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Abstract

The multi-item inventory optimization problem with supplier selection is con-
sidered to be among the most interesting problems in Operations Research. Con-
straints such as limited capacity and defective items render the problem a demand-
ing challenge for most solvers. Metaheuristic algorithms have been considered as
promising approaches for tackling problems of this type. The present work investi-
gates the performance of the Unified Particle Swarm Optimization on this problem
type. The employed model also assumes individual transaction costs and product-
dependent holding cost. Different parametrizations of the algorithm are considered
under various configurations. The results are statistically analyzed, offering valu-
able insight.

1 Introduction
Particle Swarm Optimization (PSO) [9] has been placed among the most popular
metaheuristic optimization algorithms. This is a consequence of its efficiency as
well as its easy implementation, which renders it accessible in diverse scientific
fields. Operations Research (OR) has proved to be a challenging application field
for PSO. Its effectiveness has been verified in various problems [14]. Inventory
management with supplier selection is an essential problem in OR, usually formu-
lated as a mixed-integer optimization task that includes purchase, transportation,
and inventory costs over multiple periods, under multiple sourcing, criteria, and
constraints. Extensions on lot-sizing with supplier selection for multi-period and
multi-product cases have been widely studied [1, 3, 7].
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In many relevant studies in literature, the proposed models make assumptions
that differ from reality. For example, products are frequently considered to be of
perfect quality, contradicting reality where they are often imperfect. Thus, the op-
timal policy shall take into account such quality implications when determining lot
size. Examples of such models are [10, 16, 17]. Other models assume reworking
of defective products [8], flexible production processes [6], as well as multi-stage
lot sizing for imperfect production processes [2].

A model for lot sizing with supplier selection was proposed in [15]. The model
takes into consideration imperfect items and limited storage capacity. The under-
lying optimization problem constitutes a highly constrained mixed-integer mini-
mization task, which was originally solved through the Lindo software 1 as well as
a Genetic Algorithm. The latter was shown to be very promising, motivating us for
further inquiring different algorithms based on PSO. Besides that, we also admit
some modifications that considerably reduce the problem’s dimension by elimi-
nating its binary variables. Finally, the constraints are handled by using a penalty
function approach [14].

In our experiments, we considered the Unified PSO (UPSO) algorithm [13],
which generalizes the original PSO algorithm. Highly competitive UPSO schemes
with different exploration / exploitation trade-off have been proposed [11, 14].
Initialization in feasible points is not required, without raising efficiency issues as
long as the penalty function is monotonically increasing in the infeasible region as
we move away from the feasible one.

The rest of the this work is organized as follows: UPSO is briefly described in
Section 2, and the considered model is exposed in Section 3. Experimental settings
and results are reported in Section 4. The paper concludes in Section 5.

2 Particle Swarm Optimization
The Particle Swarm Optimization (PSO) algorithm was introduced in 1995 [9] as
an alternative to Evolutionary Algorithms for numerical optimization. PSO probes
the search space by iteratively updating a population, called a swarm, of potential
solutions, called the particles, which move in the search space. The particles have
an adaptable velocity and retain in a memory the best positions (i.e., positions with
lowest function values) they have ever visited.

Exploration is promoted through an information exchange mechanism among
the particles. Specifically, each particle assumes a (typically index-based) neigh-
borhood. In the global PSO variant, also known as gbest model, this neighbor-
hood is the whole swarm. Thus, the overall best position is the main information
provider for all particles. On the other hand, in the local PSO variant, also known
as lbest model, the neighborhoods are strictly smaller, usually comprising a few
particles. Hence, each particle may have its own leading neighbor that influences
its velocity update. The most common neighborhood topology is the ring, where
each particle assumes as neighbors its mates with neighboring indices [14].

Let the bound-constrained global optimization problem,

min
x∈X⊂Rn

f (x),

1http://www.lindo.com
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be the problem under consideration. Then, the swarm is a set of N search points,

S = {x1,x2, . . . ,xN}.

Each particle xi is an n-dimensional point,

xi = (xi1,xi2, . . . ,xin)
> ∈ X , i ∈ I = {1,2, . . . ,N},

which moves in X by using a velocity (position shift), vi, while retaining in mem-
ory the best position, pi ∈ X , it has ever visited,

vi = (vi1,vi2, . . . ,vin)
>, pi = (pi1, pi2, . . . , pin)

> ∈ X .

The ring neighborhood of radius m for xi is defined as the set of indices,

NBi = {i−m, . . . , i−1, i, i+1, . . . , i+m} .

Assume that gi is the index of the best position found so far by the neighbors of xi,

gi = arg min
j∈NBi

f (p j),

and let t denote the iteration counter. Then, according to the popular constriction
coefficient version of PSO [5], the swarm is updated as follows:

v(t+1)
i j = χ

[
v(t)i j +ϕ1

(
p(t)i j − x(t)i j

)
+ϕ2

(
p(t)gi j− x(t)i j

)]
(1)

x(t+1)
i j = x(t)i j + v(t+1)

i j , (2)

where i∈ I, and j = 1,2, . . . ,n. The constriction coefficient χ is used to amplify the
magnitude of the velocities. The other two parameters are stochastic and defined
as ϕ1 = c1 R1 and ϕ2 = c2 R2, where c1 and c2 are positive constants, called the
cognitive and the social parameter, respectively, and R1, R2, are random variables
uniformly distributed within [0,1]. Thus, ϕ1 and ϕ2 assume different values for
each value of i, j, and t.

The best positions of the particles are updated according to,

p(t+1)
i =


x(t+1)

i , if f
(

x(t+1)
i

)
< f

(
p(t)i

)
,

p(t)i , otherwise,

i ∈ I.

Based on theoretical analysis [5], the proposed default parameter values for PSO
are,

χ = 0.729, c1 = c2 = 2.05. (3)

In other works, alternative parameter sets were proposed such as the one in [18],

χ = 0.6, c1 = c2 = 2.83, (4)

and the one in [4],
χ = 0.721, c1 = c2 = 1.654. (5)

All these parameters were shown to produce competitive performance in various
problems.
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2.1 Unified Particle Swarm Optimization
Unified PSO (UPSO) is an enhanced PSO scheme that combines the exploration/
exploitation properties of the gbest and lbest PSO models [12, 13]. Originally,
UPSO was based on the constriction coefficient variant of PSO, presented in the
previous section [12]. However, it can be straightforwardly generalized to other
variants.

Let G(t+1)
i and L(t+1)

i denote the velocity update of the i-th particle for the
gbest and lbest PSO, respectively,

G(t+1)
i j = χ

[
v(t)i j +ϕ1

(
p(t)i j − x(t)i j

)
+ϕ2

(
p(t)g j − x(t)i j

)]
, (6)

L(t+1)
i j = χ

[
v(t)i j +ϕ

′
1

(
p(t)i j − x(t)i j

)
+ϕ

′
2

(
p(t)gi j− x(t)i j

)]
, (7)

where g is the index of the swarm’s overall best particle; gi is the index of the best
particle in the neighborhood of xi; and t denotes the iteration counter. Then, UPSO
updates the particle’s position as follows [12],

U (t+1)
i j = (1−u)L(t+1)

i + uG(t+1)
i (8)

x(t+1)
i j = x(t)i j + U (t+1)

i j , (9)

where the parameter u, called the unification factor, balances the trade-off between
the global and local search direction. The plain lbest and gbest PSO models can be
obtained for the marginal values u = 0 and u = 1, respectively. We will henceforth
denote these models as UPSO` and UPSOg, respectively.

The basic UPSO scheme can be further extended by introducing a stochastic
parameter to imitate mutation in EAs. Mutation promotes diversity, which has a
crucial impact on swarm’s exploration capability. Thus, Eq. (8) can be modified
either as,

U (t+1)
i = (1−u)L(t+1)

i + r3 uG(t+1)
i , (10)

which is mostly based on lbest PSO, or as,

U (t+1)
i = r3 (1−u)L(t+1)

i + uG(t+1)
i , (11)

which is mostly based on the gbest PSO. Typically, the mutation parameter r3 is
a normally distributed random variable. The convergence in probability of these
variants were studied in [12] and the competitiveness of UPSO against the original
PSO was experimentally verified in various problems [14].

3 Problem Formulation
As previously mentioned, we considered both the original model proposed in [15]
as well as a simplified one, in combination with a penalty function approach. Let
i denote the product, j denote the supplier, and t be the time period. We make the
following assumptions according to [15]:

(1) The transaction cost o j for supplier j is independent of the variety and quan-
tity of the ordered products.

(2) The holding cost hi of product i is product-dependent.

4



(3) The demand dit for product i at period t is foreknown over the planning
horizon.

(4) Imperfect quality items are kept in stock and sold prior to the next period in
a single batch.

(5) A percentage ρi j of defective items is contained in each lot of product i from
supplier j.

(6) The purchasing price of product i from supplier j is bi j. Good quality items
are sold in price sgi per unit. Defective items are sold in a single batch at a
discounted price sdi.

(7) A screening process of the lot is conducted with a unit screening cost ci for
product i.

(8) Each supplier has a limited capacity.
(9) All requirements must be fulfilled in the period in which they occur. No

backordering or shortage is allowed.
(10) Storage space wi is required for product i. The total storage capacity is W .

3.1 Original Model
The main scenario for the original model comprises of a supply chain with mul-
tiple products and multiple suppliers. All suppliers are assumed to have limited
capacity [15]. The demand over the (finite) planning horizon is known and an
optimal procurement strategy is to be determined. Each product can be obtained
from a number of approved suppliers. Supplier-dependent transaction cost applies
whenever an order is placed. A product-dependent holding cost per period applies
for each product in the inventory that is carried across a period in the planning
horizon. Finally, storage space can never exceed its maximum value.

The main objective for the decision maker is the determination of the prod-
ucts to order, their quantities, the suppliers, and the corresponding time periods of
purchase, in order to maximize the total profit. Assuming that i denotes the prod-
uct, j denotes the supplier, and t denotes time period, the product quantity under
determination is denoted as xi jt . Then, the original model is defined as [15],

max f
(
xi jt ,y jt

)
=

[
∑

i
∑

j
∑
t

xi jt
(
1−ρi j

)
sgi +∑

i
∑

j
∑
t

xi jtρi jsdi

]
−[

∑
i

∑
j
∑
t

xi jtbi j +∑
j
∑
t

o jy jt +∑
i

∑
j
∑
t

xi jtci +

∑
i

∑
t

hi

(
t

∑
k=1

∑
j

xi jk
(
1−ρi j

)
−

t

∑
k=1

dik

)]
. (12)

The model consists of the sum of revenues from selling good and imperfect quality
products, subtracting purchase, transaction, screening, and holding costs. Since the
problem is defined as profit maximization, the negative of the objective function
defines the corresponding minimization task.

The decision variables y jt are binary and defined as [15],

y jt =


1, if an order is placed to supplier j at time period t,

0, otherwise,
(13)
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Also, the problem is highly constrained, including the following types of con-
straints [15]:

Type I
All requirements must be fulfilled in the period in which they occur, i.e., backo-
rdering and shortage are not allowed,

CI(i, j, t) =
t

∑
k=1

∑
j

xi jk
(
1−ρi j

)
−

t

∑
k=1

dik > 0, ∀i, t. (14)

Type II
All orders are accompanied by the appropriate transaction cost,

CII(i, j, t) =

(
T

∑
k=1

dik

)
y jt − xi jt

(
1−ρi j

)
> 0, ∀i, j, t. (15)

Type III
The total storage space is limited by W ,

CIII(i, j, t) = ∑
i

wi

(
t

∑
k=1

∑
j

xi jk
(
1−ρi j

)
−

t

∑
k=1

dik

)
6W, ∀t. (16)

Type IV
Suppliers have limited capacities,

0 6 xi jt 6 ki j, ∀i, j, t, (17)

where ki j is the capacity of supplier j for product i.

Let I, J, and T denote the number of products, suppliers, and time periods, respec-
tively. Then the number of model constraints is equal to,

Mc(I,J,T ) = (I×T )+(I× J×T )+T +2× (I× J×T ). (18)

The number of decision variables xi jt and y jt , which defines the dimension of the
optimization problem, is equal to,

Mv(I,J,T ) = (J×T )+(I× J×T ). (19)

Clearly, even for small values of I, J, and T , the corresponding problem constitutes
a challenging mixed-integer optimization task due to the large number of variables
and constraints.

3.2 Simplified Model
The decision parameters y jt of the original model can be eliminated, thereby pro-
ducing a simpler model of lower dimension. As we can infer from Eq. (13), there
is dependence between y jt and xi jt ,

y jt =


1, if xi jt > 0 for at least one i,

0, otherwise.
(20)
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Table 1: Demand of the three products over the planning horizon of 4 periods.

Time period
Product 1 2 3 4

1 170 155 160 140
2 85 90 80 105
3 280 255 290 300

The variables y jt are set to 1 if an order is placed on supplier j at time period t,
otherwise they are set to 0. In the latter case, the quantities xi jt of all products
ordered from supplier j at period t, shall also remain equal to zero. In practice, we
consider that xi jt is equal to zero if it is smaller than a predefined threshold, i.e.,

0 < xi jt 6 εz.

Based on these observations, we can replace the decision variables y jt in Eq. (12)
by their equivalent descriptions of Eq. (20), retaining only the real decision vari-
ables xi jt in the model. This formulation will be henceforth called the simplified
model. The objective function in the simplified model remains unaltered as long as
we determine the parameters y jt by using Eq. (20) whenever a function evaluation
is conducted.

The simplified model is not a typical linear programming task, since the binary
quantities are still preserved in the objective function. However, the immediate
gain of excluding the binary variables y jt is the remarkable reduction in the prob-
lem’s dimension by a factor of J×T . In both the original and the simplified model,
the number and form of the constraints are preserved.

3.3 Constraints Handling
Constraints were handled through a multi-stage penalty function. Assume that,

C̃s(i, j, t) =


|Cs(i, j, t)|, if constraint Cs(i, j, t) is violated,

0, otherwise,

s ∈ {I, II, III}, i = 1,2, . . . , I, j = 1,2, . . . ,J, t = 1,2, . . . ,T.

Also, let Ppen be a fixed positive value. Then, the employed penalty function is
defined as,

F
(
xi jt ,y jt

)
=− f

(
xi jt ,y jt

)
+ ∑

i, j,t,s
C̃s(i, j, t)Ppen, (21)

and depends on the degree of violation per violated constraint.
In order to avoid false penalization due to approximation errors, a violated

constraint is penalized only if its value exceeds a predefined violation tolerance,

C̃s(i, j, t) > εc > 0.

Also, Type IV constraints are not required to be included in the penalty function
because they simply define the ranges of the variables and they can be explicitly
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Table 2: Prices of products supplied by the three suppliers, and corresponding transac-
tion costs.

Price per supplier
Products 1 2 3

1 25 27 24
2 30 32 33
3 54 50 49

Transaction cost 1000 900 1500

Table 3: Parameter sets for UPSO.

UPSO parameter set
1 2 3

χ 0.729 0.6 0.721
c1,c2 2.05 2.83 1.654

handled by restricting the populations within the corresponding box constraints. If
an individual violates such a constraint, it is either blocked on the violated limit or
bounces back inside the search space.

4 Experimental Setting and Results
We considered the problem instance defined in [15] with I = 3 products, J = 3
suppliers, and T = 4 time periods. The demand and the prices of the products are
reported in Tables 1 and 2, respectively. For the specific setting, the dimension
of the corresponding mixed-integer original model is equal to Mv(3,3,4) = 48,
while for the corresponding real-valued simplified model is equal to M′v(3,3,4) =
36. In both cases, the total number of constraints is equal to Mc(3,3,4) = 124.
Regarding the penalty function, the parameters εc = 10−6 and Ppen = 103, were
used as violation tolerance and fixed penalty, respectively. Also, the threshold
εz = 10−6 was used to identify a zero component in a solution vector.

Regarding the employed UPSO algorthm, different parameter settings were
considered. Specifically, the unification factor assumed a wide range of values, i.e.,
u = 0.0 (lbest), 0.1, 0.5, 0.9, and 1.0 (gbest). The cases of u = 0.1, 0.5, and 0.9,
were also equipped with mutation, according to Eqs. (10) and (11). Henceforth, we
will denote the UPSO variants as UPSO`, UPSO0.1, UPSOm

0.1, UPSO0.5, UPSOm
0.5,

UPSO0.9, UPSOm
0.9, and UPSOg, where “m” denotes a variant with mutation. All

mutated variants assumed a normally distributed mutation term r3 ∼N (0,1). Re-
garding the parameters χ , c1 and c2, the three parameter sets reported in Table 3
were considered for all UPSO variants.

In order to tackle the binary decision variables of the original problem with
the real-valued oriented UPSO, we let the corresponding particle components take
real values in the range [0,1], and rounded them to the nearest integer (either 0 or
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Table 4: Results for all algorithms and parameter sets for the original 48-dimensional
model.

Par. Set Algor. Suc. Mean St.D. Min Max Mean Pen. St.D. Pen.

1 UPSO` 100.0 16537.5 2082.3 13522.9 21101.1 − −
UPSO0.1 100.0 16690.2 2443.6 12796.2 21610.9 − −
UPSOm

0.1 100.0 17362.0 2164.7 13869.9 22580.0 − −
UPSO0.5 93.3 14387.1 2511.4 10675.0 19607.5 19600.0 10748.0

UPSOm
0.5 100.0 15851.5 3380.6 10920.5 23841.0 − −

UPSO0.9 73.3 14129.7 2235.8 11453.9 21554.1 75287.5 66313.9

UPSOm
0.9 63.3 13831.7 1942.4 11327.6 18972.7 66445.5 73553.5

UPSOg 66.7 13870.6 1939.6 9679.7 17467.9 90810.0 74848.4

2 UPSO` 100.0 17213.8 2405.0 12574.0 21623.8 − −
UPSO0.1 100.0 17199.5 2596.6 13242.6 23383.9 − −
UPSOm

0.1 100.0 17366.5 2518.8 13484.9 23375.9 − −
UPSO0.5 100.0 14879.8 2705.9 11117.0 19945.3 − −
UPSOm

0.5 100.0 15051.9 2152.4 12451.7 19241.0 − −
UPSO0.9 86.7 14814.3 1783.2 12003.4 19445.6 158300.0 7200.0

UPSOm
0.9 70.0 15393.0 2371.4 11617.4 21042.8 80722.2 84941.4

UPSOg 70.0 15287.3 2216.7 12407.5 19987.9 94411.4 72475.1

3 UPSO` 100.0 17540.6 2349.1 13397.4 22680.5 − −
UPSO0.1 100.0 17036.8 2653.6 12866.4 23590.0 − −
UPSOm

0.1 100.0 17561.7 2793.7 13209.9 23212.7 − −
UPSO0.5 90.0 15046.6 2486.2 10036.5 20550.8 11665.9 576.7

UPSOm
0.5 100.0 15001.7 2876.9 10745.7 23334.8 − −

UPSO0.9 80.0 13524.3 2237.6 10437.8 19253.1 83583.3 76711.1

UPSOm
0.9 66.7 14762.0 2226.5 10859.0 19023.8 52169.6 65860.8

UPSOg 73.3 13660.6 1753.1 9295.4 16265.2 71800.0 82803.4

1) during function evaluation. In the simplified model, such assumptions are not
required since all the independent decision parameters are real-valued.

The swarm was randomly initialized in the search space, based on the ranges
proposed in [15]. In the original model, uniform initialization within the ranges
is adequate. However, in the simplified model a crucial initialization issue arises.
Specifically, in the original model a binary parameter has equal probability of being
initialized either to 0 or 1, since the algorithms uniformly sample real numbers
within [0,1]. On the other hand, the simplified model samples only within the
ranges of the real parameters xi jt , and then computes the corresponding y jt by
using Eq. (20) and the relaxation parameter εz. Yet, this initialization almost surely
assigns values xi jt > εz, which correspond to y jt = 1 because the volume (Lebesque
measure) of the portion of the search space that corresponds to xi jt < εz for all i
(and hence y jt = 0) is a very small fraction of the whole search space.

Therefore, a completely random initialization in the simplified model would
be heavily biased towards the values y jt = 1 that correspond to solutions where all
suppliers are getting product orders. In order to alleviate this deficiency, initializa-
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Figure 1: Boxplot of solution values per algorithm and parameter set for the 48-
dimensional simplified model.

tion in the simplified model was conducted as follows,

xi jt =


ri jt , if Ri jt > 0.5,

0, otherwise,
∀i, j, t,

where Ri jt is a random value uniformly distributed in [0,1]. Thus, each component
of the initial population had equal probability of being initialized to zero or a non-
zero value.

The performance of all UPSO variants under all parameter sets was assessed
on both the original and the simplified model. For each algorithm instance, 30
independent experiments were performed. At each experiment, the algorithm was
allowed to perform 2×103 iterations using swarm size N = 80. The best solution
detected per experiment and algorithm was recorded along with its feasibility. If a
solution was infeasible, the corresponding penalty term was recorded. All experi-
ments were conducted using the data provided in [15].

4.1 Results for the Original Model
The results for the original (48-dimensional) model are reported in Table 4 (recall
that higher function values correspond to better solutions). The first two columns
of the table stand for the parameter set and algorithm. The next column (labeled
as “Suc.”) reports the percentage of success in detecting a feasible solution in 100
experiments. The succeeding four columns report the mean, standard deviation,
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Figure 2: Number of wins, draws, and losses per algorithm for the original 48-
dimensional model.

minimum, and maximum solution objective value only for the successful runs. For
the cases where the final solution was infeasible, the last two columns report the
mean and standard deviation of the corresponding penalties of the final solutions.

In order to facilitate visual comparisons between the algorithms, boxplots of
the obtained solutions’ objective values per algorithm and parameter set are illus-
trated in Fig. 1. Moreover, pairwise Wilcoxon tests were performed between the
algorithms to ensure statistical significance of the observed differences. Specif-
ically, each was parameter set-algorithm combination was compared to the rest
with confidence level 95%, counting wins, draws, and losses. The corresponding
results are illustrated in Fig. 2.

The reported results reveal clear trends of performance for the algorithms. Ev-
idently, we observe superiority of exploration-oriented UPSO variants for all pa-
rameter sets. UPSO`, UPSO0.1, and its mutated counterpart UPSOm

0.1, exhibited
remarkable consistency, regardless of the selected parameter set. The UPSOm

0.1
variant was also promising but with clearly inferior average performance than the
previous ones. Finally, no clear correlation of specific parameter set and best per-
forming UPSO variant was revealed by the reported values.

As a final comment for the original model, we shall mention that the best fea-
sible solution obtained with the GA approach in [15] has objective value 15266.8.
In the next section, the results for the simplified model are presented.

4.2 Results for the Simplified Model
The results for the simplified (36-dimensional) model are reported in Table 5, fol-
lowing the presentation motif of the previous section. A first inspection of the table
offers some immediate insight. Specifically, the successful UPSO variants remark-
ably improved their performance, and UPSO0.1 as well as UPSO` maintained their
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Table 5: Results for all algorithms and parameter sets for the original 36-dimensional
model.

Par. Set Algor. Suc. Mean St.D. Min Max Mean Pen. St.D. Pen.

1 UPSO` 100.0 19740.2 2377.4 15377.0 23826.7 − −
UPSO0.1 100.0 20275.9 1093.6 16826.7 21728.8 − −
UPSOm

0.1 100.0 18656.1 2288.7 14235.1 21667.4 − −
UPSO0.5 86.7 16974.1 3178.7 11823.5 22011.0 10878.7 1008.5

UPSOm
0.5 90.0 16910.8 2832.2 10642.3 20866.3 3092.5 1909.4

UPSO0.9 63.3 15648.7 3043.8 10187.5 23759.3 26509.2 33157.7

UPSOm
0.9 66.7 16359.3 3532.7 11256.8 23252.1 23805.0 39090.7

UPSOg 36.7 14598.8 3547.2 10104.6 20044.5 59059.8 64486.2

2 UPSO` 100.0 20317.6 1672.6 17645.4 23404.3 − −
UPSO0.1 100.0 20318.2 842.1 16749.2 21371.2 − −
UPSOm

0.1 100.0 18826.2 1561.1 15360.5 21056.7 − −
UPSO0.5 93.3 16723.3 3568.9 8819.5 22519.8 6.4 8.4

UPSOm
0.5 96.7 17413.8 1960.3 11744.1 20333.5 3333.6 0.0

UPSO0.9 86.7 17621.2 2584.2 14240.7 24970.4 26732.6 30802.5

UPSOm
0.9 83.3 15712.5 2959.3 9954.7 20984.7 46280.4 76447.3

UPSOg 63.3 14911.2 2357.0 10940.5 19533.3 74697.3 71821.4

3 UPSO` 100.0 19658.8 1826.0 15276.6 23011.8 − −
UPSO0.1 100.0 20133.3 1326.8 15799.7 21622.8 − −
UPSOm

0.1 100.0 19961.6 934.9 16989.2 21590.2 − −
UPSO0.5 86.7 15034.6 3069.5 8039.6 20023.5 9505.3 1979.8

UPSOm
0.5 76.7 13726.4 2407.2 10011.6 18131.2 20819.1 16451.2

UPSO0.9 50.0 16309.2 3117.9 10771.3 20199.4 48299.8 64722.9

UPSOm
0.9 66.7 15047.7 3363.0 9538.4 23043.7 35021.1 27113.3

UPSOg 60.0 16821.2 4249.6 8014.9 25351.7 62186.1 87439.2

top-ranking positions in terms of solution quality. Obviously, the reduced problem
dimensionality along with the adequate search diversification attained by UPSO,
offers properly balanced search capability to the algorithm.

Similarly to the analysis in the previous section, boxplots of the obtained solu-
tions’ objective values per algorithm and parameter set are shown in Fig. 3, while
wins, draws, and losses from Wilcoxon tests are illustrated in Fig. 4. The figure
reveals that, in the simplified model, exploration oriented UPSO variants achieved
better scores than in the original model. This improvement can be attributed to
the reduced dimension of the simplified problem. Another interesting observation
is the reduced number of draws for most algorithms. This is an indication that
the simplified model tends to bias the performance of different UPSO variants,
rendering it more sensitive with respect to the specific problem instance.

Finally, Table 6 contains an overall ranking of all algorithms for both mod-
els with respect to their number of wins, draws, and losses in pairwise Wilcoxon
ranksum tests among them based on solution quality. The ranking verifies our pre-
vious findings. The simplified model boosts the detection of high quality solutions,
which are typically detected by exploration-oriented UPSO variants. The effect of
the parameter set is problem-dependent. Mutated variants seem to be competi-

12



UPSOl UPSO0.1 UPSO0.1m UPSO0.5 UPSO0.5m UPSO0.9 UPSO0.9m UPSOg
0

1

2

3
x 10

4 SET 1 (36−dim)

S
O

L
U

T
IO

N

UPSOl UPSO0.1 UPSO0.1m UPSO0.5 UPSO0.5m UPSO0.9 UPSO0.9m UPSOg
0

1

2

3
x 10

4 SET 2 (36−dim)

S
O

L
U

T
IO

N

UPSOl UPSO0.1 UPSO0.1m UPSO0.5 UPSO0.5m UPSO0.9 UPSO0.9m UPSOg
0

1

2

3
x 10

4 SET 3 (36−dim)

S
O

L
U

T
IO

N

Figure 3: Boxplot of solution values per algorithm and parameter set for the 36-
dimensional simplified model.

tively efficient to non-mutated ones, occupying almost half of the top 10 positions
in the ranking. On the other hand, exploitation-oriented variants exhibited declin-
ing performance because of their tendency for search stagnation. This is partially
due to the rounding procedure, which biases velocity towards zero in swarms that
lose diversity by concentrating all particles in small regions of the search space.

5 Conclusion
We offered an experimental investigation of UPSO on a recently proposed model
for supply chain with multiple items and suppliers, where the goal is the determi-
nation of an optimal procurement strategy given the demand for a finite planning
horizon. The original model corresponds to a highly-constrained mixed-integer
optimization task. We proposed a simplified model that reduces the problem to a
real-valued optimization task. On both models, different variants of UPSO were
applied and analyzed.

The obtained results suggest that the simplified model can be significantly ad-
vantageous for the successful algorithms than the original one. UPSO appeared to
be highly competitive to existing GA-based approaches reported in the literature.
Moreover, it was shown to be robust and less affected by the parameter set. Ongo-
ing work includes the extension of the results in enhanced versions of the problem
(e.g., including backlogging).
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simplified model.
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