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ABSTRACT 
 
We consider methods based on the topological degree theory to compute 
periodic orbits of area preserving maps. Numerical approximations to the 
Kronecker integral give the number of fixed points of the map provided 
that the integration step is small ''enough''. Since in any neighborhood of 
a fixed point the map gets four different combination of its algebraic 
signs we use points on a lattice to detect the candidate fixed points by 
selecting boxes whose corners show all combinations of sign. This 
method and the Kronecker integral can be applied to bounded continuous 
maps such as the beam-beam map. On the other hand they can not be 
applied to maps defined on the torus, such as the standard map which has 
discontinuity curves propagating by iteration, or unbounded maps such as 
the Hénon map. However, the systematic use of the bisection method 
initialized on the lattice, even though unable to detect all fixed points of a 
given order, allows us to find a sufficient number of them to provide a 
clear picture of the dynamics, even for maps on the torus because the 
discontinuity curves have measure zero. 
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1. The topological degree (TD) and its computation 
 
We consider the problem of finding the solutions of a system of 
nonlinear equations of the form Fn(x) = Θn, where Fn = (f1, f2, …, fn): 
Dn ⊂  !n → !n is a function from a domain Dn into !n, Θn = (0, 0, 
…,0)Τ and x = (x1, x2, …, xn)T. The above system is equivalent to  

 
f1(x1, x2, …, xn) = 0,  
f2(x1, x2, …, xn) = 0,  

!  
fn(x1, x2, …, xn) = 0.  

 
The topological degree (TD) theory gives us information on 

the existence of solutions of the above system, their number and 
their nature. Kronecker introduced the concept of the TD in 1869, 
while Picard in 1892 succeeded in providing a theorem for 
computing the exact number of solutions. For details about the TD 
theory and its applications we refer the reader to the following 
papers and books: Cronin (1964), Lloyd (1978), Vrahatis (1989, 
1995), Vrahatis et al. (1996, 1997) and Mourrain et al. (2002). 
 
Definition. Consider the function  
 

Fn = (f1, f2, …, fn) : Dn ⊂  !n → !n, 
 
which is continuous on the closure Dn of Dn, such that Fn(x) ≠ Θn for 
x on the boundary b(Dn) of Dn. We also consider the solutions of 
equation Fn(x) = Θn (where Θn = (0, 0, …,0)Τ), to be simple i.e. the 
determinant of the corresponding Jacobian matrix (JFn) to be 
different from zero. Then the topological degree of Fn at Θn relative 
to Dn is defined as: 
 

  deg[Fn, Dn, Θn] = ∑
Θ∈ )(F x 1-

n n
 sgn(det JFn(x)) = N+ - N-  (1) 

 
where det JFn is the determinant of the Jacobian matrix of Fn, sgn is 
the well-known sign function, N+ the number of roots with detJFn>0 
and Ν- the number of roots with detJFn<0.  
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It is evident that if a nonzero value of deg[Fn, Dn, Θn] is obtained 
then there exist at least one solution of system Fn(x) = Θn within Dn 
(Kronecker’s existence theorem). 
 
 

Kronecker’s integral 
 
Under the assumptions of the above definition the deg[Fn, Dn, Θn] 
can be computed by: 
 
deg[Fn, Dn, Θn] = 

 
)f    f  (f

dx  dxdx  dxA   
  

 π2
)Γ(

)b(D
n/22

n
2
2

2
1

1i n1i1-iii
n/2
2
n

n

∫∫ ∫ ∑
+++

= +

!

!!
!

n

 

 
where  
 

 

x
f

x
f

x
f

x
ff

x
f

x
f

x
f

x
ff

x
f

x
f

x
f

x
ff

 (-1)  A

n

n

1i

n

1-i

n

1

n
n

n

2

1i

2

1-i

2

1

2
2

n

1

1i

1

1-i

1

1

1
1

1)-n(i
i

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

+

+

+

!!

"""""

!!

!!

 

 
and Γ(x) is the gamma function. 
 
 

Picard’s theorem 
 
We consider the assumptions of the definition of TD. We also 
consider the function   
 

Fn+1 = (f1, f2, …, fn, fn+1) : Dn+1 ⊂  !n+1 → !n+1 
 
where  
 



 4 

fn+1 = y detJFn, 
 
!n+1:x1, x2, …, xn, y and Dn+1 is the product of Dn with a real interval 
on the y-axis containing y=0. Then the exact number N of the 
solutions of equation Fn(x) = Θn is 

 
Ν= deg[Fn+1, Dn+1, Θn+1]. 

 
 

Number of roots for a system of 2 equations 
 
By applying Picard’s theorem and Kronecker’s in the case of a set of 
two equations: 
 
 f1(x1, x2) = 0,  
 f2(x1, x2) = 0, (2) 
 
we find that the number N of roots in the domain D2 = [a,b]××××[c,d] 
is given by: 
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where J denotes the determinant of the Jacobian matrix of F2=(f1,f2) 
 
Stenger’s method (Stenger 1975).  
Stenger’s theorem allows us to compute the TD of Fn at a domain Dn 
if we know the signs of functions f1, f2, …, fn in a ‘sufficient’ set of 
points on the boundary b(Dn) of Dn. 
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2. The characteristic bisection method 

 
The characteristic bisection method is based on the characteristic 
polyhedron concept for the computation of roots of the equation 
Fn(x) = Θn. The construction of a suitable n-polyhedron, called the 
characteristic polyhedron, can be done as follows. Let Mn be the 
2n"n matrix whose rows are formed by all possible combinations of 
-1 and 1. Consider now an oriented n-polyhedron Πn, with vertices 
Vk, k=1,...,2n. If the 2n"n matrix of signs associated with F and Πn, 
whose entries are the vectors  
 
 sgnFn(Vk) = (sgnf1(Vk), sgnf2(Vk), ..., sgnfn(Vk)), (4) 
 
is identical to Mn, possibly after some permutations of these rows, 
then Πn is called the characteristic polyhedron relative to Fn. If Fn is 
continuous, then, after some suitable assumptions on the boundary of 
Πn we have: 
 
 deg[Fn, Πn, Θn+1] = ±±±±1 ≠ 0. (5) 
 
So, by applying Kroneker’s existence theorem we conclude that 
there is at least one solution of the system Fn(x) = Θn within Πn. 

To clarify the characteristic polyhedron concept we consider a 
function F2=(f1, f2). Each function fi, i=1,2, separates the space into a 
number of different regions, according to its sign, for some regions 
fi<0 and for the rest fi>0, i=1,2. Thus, in figure 1(a) we distinguish 
between the regions where f1<0 and f2<0, f1<0 and f2>0, f1>0 and 
f2>0, f1>0 and f2<0. Clearly, the following combinations of signs are 
possible: (-,-), (-,+), (+,+) and (+,-). Picking a point, close to the 
solution, from each region we construct a characteristic polyhedron. 
In this figure we can perceive a characteristic and a noncharacteristic 
polyhedron Π2. For a polyhedron Π2 to be characteristic all the above 
combinations of signs must appear at its vertices. Based on this 
criterion, polyhedron ABDC does not qualify as a characteristic 
polyhedron, whereas AEDC does. 

Next, we describe the characteristic bisection method. This 
method simply amounts to constructing another refined 
characteristic polyhedron, by bisecting a known one, say Πn, in 
order to determine the solution with the desired accuracy. We 
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compute the midpoint M of an one-dimensional edge of Πn, e.g. 
<Vi,Vj>. The endpoints of this one-dimensional line segment are 
vertices of Πn, for which the corresponding coordinates of the 
vectors, sgn Fn(Vi) and sgn Fn(Vj) differ from each other only in one 
entry. To obtain another characteristic polyhedron n

*Π  we compare 
the sign of Fn(M) with that of Fn(Vi) and Fn(Vj) and substitute M for 
that vertex for which the signs are identical. Subsequently, we 
reapply the aforementioned technique to a different edge (for details 
we refer to Vrahatis 1988a;b, 1995).  

 

 
Figure 1. (a) The polyhedron ABDC is noncharacteristic while the polyhedron AEDC 
is characteristic, (b) Application of the characteristic bisection method to the 
characteristic polyhedron AEDC, giving rise to the polyhedra GEDC and HEDC, 
which are also characteristic. 
 

To fully comprehend the characteristic bisection method 
we illustrate in figure 1(b), its repetitive operation on a 
characteristic polyhedron Π2. Starting from the edge AE we find 
its midpoint G and then calculate its vector of signs, which is (-1,-1). 
Thus, vertex G replaces A and the new refined polyhedron GEDC, is 
also characteristic. Applying the same procedure, we further refine 
the polyhedron by considering the midpoint H of GC and checking 
the vector of signs at this point. In this case, its vector of signs is     
(-1,-1), so that vertex G can be replaced by vertex H. Consequently, 
the new refined polyhedron HEDC is also characteristic. This 
procedure continues up to the point that the midpoint of the longest 
diagonal of the refined polyhedron approximates the root within a 
predetermined accuracy. 
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3. Applications 

 
We consider methods based on the topological degree theory to 
compute periodic orbits of the following area preserving maps: 
 
• Standard map (map on the torus T) 
 

 
[-0.5,0.5)y     x,, mod(1)  

x)sin(2 
2π
k -y   y'

x)sin(2 
2π
k -y   x  x

 : SM ∈








=

+=′

π

π

 
(6)

 

 
• Hénon map (unbounded map on !!!!2) 
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 )cos(2 ) x(y   )sin(2x  y'
)sin(2 ) x(y   )cos(2 x  x : HM 2

2

πωπω
πωπω

 (7) 

 
• Beam-beam map (bounded map on !!!!2) 
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 )cos(2 )e - 1 (y   )sin(2x  y'
)sin(2 )e - 1 (y   )cos(2 x  x : BM 2

2

x-

-x

πωπω
πωπω

 (8) 

 
The periodic orbits of the beam-beam map have been studied by 
Polymilis et al. (1997, 2001). 
 

Given a dynamical map M: {x'=g1(x,y), y'=g2(x,y)}, the 
periodic points of period p are fixed points of Mp and the zeroes of 
the function:  
 

 F = Mp – I = 





=
=

y - y)(x,g  f
 x- y)(x,g  f

p
22

p
11  (9) 

 
where I is the identity matrix.  
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Color map 
 
One can use a color map to inspect the geometry of function F (9) 
and to locate its zeroes. The color map is created by choosing a 
lattice of N××××N points and by associating to each point a color 
chosen according to the signs of the functions f1, f2: red for (+,+), 
green for (+,-), yellow for (-,+), blue for (-,-) as shown in figure 2. 
A simple algorithm allows to detect the cells, formed by the lattice 
of N"N points, whose vertices have different colors. A cell is a 
candidate to have a zero in its interior if the corresponding 
topological degree is found to be different from zero. In figures 3 
and 4 we construct the color map and apply the above mentioned 
algorithm for locating periodic orbits of period 3 for the SM (6) and 
of period 5 for the BM (8). The red circles denote the position of the 
found periodic orbits. We see that for both maps some periodic 
orbits were not found because some of the four color domains close 
to the fixed point were very thin. On the other hand, due to the 
discontinuity of F, some zeros that do not correspond to real periodic 
orbits were found for the SM (figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Sketch of the domains where functions f1 and f2 (equation 9) have a definite 
sign.  
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Figure 3. Standard map (6) for k=0.9: color map for p=3 iterations of the map 
computed on a square of N×N points for N=512 (left panel); phase plot of the map 
(right panel). The red circles denote the position of the zeros of the corresponding 
function (9).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Beam-beam map (8) for ω=0.21: color map for p=5 iterations of the map 
computed on a square of N×N points for N=512 (left panel); phase plot of the map 
(right panel). The red circles denote the position of the zeros of the corresponding 
function (9).  
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Discontinuity curves 

 
For maps defined on the torus like the SM (6), the computation of 
the TD using Stenger’s method or the Kronecker integral (3) faces a 
problem due to the presence of discontinuity curves. Indeed the 
above integral is defined on a domain where F (9) is continuous. 

For the SM the discontinuity curves are the lines x=-0.5 and 
y=-0.5, plotted in red and blue color respectively at the left panel of 
figure 5. By applying the SM map M once these lines are mapped on 
the red and blue curves seen in the right panel of figure 5. On the 
initial phase space there exist also the discontinuity curves that will 
be mapped after one iteration to the lines x=-0.5 and y=-0.5. These 
curves are plotted in black and green color respectively in figure 5. 
These curves can be produced by applying the inverse SM to the 
discontinuity lines x=-0.5 and y=-0.5. So the discontinuity curves 
divide the initial phase space in five continuous regions marked as I, 
II, III, IV and V in figure 5. In each region the computation of the 
TD can be performed accurately by Stenger's method or by 
Kronecker’s integral evaluation. If, however, the boundary of the 
domain where these procedures are applied, cross a 
discontinuity curve the results we get are not correct (figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. The discontinuity curves of the standard map M (6) divide the phase space 
in five continuous regions (I, II, III, IV, V). In each region the computation of the TD 
can be performed accurately.  
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Figure 6. (a) Number of fixed points N evaluated for the SM (6) with k=0.9 using the 
Kronecker’s integral (3), in a rectangular domain whose topside moves. The rectangle 
and the discontinuity lines are shown in (b). For the various rectangles, N should be 
equal to 1 since they contain only 1 fixed point of period 1, point (0,0). The two 
points marked by arrows in (a) where N deviates from the correct value N=1, 
correspond to y≈0.358 and y≈0.466 respectively, where the upper-side of the 
rectangular crosses the two discontinuity curves in (b). 
 
 

Roots near the boundary 
 
We consider the simple map F*=(f1,f2) : f1(x,y)=y-x3/3+x, f2(x,y)=y. 
The lines f1=0, f2=0 are plotted in figure 7(a). The above system of 
equations has three roots. The determinant of the corresponding 
Jacobian matrix (detJF*) is positive for root (0,0) and negative for 
roots (-√3,0) and (√3,0).  

In order to study the dependence of the procedure for 
finding the TD in a region D, with respect to the distance of a 
root from the boundary of D, we consider a rectangular of the form 
[-a,2]"[-2,2] with a>√3, shown in the figure 7(a). Since this domain 
contains the three roots of system the value of TD is -1. We let 
a=√3+ε with ε>0 so that the boundary approaches the root as ε→0, 
as shown by the arrow in figure 7(a). We compute the TD for 
different values of ε by Stenger's method, by using the same number 
of points N on every side of the rectangle. We denote by ngp=4N the 
smallest number of grid points needed to compute the TD with 
certainty. In figure 6(b) we plot in log-log scale, ngp with respect to ε 
(dashed line). The slope of the curve is almost -1 so that N∝ ε-1. The 
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same result holds for any map when a root approaches the boundary 
(the solid line in figure 7(b) is obtained for a similar example for the 
SM (6)).  

Figure 7. (a) Plot of the curves f1≡y-x3/3+x=0, f2≡y=0. (b) Dependence of the number 
of iteration points ngp, needed for computing the correct value of the TD in a domain, 
on the distance ε of a root from the boundary of the domain, for the set of equations of 
(a) (dashed line) and the SM (continuous line). 
 

Periodic orbits 
 
Using the characteristic bisection method we were able to compute 
a sufficient number of the periodic orbits with period up to 40 
for the BM (figure 8) and the SM (figure 9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Periodic orbits up to period p=40 for the BM (8) for ω=0.14. The elliptic 
periodic orbits are blue and the hyperbolic ones are red. 

e

(a) (b) 

ε 
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Figure 8. Periodic orbits up to period p=40 for the SM (8) for k=0.9. Different colors 
denote different kind of stability: the elliptic periodic orbits are blue, the hyperbolic 
periodic orbits are red and the hyperbolic with reflection periodic orbits are pink. The 
marginally stable periodic orbits, having | |detJF| – 2 | < 10-6, are green. 
 
 

4. Synopsis 
 
We have studied the applicability of various numerical methods, 
based on the topological degree theory, for locating high period 
periodic orbits of 2D area preserving mappings. 
 In particular we have used the Kronecker’s integral and 
applied the Stenger’s method for finding the TD in a bounded 
region of the phase space. If the TD has a non-zero value we know 
that there exist at least one periodic orbit in the corresponding 
region. The computation of the TD for an appropriate set of 
equations allows us to find the exact number of periodic orbits. 
We also applied the characteristic bisection method on a mesh in 
the phase space for locating the various fixed points. 

The main advantage of all these methods is that they are not 
affected by accuracy problems in computing the exact values of the 
various functions used, since, the only computable information 
needed is the algebraic signs of these values. 

We have applied the above-mentioned methods to 2D 
symplectic mappings defined on R2 and on the torus T2. The 
methods for computing the TD are applied to continuous regions of 
the phase space, so their use for maps on the torus is limited to 
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regions where no discontinuity curves exist. On the other hand the 
characteristic bisection method proved to be very efficient for all 
different types of mappings, since, it allowed us to compute a big 
fraction of the real fixed points of period up to 40 in reasonable 
computational times. Finally we believe that this method can be 
extended also to higher dimensional maps. 
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