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Abstract

The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related
to cryptography and its applications. The computational equivalence of these problems has been proved
only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able
to transform the two problems in terms of matrices, thus giving a new perspective to their equivalence. A
first study on matrix transformations for the Double and Multiple Discrete Logarithms is also presented.

1 Introduction

Public key cryptography [4, 13] has motivated a number of very hard computational problems during the
past three decades [11, 13]. These problems are related to complexity, computational algebra, computa-
tional number theory, probability, logic and others. Two of these problems, namely the Discrete Logarithm
problem and the Diffie-Hellman problem, are stated below.

(a) The Discrete Logarithm Problem (DLP) [1, 3, 11]. Let G be a finite cyclic group generated by
g and h ∈ G. Compute an integer z : gz = h from h and g.

(b) The Diffie-Hellman Problem (DHP) [4]. Let G be a finite cyclic group generated by g and
h, f ∈ G. Suppose further that f = gz, h = gw for some integers z,w, such that 0 � z,w � |G| − 1.
Then compute gzw from g, h, f .

The computational equivalence of the two problems has been proved only for some special cases [6] and it
remains a very interesting and well known open problem.

Since functions from a finite field to itself can always be represented by polynomials (Lagrangian
interpolation), both interpolation and approximation techniques have been applied to address the DLP
and the DHP [3, 5]. Furthermore, various attempts to reformulate these cryptographic problems, have
been performed. One of these attempts exploits matrices to formulate the DLP and the DHP [8]. In this
paper, LU-decomposition is applied to a Vandermonde matrix to provide simple transformations of these
two problems.

The paper is organized as follows. In section 2 recent matrix formulations of the DLP and the DHP are
reported and matrix transformations using LU-decomposition through Newton polynomials are presented.
Section 3 exhibits a first study on matrix transformations for the Double and Multiple Discrete Logarithms.
The epilogue of the paper is given in section 4.
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2 Transformations in terms of matrices

The Discrete Logarithm function can be written as loga(x) =
∑p−2

i=1 (xi(1 − αi)−1), or equivalently

loga(x) = (1, 2, . . . , p − 1)A(x, x2, . . . , xp−1)�, (1)

where x �= 0, A = {Aij}, 1 � i, j � p − 1, with Aij = −α−ij , and α is a generator of the multiplicative
group of Zp [8, 10]. Matrix A represents a Discrete Fourier Transform [12].

The Diffie-Hellman key function, K : (αu, αv) �→ αuv, can be written as the two variable polynomial,
K (x, y) = −∑p−1

i,j=1 α−ijxiyj , or equivalently as

K (x, y) = (y, y2, . . . , yp−1)A(x, x2, . . . , xp−1)�, (2)

where y �= 0 [17]. The question of computational equivalence of the DLP and DHP can be formulated by
matrix computations of Equations (1) and (2).
Remark 1: Let M be a m × m matrix, and v,w be m-dimensional vectors. In general the computation
of v�Mw requires O(m2) operations. In some special cases this cost can be reduced. For example the
computation in Zp of

(x, x2, . . . , xp−1)E (y, y2, . . . , yp−1)�, (3)

where E is the Vandermonde matrix, E = {Eij}, 1 � i, j � p−1, with Eij = −i−j, and requires O(log2(p))
operations since the quantity in Eq. (3) coincides with the modular exponentiation xy mod p [7].

Consider the (p − 1) × (p − 1) symmetric Vandermonde matrix

W = {Wij}, 1 � i, j � p − 1, with Wij = w(i−1)(j−1),

where w = α−1. Matrix W is a Discrete Fourier Transform, like matrix A in Eq.(1). Matrix W can be
obtained by applying an elementary permutation (shifting) to the columns and rows of −A. Thus, Eqs. (1)
and (2) can be written as

loga(x) = −(p − 1, 1, 2, . . . , p − 2)W (xp−1, x, . . . , xp−2)�, (4)

and
K (x, y) = −(xp−1, x, x2, . . . , xp−2)W (yp−1, y, . . . , yp−2)�, (5)

respectively. Next, following the approach of Newton polynomials described in [14], we have ti(x) =
∏p−3

j=0(x−wj), for i = 1, . . . , p−2, and t0(x) = 1. Then, matrix W can be factorized using LU-decomposition
to W = LU , where L is a lower triangular matrix defined by L−1 = (t0, t1, . . . , tp−2)�, with ti the vector
of the coefficients for the polynomial ti, and U is the upper triangular matrix, U = {Uij}, 1 � i, j � p− 1,
with Uij = ti−1(wj−1), which equals to

U =

0
BBBBBBBBB@

1 1 1 1 . . . 1
0 w − 1 w2 − 1 w3 − 1 . . . wp−2 − 1
0 0 (w2 − 1)(w2 − w) (w3 − 1)(w3 − w) . . . (wp−2 − 1)(wp−2 − w)

0 0 0
Q2

j=0(w
3 − wj) . . .

...
...

...
... . . .

. . .
...

0 0 0 . . . 0
Qp−3

j=0(wp−2 − wj)

1
CCCCCCCCCA

.

Since matrix W is symmetric, the upper triangular matrix U can also be factorized to U = DL�, where
D = diag(U). So matrix L does not have to be computed by its inverse matrix, as it can be obtained
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directly by matrix U . Thus, matrix L assumes the form

L =

0
BBBBBBB@

1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 (w2 − 1)(w − 1)−1 1 0 . . . 0
1 (w3 − 1)(w − 1)−1 (w3 − 1)(w3 − w)(w2 − 1)−1(w2 − w)−1 1 . . . 0
...

...
...

...
. . .

...
1 (wp−2 − 1)(w − 1)−1 . . . . . . . . . 1

1
CCCCCCCA

.

Set F (x) = L�x, with x� = (xp−1, x, . . . , xp−2). Using the previous factorization of matrix W and
taking under consideration Eqs. (4) and (5), the Discrete Logarithm function can be written as

−n�LDL�x = −n�LDF (x),

where n� = (p − 1, 1, 2, . . . , p − 2). Also, the Diffie-Hellman key function can be written as

−y�LDL�x = −F�(y)DF (x),

where y� = (yp−1, y, y2, . . . , yp−2). In the case of the Diffie-Hellman mapping (where x = y), we obtain
the following quadratic form −x�LDL�x = −F�(x)DF (x), which is computationally equivalent to the
Diffie-Hellman function. The Diffie-Hellman mapping can also be written as −c�LDL�y, where c� =
(α0, α12

, α22
, . . . , α(p−2)2).

Remark 2: Assume that αk = x, 0 < k < p− 2, that is, k is the Discrete Logarithm of x. Then the k − 1
first entries of the vector F (x) are 0.

3 Double and Multiple Discrete Logarithms in terms of matrices

In cryptography some important applications, such as e-voting and secret sharing, deal with the double
discrete logarithm problem, i.e., the discrete logarithm of the discrete logarithm [15, 16]. Matrix represen-
tations can be used for this problem too. As a first study, consider the case of the multiplicative group
Zp, where α, b are generators of Z

∗
p. We can represent the discrete logarithm with b basis, of the discrete

logarithm with α basis, as

n� · B · N · A · x,

where n = (1, . . . , p − 1)�, x = (x, . . . , xp−1)� and B = {Bij}, 1 � i, j � p − 1, with Bij = −b−ij,
A = {Aij}, 1 � i, j � p − 1, with Aij = −α−ij and N = {Nij}, 1 � i, j � p − 1, with Nij = ji. The above
representations can be generalized for multiple applications of the discrete logarithmic function.

Next, we consider the Multiple Discrete Logarithm Problem (MDLP) also called Representation Prob-
lem (RP) in terms of matrices. The definition of the MDLP is given as follows. Let G be a finite group
and g1, . . . , gk elements of G. By 〈gt〉, with 1 � t � k, we denote the cyclic subgroup generated by gt. In
addition, we assume that G can be represented as a direct product G = 〈g1〉 × 〈g2〉 × · · · × 〈gk〉. Thus,
every h ∈ G can be written as h = gz1

1 gz2
2 · · · gzk

k in a unique way. The k−tuple (z1, . . . , zk) consists of the
zt indices, with 0 � zt � mt − 1, where mt is the order of gt. Then (z1, . . . , zk) is the Multiple Discrete
Logarithm of h with basis (g1, . . . , gk). For applications of the MDLP or RP to e-cash, group signatures,
key agreement protocols, see [2, 9, 18]. Symmetric Vandermonde matrices can also be used for the manip-
ulation of the MDLP. For the case where G = Z

∗
p, we assume that Z

∗
p = 〈α1〉 × · · · × 〈αk〉, where αt ∈ Z

∗
p,

Order(αt) = mt, m1m2 · · ·mk = p − 1 and gcd(mr,ms) = 1, for 1 � r, s � k, with r �= s. The Multiple
Discrete Logarithm of x is defined as (z1, . . . , zk), such that x = αz1

1 αz2
2 · · ·αzk

k , where zt, for 1 � t � k, is
an element of the set {1, . . . ,mt}. Let nt = p−1

mt
and gcd(nt,mt) = 1. It can be shown that zt amounts to

zt = −m−1
t m�

t Ax,
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where mt = (1, 2, . . . ,mt)�, x = (xnt , x2nt , . . . , xmtnt)�, and A is the mt × mt matrix, A = {Aij}, 1 �
i, j � mt, with Aij = −α−ntij

t . The above representations can be generalized in the case of G being a
subgroup of Z

∗
p and in the case of a finite field of prime power order.

4 Epilogue

In this paper, new forms of the Discrete Logarithm and the Diffie-Hellman problem have been presented.
These new forms include transformations using LU-decomposition for Vandermonde matrices through
Newton polynomials. By these transformations, the equivalence of the two cryptographic problems can
be viewed and studied using an alternative approach and ideas for the generation of new cryptographic
functions can be derived. Lastly, a first study on matrix transformations for the Double and Multiple
Discrete Logarithms is given.
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