination of the program are the following: 
INF=O the order XNU of the considered function is negative, or 

the input values of ICASE or ICON are out of range ( [1,4]  ), or 
NR exceeds MAXRT. 

INF=2 FNC or G failed. 
INF=3 TOPDEG was not successful; the evaluation of the integral in Formula (2) failed. 
INF=4 ISOLAT failed; MAXDIV, the maximum number of steps or the maximum dimension of its internal 

working arrays WAi ,WA2 was exceeded. 
INF=5 BISECT failed; the number of iterations of Scheme (17) exceeded its maximum, specified by Relation 

(20). 

4. Example of  RFSFNS usage 

We shall give an example which demonstrates how RFSFNS is used to compute the total number of zeros 
within a given interval, to isolate these zeros and to compute all of them. Suppose that we wish to calculate 
the roots of the zero order Bessel function of the first kind, Jo, in the interval (A, B) = (O.DO, 30.1DO). 

The corresponding input values are ICASE = 1, XNU = O.DO, A = O.DO, B = 30.1D0, ICON = 3and  
NR = O. Also, we choose the values EPSILO = 1.D-3 and DELTA = 1.3-15.  

The following FORTRAN program can be used to evoke RFSFNS for the above example: 

PROGRAM MAIN 

Example of RFSFNS usage. 
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IMPLICIT REAL*8(A-H, O-Z), INTEGER*4(I-N) 

PARAMETER (MAXRT=IO00) 
DIMENSION ROOTIS(MAXRT,2), R00TS(MAXRT), VAR(MAXRT) 

COMMON / BLKI / INF, NRF 

COMMON / BLK2 / XNU, GAMMA 

Set the starting values : 
a) the considered Bessel function specified by ICASE, 

b) the order of the corresponding Bessel function XNU, 

c) the endpoints of the given interval [A, B] and 

d) the conditional variable ICON. If ICON = 4, supply 

also the desired number of roots NR. 

DATA ICASE, XNU, A, B, ICON, NR 
+ / i, O.DO, O.DO, 30.1DO, 3, 0 / 

Set the values of EPSILO and DELTA. 

DATA EPSILO, DELTA 
+ / I.D-3, I.D-15 / 

GAMMA is a parameter involved in the Kronecker-Picard 

integral. Its default value is taken equal to 1.DO 
but the user is able to change it in his own main 

program. If this value is less than the machine 
precision EPSMCH, INTSUB sets GAMMA equal to 1.DO. 

GAMMA=I.DO 

PRINT 9999, ICASE, XNU, A, B, ICON, EPSILO, DELTA 

Call the interface subroutine INTSUB. 

CALL INTSUB (ICASE, A, B, ICON, EPSIL0, DELTA, MAXRT, NR, 

+ R00TIS, ROOTS, VAR) 

IF ( INF .EQ. 0 ) THEN 
PRINT 9998 
GO TO 10 

ENDIF 

IF ( INF .EQ. 2 ) THEN 
PRINT 9997 

GO TO i0 
ENDIF 
IF ( INF .EQ. 3 ) THEN 

PRINT 9996 
PRINT 9995, NR 
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GO TO I0 

ENDIF 

PRINT 9995, NR 

IF ( ICON .EQ. i ) GO TO tO 

IF ( INF .EQ. 4 ) THEN 

PRINT 9994 

GO TO i0 

ENDIF 

PRINT 9990, NR,NRF 

PRINT 9993, (J, ROOTIS(J,I), ROOTIS(J,2), J = I, NRF) 

IF ( ICON .EQ. 2 ) GO TO I0 

IF ( INF .EQ. 5 ) THEN 

PRINT 9992 

GO TO i0 

ENDIF 

PRINT 9991, (J, ROOTS(J), VAR(J), J = i, NRF) 

PRINT 9989, INF 

I0 STOP 

9999 FORMAT (/2X, 

+ /2X 

+ /2X 

+ /2X 

+ 12X 

+ /2X 

+ /2X 

+ /2X 

9998 FORMAT (/2X 

9997 FORMAT (/2X 
+ 

9996 FORMAT (/2X, 
+ 

9995 FORMAT (/2X, 

+ 2X, 

9994 FORMAT (/2X, 
+ 

9993 FORMAT (/2X, 

+ 13X, 

+ 2X, 

9992 FORMAT (/2X, 
+ 

999i FORMAT (/2X, 

+ 7X, 
+ 

9990 FORMAT (/2X, 

+ /2X, 

9989 FORMAT (/2X, 

STARTING VALUES :' /3X, 17('-'), 

ICASE : ', Ii, 

ORDER : ', F20.15, 

A : ', F20.15, 

B : ', F20.15, 

ICON : ', If, 

EPSILO : ', F20.15, 

DELTA : ', F20.15 ) 

* * * IMPROPER INPUT PARAMETERS * * *'//) 

* * * THE PROCEDURE FOR THE CALCULATION', 

OF THE BESSEL FUNCTION FAILED * * *'//) 

* * * THE PROCEDURE FOR THE CALCULATION', 

OF THE TOPOLOGICAL DEGREE FAILED * * *'//) 

THE COMPUTED TOTAL NUMBER OF ROOTS',/, 

WITHIN THE INTERVAL (A,B) IS : ', I5) 

* * * THE PROCEDURE FOR THE ROOTS', 

ISOLATION FAILED * * *'//) 

INTERVALS OF THE ISOLATED ROOTS :' 

33('-') /(2X, I4,')', 

' (', F20.i5, ',', F20.15,' )')) 

'* * * THE R00TFINDING PORTION', 

' FAILED * * *'//) 

' FINAL APPROXIMATE ROOTS :', 

' VERIFICATION :' /3X, 25('-'), 8X, 14('-') 

/(2X, I4,')', F20.15, 5X, F20.15)) 

' NUMBER OF ROOTS REQUESTED : ',I5,/ 

' NUMBER OF ROOTS ISOLATED : ',I5) 

' EXIT PARAMETER : INF = ',I2) 
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Last statement of the main program. 

END 

The output results of  the above program for four test cases are exhibited in the test run outputs below. 

5. Concluding remarks 

The program RFSFNS has been applied using Bessel functions of  various orders and random intervals. Tests 
were carried out for orders and interval lengths up to one thousand. It behaves predictably and accurately. 
It calculates with certainty the total number of  roots in a given interval, isolates each one of  them and then 
computes these roots. 

Generally, the total number NP, of  the zeros in (A,B) is not known beforehand, thus we must assign the 
value 3 to the input parameter IC0N. Besides,  the knowledge of  the exact number is, in many cases, of  great 
importance. 

Nevertheless, we may wish to avoid this portion of  the program. For example, if the number of  zeros is 
known, say 9, we could assign the value 4 to IC0N and the value 9 to NR. If  the value assigned to NR is greater 
than the total number of zeros, say 12, then we shall obtain the 9 existing roots. Also,  if less than 9 zeros are 
required, for example 2 of  them, we should assign the corresponding value to NR. In this case ISOLAT will 
subdivide the initial interval (A,B) until two of  the roots are isolated. Then BISECT will  be evoked to compute 
them. 

Our package can be applied to any special function, provided there exists a routine to compute it and its 
derivative. 
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T E S T  R U N  O U T P U T  1 

STARTING VALUES : 

ICASE : i 

ORDER : .000000000000000 

A : .000000000000000 

B : 3 0 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

ICON : 3 
EPSIL0 : .001000000000000 

DELTA : .00000000000000i 

THE COMPUTED TOTAL NUMBER 0F ROOTS 

WITHIN THE INTERVAL (A,B) IS : 

NUMBER 0F ROOTS REQUESTED 

NUMBER OF ROOTS ISOLATED 

INTERVALS 0F THE ISOLATED ROOTS : 

9 
9 
9 

1) ( 
2) ( 3 
3) ( 7 
4) ( 10 
5) ( 13 
6) ( 16 
7) ( 20 
8) ( 23 
9) ( 26 

500000000000000 
788888888888890 
077777777777779 
366666666666667 
6 5 5 5 5 5 5 5 5 5 5 5 5 5 8  

9 4 4 4 4 4 4 4 4 4 4 4 4 4 7  

2 3 3 3 3 3 3 3 3 3 3 3 3 3 4  

5 2 2 2 2 2 2 2 2 2 2 2 2 2 6  

811111111111113 

3.788888888888890 ) 
7.077777777777779 ) 

10.366666666666667 ) 
13.655555555555558 ) 

16.944444444444447 ) 

20.233333333333334 ) 
23.522222222222226 ) 
26.811111111111113 ) 
30.100000000000000 ) 

FINAL APPROXIMATE R00TS : VERIFICATION : 

1) 2.404825557695772 
2) 5.520078110286310 
3) 8.653727912911013 
4) 11.791534439014282 
5) 14.930917708487784 
6) 18.071063967910918 
7) 21.211636629879257 
8) 24.352471530749303 
9) 27.493479132040262 

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

-.000000000000001 

.000000000000000 

.000000000000000 

-.000000000000001 

EXIT PARAMETER : INF = 1 



M.IV. Vrahatis et al . /  Computer Physics Communications 92 (1995) 252-266 

T E S T  RUN O U T P U T  2 

263 

STARTING VALUES : 

ICASE : 2 
ORDER : 3.140000000000000 

A : 10.500000000000000 

B : 45.200000000000000 

ICON : 3 
EPSILO : .001000000000000 

DELTA : .000000000000001 

THE COMPUTED TOTAL NUMBER OF ROOTS 

WITHIN THE INTERVAL (A,B) IS 11 

NUMBER OF ROOTS REQUESTED : ii 

NUMBER OF ROOTS ISOLATED : 11 

INTERVALS OF THE ISOLATED ROOTS : 

1) ( 10 .500000000000000  
2) ( 13 .654545454545453  
3) ( 16 .809090909090909  
4) ( 19 .963636363636365  
5) ( 23 .118181818181818  
6) ( 26 .272727272727271  
7) ( 29 .427272727272731  
8) ( 32 .581818181818179 ,  
9) ( 35 .736363636363632  

10) ( 38.890909090909093. 
11) ( 42.045454545454546 

13.654545454545453 ) 

16.809090909090909 ) 

19.963636363636365 ) 

23.118181818181818 ) 

26.272727272727271 ) 

29.427272727272731 ) 
32.581818181818179 ) 
35.736363636363632 ) 
38.890909090909093 ) 
42.045454545454546 ) 
45.200000000000000 ) 

FINAL APPROXIMATE ROOTS : VERIFICATION : 

1) 11.585290479133392 
2) 14.817793490469953 
3) 18.017150352437752 
4) 21.198859787655240 
5) 24.369995856264936 
6) 27.534276360895168 
7) 30.693850896882283 
8) 33.850051913205407 
9) 37.003750546240724 

10) 40.155540912559330 
11) 43.305842381541125 

- .000000000000001 
- .000000000000001 
- .000000000000003 

.000000000000000 

.000000000000000 
000000000000001 
000000000000001 
000000000000001 
000000000000000 
000000000000002 
000000000000001 

EXIT PARAMETER : INF = 1 
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TEST RUN OUTPUT 3 

STARTING VALUES : 

ICASE : 3 

ORDER : i0.000000000000000 

A : 15.300000000000000 

B : 55.700000000000000 

ICON : 3 
EPSILO : .001000000000000 

DELTA : .000000000000001 

THE COMPUTED TOTAL NUMBER OF ROOTS 
WITHIN THE INTERVAL (A,B) IS 12 

NUMBER OF ROOTS REQUESTED : 12 

NUMBER OF ROOTS ISOLATED : 12 

INTERVALS OF THE ISOLATED ROOTS : 

1) ( 15.300000000000000, 
2) ( 18.666666666666668 
3) ( 22.033333333333334 
4) ( 25.400000000000002, 
5) ( 28.766666666666668 
6) ( 32.133333333333339 
7) ( 35.500000000000000 
8) ( 38.866666666666671 
9) ( 42.233333333333335 

10) ( 45.600000000000007, 
11) ( 48.966666666666671, 
12) ( 52.333333333333343, 

18 
22 
25 
28 
32 
35 
38 
42 
45 
48 
52 
55 

666666666666668 ) 
033333333333334 ) 
400000000000002 ) 
766666666666668 ) 
133333333333339 ) 

500000000000000 ) 
866666666666671 ) 
233333333333335 ) 

600000000000007 ) 
966666666666671 ) 
333333333333343 ) 
700000000000000 ) 

FINAL APPROXIMATE ROOTS : VERIFICATION : 

1) 16.447852748486492 
2) 20.223031412681701 
3) 23.760715860327446 
4) 27.182021527190530 
5) 30.534504754007071 
6) 33.841965775135710 
7) 37.118000423665612 
8) 40.371068905333876 
9) 43.606764901379510 

10) 46.828959446564562 
11) 50.040428970943443 
12) 53.243223214220538 

000000000000001 

000000000000000 

000000000000000 

000000000000000 

000000000000001 

000000000000001 

000000000000001 

000000000000001 

000000000000000 

000000000000001 

000000000000001 

000000000000001 
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EXIT PARAMETER : INF = i 

T E S T  RUN O U T P U T  4 

STARTING VALUES : 

ICASE : 4 

ORDER : 55.500000000000000 

A : I00.I00000000000000 

B : 150.200000000000000 
ICON : 3 

EPSIL0 : .001000000000000 

DELTA : .000000000000001 

THE COMPUTED TOTAL NUMBER OF ROOTS 

WITHIN THE INTERVAL (A,B) IS : 

NUMBER OF ROOTS REQUESTED 

NUMBER OF ROOTS ISOLATED 

INTERVALS OF THE ISOLATED ROOTS : 

1) ( 100.100000000000000 
2) ( 103.678571428571410 
3) ( 107.257142857142850 
4) ( 110.835714285714260 
5) ( 114.414285714285710 
6) ( 117.992857142857130 
7) ( 121.571428571428550 
8) ( 125.149999999999980 
9) ( 128.728571428571430 

10) ( 132.307142857142850 
11) ( 135.885714285714260 
12) ( 139.464285714285730 
13) ( 143.042857142857130 
14) ( 146.621428571428560 

FINAL APPROXIMATE ROOTS : 

1) 102.349963347284800 
2) 106.062557620259270 
3) 109.726598816333270 
4) 113.348911193323370 
5) 116.934973022143080 
6) 120.489253965099970 
7) 124.015451547702800 

14 

14 

14 

103.678571428571410 ) 
107.257142857142850 ) 
110 .835714285714260  ) 
114 .414285714285710  ) 
117 .992857142857130  ) 
121 .571428571428550  ) 
125 .149999999999980  ) 
128 .728571428571430  ) 
132 .307142857142850  ) 
135 .885714285714260  ) 
139 .464285714285730  ) 
143 .042857142857130  ) 
146 .621428571428560  ) 
150.200000000000000 ) 

VERIFICATION : 

.000000000000000 

.000000000000000 

.000000000000000 
-.000000000000001 

.000000000000001 
-.000000000000001 

.000000000000001 
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8) 127.516661274097680 
9) 130.995501771667760 

10) 134.454208656554660 
11) 137.894706145736210 
12) 141.318662519059830 
13) 144.727533652350420 
14) 148.122597599802940 

.000000000000000 

.000000000000000 

-.000000000000001 

.000000000000000 

-.000000000000002 

.000000000000000 

-.000000000000002 

EXIT PARAMETER : INF = 1 




