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Abstract

A new evolutionary algorithm for the global optimization of multimodal functions is
presented. The algorithm is essentially a parallel direct search method which maintains a
populations of individuals and utilizes an evolution operator to evolve them. This operator
has two functions. Firstly, to exploit the search space as much as possible, and secondly to
form an improved population for the next generation. This operator makes the algorithm
to rapidly converge to the global optimum of various difficult multimodal test functions.

1 Introduction

In this contribution we propose a new evolutionary algorithm for global minimization of non-
linear and non-differentiable continuous functions. More formally, we consider the following
general global optimization problem:

f∗ = min
x∈D

f(x),

where f : D → IR is a continuous function and the compact set D ⊂ IRn is an n-dimensional
parallelepiped.

Often, analytic derivatives of f are unavailable particularly in experimental settings where
evaluation of the function means measuring some physical or chemical quantity or performing
an experiment. Inevitably, noise contaminates the function values and as a consequence, finite
difference approximation of the gradient is difficult, if not impossible, the procedure to estimate
the gradient fails, and methods that require derivatives are precluded. In such cases direct
search approaches are the methods of choice.

If the objective function is unimodal in the search domain, one can choose among many good
alternatives. Some of the available minimization methods involve only function values, such as
those of Hook and Jeeves [2] and Nelder and Mead [5]. However, if the objective function
is multimodal, the number of available algorithms is reduced to very few. In this case, the
algorithms quoted above tend to stop at the first minimum encountered, and cannot be used
easily for finding the global one.

Search algorithms which enhance the exploration of the feasible region through the use of
a population, such as Genetic Algorithms (see, [4]), and probabilistic search techniques such as
Simulated Annealing (see, [1, 7]), has been the object of many publications. In analogy with
the behavior of natural organisms, random search algorithms have often called evolutionary
methods. The generation of a new trial point corresponds to mutation while a step toward the
minimum can be viewed as selection.
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In the present work we propose an evolutionary algorithm in which we enhance the explo-
ration of the feasible region utilizing a specially designed evolution operator, called Simplex
Operator, and based on the idea of simplex search method. It starts with a specific number
of N dimensional candidate solutions, as an initial population, and evolves them over time, in
such a way that each new iteration of the algorithm gives a better population.

The remaining of the paper is organized as follows: In Section 2 we present our Simplex
Evolution algorithm (SE) for minimizing multimodal functions. The algorithm has been tested
against the Annelead Nelder and Mead simplex method and the corresponding results are
presented in Section 3. The final section contains concluding remarks and a short discussion
for further work. In the appendix we list the problems used in our tests from Levy et al. [3].

2 The Simplex Evolution

Simplex Evolution is based on the collective learning process within a population of individuals,
each of which represents a search point in the space of potential solutions to a given problem.
The population is chosen randomly and should try to cover the entire search space D, and
evolves towards better and better regions of the search space by means of deterministic steps
that use randomly selected individuals. The number of the candidate solutions does not change
during the minimization process. At each iteration, called generation, the evolution of the
population occurs through the use of an operator called mutation.

The key idea is to construct a mechanism, which at each generation takes each individual
of the population, and replace it with a better one for the next generation. To this end, we
have specially redesign the traditional mutation operator in order to enhance the process of the
exploitation of the search space, in such a manner that typically avoids getting stuck in local
minimum points. Our mutation operator, called Simplex Operator, is based on a simplex search,
which is a geometrical figure consisting in N dimensions of N +1 points and all interconnecting
lines and faces. In general we are interested only in simplexes that are nondegenerate, i.e., that
enclose a finite inner N–dimensional volume. For each candidate solution, called BasePoint, of
the current generation, we choose N other candidates and we form a simplex. If we assume
that the BasePoint of a nondegenerate simplex is taken as the origin, then the N other points
define vector directions that span the N–dimensional vector space.

In the sequence, for this simplex we perform two of the three possible trial steps: a reflection,
an expansion or a contraction step, in order to approach the minimum by moving away from
high values of the objective function, without moving out of the search domain. The current
point is replaced in the next generation by the resulted mutated one. This last operation is
called selection and produces an improved population for the next generation.

2.1 The Simplex Operator

The Simplex Operator is a specially designed evolution operator with deterministic steps that
enhances the exploitation of the search space. This operator amounts to replacing a single
individual, as a description of the system state, by a simplex of N + 1 points. In practice,
we are only interested in nondegenerate simplexes. The moves of the simplex are the same as
described in [5, 6], namely reflection, expansion, and contraction. The least preferred point of
the simplex is reflected through or contracted towards the center of the opposite face of the
simplex. Actually, this operator performs only one cycle of the Simplex method as shown in
the following algorithm which gives the basic steps of the operator:
In line 3 we check if the simplex S is degenerate, regarding to the function values of its vertices.
Specifically, we check if the standard deviation of the function at the N + 1 vertices of the
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SimplexOperator(BasePoint x1)
1: Select points xi, where i = 2, . . . , N + 1;
2: Construct the simplex S = 〈x1, x2, . . . , xN+1〉;
3: if S is degenerate go to 1;
4: Rank xi based on the function values;
5: Reflect(S)→ xr;
6: if f(xr) < f(x1) then
7: Expand(S)→ xe;
8: if f(xe) < f(xr) then
9: return the expansion point xe;

10: else
11: return the reflection point xr;
12: end if
13: else
14: Contract(S)→ xc;
15: if f(xc) < f(xr) then
16: return the contraction point xc;
17: else
18: return the best vertex of the simplex S;
19: end if
20: end if

current simplex is smaller than some prescribed small quantity ε, i.e.

σ =

{
N+1∑
i=1

[f(xi)− f(x0)]
2

N + 1

}1/2

≤ ε, (1)

where x0 is the centroid of the simplex S. In the implementation of the algorithm we have used
ε = 10−15. There is no case of an infinite loop between the lines 1 and 3, where the simplex
S is examined for degeneracy, since in the SE algorithm (see Section 2.2), the (1) has been
enforced as a termination criterion for the entire population. Therefore, we can form at least
one non-degenerate simplex. Using (1) we avoid unnecessary function evaluations.

To guarantee convergence in the feasible region D, we have constrained the operations
reflection and/or expansion (lines 5 and 7), in a such a way that the returned point is always
in D. If the returned point is outside of the feasible region D, we subdivide the prefixed values
of reflection and/or expansion constants until the new point is included in D.

If the simplex operator fails to improve the base point x1 during the reflection, expansion
or contraction operations then we return the best vertex of the simplex S. Simplex Operator
has embedded (in lines 9, 11, 16, 18) the selection step, as it returns always a better individual
in order to replace the BasePoint. This is consistent with the idea of selection in evolution
algorithms, since the “good” individuals are reproduced more often than the worse ones in the
next generation. In contrast with other evolution algorithm, SE deterministically choose the
individuals for the next generation.

2.2 The SE Algorithm

In this subsection we present our evolutionary algorithm (SE), which maintains a population of
PopSize individuals and utilizes the Simplex Operator to evolve them over time. The algorithm
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does not have any control parameters, as other global optimization methods. The user must
supply only the search region (a box) and the population size Popsize. In our implementation
we have chosen the Popsize to be five times the dimension of the problem to be optimized. As
the population iterates through successive generations, the individuals tend toward the global
optimum of the objective function f . To generate a new population G(t+1) on the basis of the
previous one G(t) the algorithm SE performs the steps as shown in the pseudo code.

SE Algorithm

1: t = 0;
2: Generate the initial population G(t);
3: Evaluate the initial population G(t);
4: while termination criterion not reached do
5: for i = 1, . . . , PopSize do
6: BasePoint ← xi ∈ G(t);
7: xnew

i ← SimplexOperator(BasePoint);
8: Put xnew

i in the next generation G(t + 1);
9: end for

10: t = t + 1;
11: end while

Classical termination criteria for the evolution algorithms are: a) maximum number of
generations, and b) maximum number of function evaluations. Obviously, if the global minimum
value is known, then an efficient termination criterion can be defined; the method is stopped
when finds the minimizer within a predetermined accuracy. This happens, for example, in the
case of the non–linear least squares.

Except the previous ones we can enforce an additional termination criterion, since SE is
based on the simplex method. This criterion checks at each generation if the entire population
has converged, examining the Relation (1). If the standard deviation of the function values is
smaller than ε, then this is a strong indication that further search is impossible, since we cannot
form simplexes big enough to exploit the search space. Therefore, we can stop the algorithm, or
possibly, rank the population and restart the algorithm by reinitializing the worst individuals.
By doing this we enrich the population and give the algorithm a chance for further exploitation
of the search space.

3 Tests and Results

In this section we present some preliminary results of the SE method. We decided to test the
effectiveness of the SE method against the Annealed Nelder and Mead method (ANM) [6], since
it has few, easy tunable, control parameters, in contrast with other well-known pure annealing
methods that have many control variables [1, 7]. ANM has been chosen also owing to its ability
to accept downhill as well as uphill steps. The probability to accept uphill steps decreases with
the “temperature” of the system, which in turn decrease with time. This mechanism enables
ANM to escape local minima when the temperature does not tend to zero. When the annealing
part is switched off, the simplex method remains. We have not chosen a gradient method, since
the test functions are multimodal and such a method would immediately get trapped at the
first local minimum encountered.

To evaluate the performance of the algorithms we have tested them in seven well-known
multimodal test functions from Levy et. al. (see Appendix). The admissible domains of the
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test functions were [−10, 10]n, where n is the dimension of the problem. The test for ANM has
been made starting from 100 regular simplexes randomly generated in the region D. The SE
method, since it maintains a population, has been initialized 100 times, each time with a different
randomly chosen population. We retained two comparison criteria: the success rate to find the
global minimum, and the average number of function evaluations, during 100 independent runs.
We consider that the method has succeeded, if it has found the global minimum with accuracy
10−3. It must be noted that when a method fails to find the global minimum its function
evaluations are not counted.

Table 1: Minimization of seven test functions.
SE ANM

N FE Succ. FE Succ.
Levy No. 3 2 934 89% 135 32%
Levy No. 5 2 547 86% 116 9%
Levy No. 8 3 325 100% 138 57%
Levy No. 9 4 546 100% 160 45%
Levy No. 10 5 450 100% 186 16%
Levy No. 11 8 4404 100% – 0%
Levy No. 12 10 11619 100% – 0%

In Table 1 one can observe that SE is more costly compared to the ANM, but excibited better
success rate and the number of function evaluations needed is quite predictable regarding to
the number of the local minima. On the other hand, the ANM was unable to find the global
minimum in high-dimensional problems, such as Levy No. 11 and No. 12, where a multitude
of local minima (108 and 1010 respectively) exist. Summing up, the results show that the SE
method is a predictable and reliable method, in contrast with the annealed version of simplex
method, especially in high dimensions.

4 Conclusion

Preliminary results indicate that this new evolutionary algorithm fulfills our promises, since it
exhibits high performance and good convergence properties in consecutive independent trials.
It can be applied to nondifferentiable, nonlinear and high-dimensional multimodal objective
functions. Moreover, the method is heuristic-free, i.e. does not uses any control parameters.

In a recent work [8], we have successfully hybridize a genetic algorithm with an interval
branch-and-bound one, for global optimization. In its present form, SE gives us one global
minimum, without guarantee. Our aim is to combine the SE with an interval global optimization
algorithm in order to find all the global minimizers with certainty.

Future work will also include testing on bigger and more complex real-life optimization
problems and comparison with other well-known global optimization methods, such as those
found in [1, 7]. Last but not least, we will design and implement a parallel version of the
algorithm, since SE is a parallel direct search, and it can be efficiently executed on a parallel
machine or a network of computers.
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Appendix: List of test functions

(1) Levy No. 3, (n = 2).

f(x) =
5∑

i=1

i cos[(i + 1)x1 + i]
5∑

j=1

j cos[(j + 1)x2 + j], − 10 ≤ xi ≤ 10

where −10 ≤ xi ≤ 10, i = 1, 2. There are about 760 local minima and 18 global minima.
The global minimum is f∗ = −176.542.

(2) Levy No. 5, (n = 2).

f(x) =
5∑

i=1

i cos[(i + 1)x1 + i]
5∑

j=1

j cos[(j + 1)x2 + j] + (x1 + 1.42513)2 + (x2 + 0.80032)2,

where −10 ≤ xi ≤ 10, i = 1, 2. There are about 760 local minima and one global minimum
f∗ = −176.1375 at x∗ = (−1.3068,−1.4248). Levy No. 5 is identical to Levy No. 3 except
for the addition of a quadratic term. The large number of local optimizers makes it
extremely difficult for any approximation method to find the global minimizer.

(3) Levy No. 8, (n = 3).

f(x) = sin2(πy1) +
n−1∑
i=1

(y1 − 1)2 [1 + 10 sin2(πyi+1)] + (yn − 1)2
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where yi = 1 + (xi − 1)/4, (i = 1, . . . , n) and xi ∈ [−10, 10], i = 1, 2, 3. There are about
125 local minima and one global minimum f∗ = 0 at x∗ = (1, 1, 1). Levy No. 8 is difficult
due to the combinations of different periods of the sine function.

(4) Levy No. 9, (n = 4).
Same as problem (3) with n = 4 and xi ∈ [−10, 10], i = 1, . . . , 4. There are about 625
local minima and one global minimum f∗ = 0 at x∗ = (1, 1, 1, 1).

(5) Levy No. 10, (n = 5).
Same as problem (3) with n = 5 and xi ∈ [−10, 10], i = 1, . . . , 5. There are about 105

local minima and one global minimum f∗ = 0 at x∗ = (1, . . . , 1).

(6) Levy No. 11, (n = 8). Same as problem (3) with n = 8 and xi ∈ [−10, 10], i = 1, . . . , 8.
There are about 108 local minima and one global minimum f∗ = 0 at x∗ = (1, . . . , 1).

(7) Levy No. 12, (n = 10). Same as problem (3) with n = 10 and xi ∈ [−10, 10], i = 1, . . . , 10.
There are about 1010 local minima and one global minimum f∗ = 0 at x∗ = (1, . . . , 1).
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