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Abstract—Reliable estimation of a neural network’s domain of
validity is important for a number of reasons such as assessing its
ability to cope with a given problem, evaluating the consistency of
its generalization etc. In this paper we introduce a new approach
to estimate the domain of validity of a neural network based
on Set Inversion Via Interval Analysis (SIVIA), the methodology
established by Jaulin and Walter [1]. This approach was originally
introduced in order to solve nonlinear parameter estimation
problems in a bounded error context and proved to be effective in
tackling several types of problems dealing with nonlinear systems
analysis. The dependence of a neural network output on the
pattern data is a nonlinear function and hence derivation of the
impact of the input data to the neural network function can be
addressed as a nonlinear parameter estimation problem that can
be tackled by SIVIA. We present concrete application examples
and show how the proposed method allows to delimit the domain
of validity of a trained neural network. We discuss advantages,
pitfalls and potential improvements offered to neural networks.

I. INTRODUCTION

Feed-forward neural networks are trained to form a
mapping capable to model a process known through a set of
data sampled from this process. This mapping is done in terms
of realizing a function F (x,w) that is close enough to a target
function d = f(x) representing the underlying process. This
target function is rarely formulated in analytical terms but it
is defined as a set of input-output values {xi, di} resulting
from observations of the underlying process. Training a neural
network is carried out by fixing the input xi and output di and
adjusting the weights w until some distance metric between
the realized and the target function is minimized.

It is well known in the neural network research community
that a properly trained neural network is capable of modeling
the underlying process when it is able to provide reliable
generalization response i.e. correct classification of previously
unseen data. Generalization depends not only on the training
algorithm itself, but also, on both the training set and the
location of the chosen validation points with respect to the
area in the pattern space containing the set of training points.
In consequence, it is necessary to be able to accurately

estimate the neural network’s domain of validity [2]. Another
key issue for efficiently using a neural network concerns its
ability to provide explanation on how it solves a particular
problem especially when this deals with classification. As
in the case of generalization, the ability to have an accurate
estimation of the domain of validity is mandatory for deriving
provably correct rules of the network’s classification function.
Since the early times of neural research, a common approach
to tackle these problems has always been neural network
inversion. Before, getting into describing the details of neural
network inversion we need to mention the work of Courrieu
[2] and Pellilo [3] who study in depth algorithmic solutions
for estimating the domain of validity of a neural network.

Typically, the term inversion corresponds to defining
the inverse of the mapping F : Rn → Rm established by
a trained neural network, that is, the mapping denoted by
F−1 : Rm → Rn. Given that the F is, generally, not invertible
in the classical sense F−1 is usually a one-to-many mapping
which clearly defines neural network inversion as an ill-posed
problem. Inversion methods proposed in the literature aim in
defining the network input giving the best possible fit to one
or more output values.

Several algorithms for inverting feed-forward neural
networks have been proposed so far. A survey on these
algorithms and related applications can be found in [4].
The authors of this paper formulate the inversion problem,
analyze a number of techniques for solving this problem and
present applications validating these techniques. Moreover,
they propose the following broad areas for classifying the
inversion methods: exhaustive search, single element search
and population-based/evolutionary methods.

Some of the most typical methods reported in the
literature are given hereafter. Inversion by searching with
gradient descent is first introduced by Williams [5] and
independently proposed by Kindermann and Linden [6].
Inversion by evolutionary algorithms was firstly proposed by
Eberhart and Dobbins [7] for a trained multilayer perceptron
using a standard genetic algorithm. Another evolutionary
approach for neural network inversion was suggested by Reed
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and Marks [8]. Given the manifold described by F (x) = y0,
where y0 is a predefined output level, x is an input vector
and F is the function implemented by the trained neural
network, the method seeks to evenly distribute points on this
surface. The method proposed by Jordan and Rumelhart [9]
uses two neural networks, one for learning the direct mapping
and a second one connected in series with the previous. The
composite network is trained to learn an identity mapping and
so the second network gives a particular inverse mapping of
the direct one. Lu et al. [10] use mathematical programming
techniques, such as linear and nonlinear programming based
on the type of network to be inverted or the type of inversion
to be performed. Also, it is worth mentioning the approach
HYPINV proposed in [11] by Saad and Wunsch who use
inversion in order to provide neural network explanation.
HYPINV is a pedagogical algorithm, that extracts rules, in
the form of hyperplanes.

Hereafter, let us present a few approaches built on the
concept of interval. In [12] Thrun introduces Validity Interval
Analysis (VI-Analysis) for extracting symbolic knowledge
from feed-forward neural networks trained with a back-
propagation algorithm. VI-Analysis “allows assertions to be
made about the relation of activation values of a network
by analyzing its weights and biases.” First, intervals are
initialized with arbitrary values for all nodes, or some of
them. Then, VI-Analysis refines these intervals by iteratively
checking consistency of the activation values with the weights
and the biases of the network. Thus, values found to be
inconsistent are excluded. This is one of the first approaches
attempting to analyze the input space by using the concept
of interval while, however, being far from considering the
concepts of Interval Analysis (IA).

Another approach using Interval Arithmetic to extract
rules from feed-forward neural networks is described in [13].
This approach is called Deep Thought and extracts rules from
a trained multilayer perceptron in the form of intervals of
activation, which input neurons can take so that a desired
output is produced by the network. The authors state that
intervals of activation are defined in a feed-forward manner
which consists in “identifying the largest hypercube in the
input space which will account for the desired output and then
proceeds with space-fill the allowable input with successive
smaller hypercubes until a stopping criterion is satisfied.” For
the inverse operation “moving from output to input in the
neural network” Simplex Optimization is used. Hence, it is
clear that the proposed approach does not adopt the principles
of IA especially as far as function evaluation is concerned.
The complexity of the method is exponential with respect to
the problem dimension i.e. the number of input neurons.

Finally, the algorithm developed by Hernández-Espinosa
et al. [14] which consists in performing rule extraction
based on Interval Arithmetic. This algorithm adopts the
same principle with the approach of Kindermann and Linden
[6], that is, to apply an iterative gradient descent algorithm
in order minimize the error value by changing the initial
input. The difference with this approach is that it considers
interval valued inputs and computes the gradient using an
interval version of gradient descent quite similar to one of the
approaches proposed in [15].

The method presented in this paper builds exclusively on
IA concepts and so it is completely different from the above
presented methods. Starting from an interval which is the

range of the network output values it delivers a union of boxes
containing the part of the input space whose image via the
neural network mapping is the interval containing the output
values. The method performs exhaustive search of the input
space and so its efficiency depends on the dimensionality of
the input and the range of each input variable. Despite these
performance constraints our hypothesis is that a method that
relies exclusively on IA concepts can effectively exploit the
potential offered by IA methods and techniques. For instance,
the fact that the output may be defined as an interval permits
to consider those parts of the input space that contribute to
the uncertainty of the network output.

The paper is organized as follows. Section 2 introduces
the concepts from IA that are necessary for developing
the proposed method. Section 3 describes how the method
works to invert a feed-forward neural network, gives some
application examples and related visualization of the inversion
results. In Section 4 we discuss the advantages the pitfalls
and the questions raised by this method. Finally, section 5
concludes the paper with some important remarks.

II. THE INTERVAL ANALYSIS FORMALISM

A. Basic Concepts

The arithmetic defined on sets of intervals, rather than
sets of real numbers is called interval arithmetic. An interval
or interval number I is a closed interval [a, b] ⊂ R of all
real numbers between (and including) the endpoints a and b,
with a 6 b. The terms interval number and interval are used
interchangeably. Whenever a = b the interval is said to be
degenerate, thin or even point interval. Regarding notation, an
interval x may be also denoted [x, x] or [x] or even [xL, xU ]
where subscripts L and U stand for lower and upper bounds
respectively. Notation for interval variables may be uppercase
or lowercase [16]. For the rest of this subsection let us denote x
an interval object (variable, vector, matrix, etc) to differentiate
it from the explicit bracketed notation [x, x]. An interval
[x, x] where x = −x is called a symmetric interval. An n-
dimensional interval vector V is a vector having n components
(v1, v2, . . . , vn) such that every component vi, 1 6 i 6 n is a
real interval [vi, vi]. Generally the following notation is used,

mid(x) = (x+ x)/2, is the midpoint of x,
width(x) = x− x, is the diameter of the interval x,

IR, denotes the set of real intervals,

IRn, denotes the set of n−dimensional

vectors of real intervals.

Let � denote one of the elementary arithmetic operators
{+,−,×,÷} for the simple arithmetic of real numbers x, y.
If x = [x, x] and y = [y, y] denote real intervals then the four
elementary arithmetic operations are defined by the rule

x � y = {x � y |x ∈ x, y ∈ y} (1)

This definition guarantees that x�y ∈ x � y for any arithmetic
operator and any values of x and y. In practical calculations
each interval arithmetic operation is reduced to operations
between real numbers. For the intervals x, y it can be shown
that the above definition produces the following intervals for
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each arithmetic operation:

x + y = [x+ y, x+ y] (2a)
x− y = [x− y, x− y] (2b)

x× y =
{

min
(
xy, xy, xy, xy

)
,max

(
xy, xy, xy, xy

)}
(2c)

x÷ y = x× 1

y
, with (2d)

1

y
=

[
1

y
,

1

y

]
, provided that 0 /∈

[
y, y
]

(2e)

Interval arithmetic operations are said to be inclusion isotonic
or inclusion monotonic or even inclusion monotone given that
the following relations hold,

if a,b,c,d ∈ IR and a ⊆ b, c ⊆ d (3)
then a � c ⊆ b � d, � ∈ {+,−,×,÷}.

Let f : D ⊂ R → R be a real function and [x] ⊆ D
an interval in its domain of definition. The range of values
of f over [x] may be denoted R(f ; [x]) (see [16]) or simply
f([x]). Computing the range R(f ; [x]) of a real function by IA
tools practically comes to enclosing the range R(f ; [x]) by an
interval which is as narrow as possible. This is an important
task in IA which can be used for various reasons, such as
localizing and enclosing global minimizers and global minima
of f on [x], verifying that R(f ; [x]) ⊆ [y] for some given
interval [y], verifying the nonexistence of a zero of f in [x]
etc.

Enclosing the range of f over an interval [x], f([x]), is
achieved by defining a suitable interval function [f ] : IR→ IR
such that ∀[x] ∈ IR, f([x]) ⊂ [f ]([x]), see Figure 1. This
interval function is called an inclusion function of f . What
is important with an inclusion function [f ] is that it makes
possible to compute a box [f ]([x]) which is guaranteed to
contain f([x]), whatever the shape of f([x]), [17]. Note that the
so-called natural inclusion function is defined if f(x), x ∈ D
is computed as a finite composition of elementary arithmetic
operators {+,−,×,÷} and standard functions ϕ ∈ F as
above. The natural inclusion function of f is obtained by
replacing the real variable x by an interval variable [x] ⊆ D,
each operator or function by its interval counterpart and
evaluating the resulting interval expression using the rules in
the previous paragraphs. The natural inclusion function has
important properties such as being inclusion monotonic and if
f involves only continuous operators and continuous standard
functions it is convergent, see [17].

B. The SIVIA approach

SIVIA was originally proposed by Jaulin and Walter
[1] in order to provide guaranteed nonlinear parameter
estimation from bounded error data. The objective of the
method is to define a box or union of boxes enclosing a set
of interest. More precisely, given a function f : X → Y
where X ⊂ Rn, Y ⊂ Rm and an interval vector (box)
[y] ⊆ Y , the problem is to define the set of unknown vectors
x ∈ X such that f(x) ∈ [y], or in other words, define the
set S = {x ∈ X ⊆ Rn|f(x) ∈ [y]} = f−1([y]) ∩ X . In this
definition X is the search space supposed to contain the set
of interest S; [y] is a priori known to enclose the image of
the set of interest f(S) and S denotes the unknown set of
interest. Note that, f may not be invertible in the classical

Fig. 1: A function f , an inclusion function [f ] and the images of [x]

sense and hence f−1 simply denotes the reciprocal image of
f .

A solution to this problem consists in computing boxes
or unions of boxes S− and S+ = S− ∪ ∆S that constitute
guaranteed outer and inner enclosures of S i.e. satisfying
the relation S− ⊆ S ⊆ S+, [18]. SIVIA computes these
enclosures by recursively exploring the search space. It applies
to any function f for which an inclusion function [f ] can be
computed. A box [x] ∈ Rn is designated as feasible if [x] ∈ S
and f([x]) ⊆ [y]. This condition is necessary and sufficient
for [x] to be feasible. IA defines the conditions to decide the
feasibility of a box [x]. Thus, if [f ]([x]) ⊆ [y] then [x] is
feasible otherwise if [f ]([x]) ∩ [y] = ∅ then [x] is infeasible.
In all other cases [x] is said to be indeterminate which means
that [x] may be feasible, unfeasible or ambiguous.

Before calling SIVIA the following parameters need to
be initialized; the box X which is guaranteed to enclose the
set of interest S, an inclusion function [f ] of the mapping
f and a lower limit ε for the width of the boxes covering
S. This parameter, ε, defines the precision that is acceptable
for covering S. For any box [x] SIVIA examines if f([x]) is
inside [y]. If this is true [x] then merges with S− else if f([x])
has no intersection with [y] then [x] /∈ S and is rejected. If the
width of [x] is less than the precision defined by ε then [x]
merges with ∆S, otherwise [x] is bisected and SIVIA restarts
with the each one of the two sub-boxes. The algorithm below
[18] gives a formal description of the method.

This paper aims in studying the feasibility and the
effectiveness of applying SIVIA to neural network inversion.
We consider that, as far as this paper is concerned, this is
of primary importance compared to the problems and the
issues arising from the implementation of the method. From a
practical point view exploitation of SIVIA relies on a library
supporting interval computations. So, in order to support this
research work with simulations and experimental evaluation
of our hypotheses we adopted SCS Toolbox. This package
was developed by S. Tornil-Sin and V. Puig at the Technical
University of Catalonia [19] in order to implement the
functionality related to SIVIA. For the interval computations
SCS Toolbox makes use of INTLAB, the MATLAB package
of S. Rump [20] for interval computations. However, we need
to note that we had to carry out some minor modifications, in
order to increase functionality regarding the usage of system
memory, such as using a stack instead of the recursive calls, the
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Algorithm 1 SIVIA(in: [x]; inout: S−, ∆S)

Require: before calling SIVIA initialize f , [y] and ε;
S− ← ∅; ∆S ← ∅;

1: if [f ]([x]) ⊂ [y] then
2: S− := S− ∪ [x];
3: return;
4: end if
5: if [f ]([x]) ∩ [y] = ∅ then
6: return;
7: end if
8: if width([x]) < ε then
9: ∆S := ∆S ∪ [x];

10: return;
11: end if
12: bisect [x] getting left and right sub-boxes [x]1 and [x]2
13: SIVIA([x]1,S−, ∆S);
14: SIVIA([x]2,S−, ∆S);

ability to back-up and load internal data in a simple format etc.

III. APPLYING SIVIA

A. Assumptions

In this section we report how SIVIA is applied to specific
problems and the results obtained. The experiments carried
out concern the application of SIVIA to feed-forward neural
networks trained with some method belonging to the back-
propagation family of training algorithms. This issue is not
restrictive as far as the application of the method is concerned
and the results obtained. Training a feed-forward neural net-
work with a gradient based method usually results in getting
to some “good” local minimum of the cost function of the
network output. In practice, this translates to some sub-optimal
solution regarding the distance between the network actual
outputs and the target outputs determined for the problem at
hand. For instance, suppose that in the case of a classification
problem a 1-of-m encoding i.e. (0, 0, . . . , 0, 1, 0, . . . , 0) is
adopted. This means that if an input pattern belongs to the k-th
class then the output of the k-th output node with a sigmoid
activation function is targeted to be one (1) while all other
nodes must be zero (0). However, due to “imperfect” training
what happens is that the output of this node is considered
to be the winning one even if it displays values less than 1
but clearly above 0.5 and surely greater than the values of
the other output nodes of the network. This implies that the
classification function of the neural network is imprecise and
it depends on the problem as well as on the tolerance level set
for the system imprecision.

The above statement holds true for at least one more reason.
This is related to the uncertainty inherently produced by the
neural network classification function either because the input
patterns are noisy or because the architecture adopted for the
neural network is such that the generalization ability of the
network is maximized. For all these reasons, an output node
is considered to deliver a correct output signal, not when being
strictly saturated but rather when its value lies in an activation
interval. This remark seems to be behind all those methods
for neural network inversion that make use of the concept of
interval. What is really new here, is the fact that the proposed

method is rigorous as it uses exclusively the IA concepts and
techniques. In this sense the proposed method is guaranteed to
deliver the “correct” results.

The objective of the experiments presented is to demon-
strate the application of SIVIA to trained feed-forward neural
networks and to evaluate the effectiveness of the method in
terms of providing reliable results. To this end, the problems
selected are known to be governed by a nonlinear relation
between the input patterns and the network outputs. These are
classification problems for which the network output values
can be more or less imprecise. Moreover, in order to be able
to assess the validity of the results obtained we worked, mainly,
on problems with input dimension 2. Besides simple visualiza-
tion, presentation of the results in the form of 2-dimensional
maps make it possible to perform a visual comparison of
SIVIA’s results with the contour map computed for the network
operation. A number of very interesting empirical conclusions
are, also, drawn from these visual representations of the results
which will be discussed later in this section.

Applying SIVIA to invert a trained neural network is using
Algorithm 1 with [y] corresponding to the interval of the
activation values chosen, f being the function implemented by
the trained neural network in feed-forward mode. The inclusion
function [f ] is taken to be the natural inclusion function for f .
Note that, inclusion functions are programmed as m-functions
that are directly evaluated by INTLAB. Initially, operation of
SIVIA starts with a box [x] enclosing the set of interest. Then,
using the inclusion function [f ] we obtain the image of [x] that
is [f ]([x]). Depending on the relation of this image with [y] we
add [x] compute S−, ∆S and S+. This operation ends when
input intervals [x] cannot be further bisected.

B. Experiments and Results

1) The XOR problem: The first problem considered is the
XOR problem for which we considered a 2-2-1 neural network
with sigmoid activation functions for all nodes. After training
the network was inverted using SIVIA setting for the output
activation values the intervals [0.8, 1] for class 1 and [0, 0.2]
for class 0. The results of this experiment are presented in
Figures (2 - 4). The first, Figure 2, displays the contour map
with 10 contour lines produced for the network output, which
is used as a reference for visual comparison with the results of
SIVIA. In the sequel, Figure 3 presents the domains of validity
of the network computed for classes 1 and 0.

In these Figures the red colored area is the part of the
input space delivering a neural network output value in the
predefined interval, the blue colored one is the part for patterns
outside the predefined interval while the yellow zone contains
the inputs for which inversion makes no decision due to the
value of ε. It is obvious that the smaller the value of ε the
thinner the yellow zone.

2) The Ring-Spot problem: This name is used for the arti-
ficially created classification problem with two classes shown
in Figure 5. Separation of the two classes is achieved using
a 2-20-1 neural network trained with the adaptive gradient
descent with momentum. Figure 6 displays the activation levels
of the network output in the form of a contour map with 5
contour lines. Finally, Figure 7 gives for each class a sub-
figure displaying the corresponding domain of validity as it
is detected by SIVIA. Note that the intervals for the output
activation values are set to [0.8, 1] for class 1 and [0, 0.2] for
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Fig. 2: Contour map for the XOR problem

(a) XOR class 1 (b) XOR class 0

Fig. 3: XOR problem domains of validity computed with ε = 0.01

Fig. 4: XOR problem domain of validity computed with ε = 0.05

class 2, respectively
The two classes are here plotted in different sub-figures in

order to be able to show the distinct areas for each class. These
sub-figures display the sub-pavings used to cover each one of
this area. One may easily note, how clearly the borders of the
domain detected by SIVIA are indicated compared with the
contour lines plotted in Figure 6. On the other hand, given the
sub-pavings, it is obvious that it is easy to compute the total
area of the domain corresponding to each class. The procedure
implementing the SIVIA algorithm computes a list of the boxes
covering the domain of interest for each class.

Fig. 5: The so-called Ring-Spot problem

Fig. 6: Contour map for the Ring-Spot problem

(a) Ring-Spot class 1 (b) Ring-Spot class 2

Fig. 7: Ring-Spot problem domains of validity

3) The problem with 2 classes - 9 groups: This is an
artificial classification problem as defined in [21]. The training
set is defined with 2-dimensional patterns which belong to
two distinct classes generated from four (resp. five) Gaussian
distributions with mean values,

m1 = [−1.0, 0; 0,−1; 1.0, 0; 11.0]T and (4)
m2 = [−1.0,−1.0; 0, 0; 1.0,−1.0;−1.01.0; 1.01.0]T .

The covariance of each distribution is equal to σ2I , where
σ2 = 0.04 and I is the identity matrix. The points generated
for the training set are shown in Figure 8.

For this problem we trained a number of different feed-
forward neural network varying the number of nodes in the
hidden layer in order to examine how the validity domain of
the neural network changes with the number of hidden nodes.
Results are displayed in Figures 9, 10, 11 and 12 for 6, 8, 10
and 15 nodes in the hidden layer, respectively.

By simple observation of the results for this problem

Fig. 8: The artificial problem with 2 classes and 9 groups

it is easy to find that the area of the validity domain varies
with the number of hidden nodes. By simply adding the areas
of the sub-pavings covering the region corresponding to the
validity domain we infer that the area corresponding to the
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(a) Contour map (b) Domain of validity for class 1

Fig. 9: The 2 classes - 9 groups problem for a 2-6-1 network

(a) Contour map (b) Domain of validity for class 1

Fig. 10: The 2 classes - 9 groups problem for a 2-8-1 network

(a) Contour map (b) Domain of validity for class 1

Fig. 11: The 2 classes - 9 groups problem for a 2-10-1 network

(a) Contour map (b) Domain of validity for class 1

Fig. 12: The 2 classes - 9 groups problem for a 2-15-1 network

network with 8 hidden nodes is the bigger among all other
areas reported for the experiment. Though this finding is an
empirical one, it coincides with the well known theoretical
argument that the mapping capability of a neural network
depends on the number of the hidden layer nodes. Moreover,
it is surprising to see that a theoretical issue is experimentally
verified here. This issue is that, the networks with sufficiently
few hidden nodes provide the best performance in terms of
generalization. Indeed, the area covered by the 2-8-1 network
accounts for 5.94 square units, while the 2-10-1 network does
4.41 and the 2-15-1 network 4.55 of the total 16 square units
of the input space. Needless to say that the 2-6-1 network has
serous difficulties in approximating the classification function
and it gives only 3.30 units. We believe that this provides a
strong evidence that by using the proposed inversion technique,
it is possible to evaluate the effectiveness of a neural network
in terms of approximating the classification function.

4) The Fisher-Iris problem: We also carried out some
indicative simulations with the Fisher-Iris problem. Given that
the input dimension of this problem is 4 instead of trying
to visualize the results of the neural network inversion we
performed some checking regarding the findings of the previ-
ous paragraph, that is, the area of the domain of validity with
respect to the number of hidden layer nodes. The experiments
were carried out with two networks with one hidden layer
having 2 and 5 nodes, respectively. The nodes in the hidden
layer use the hyperbolic tangent activation function while the
output ones are pure linear. For example, we have that the area
of the domain of validity detected for class 1 (Setosa) for these
two networks are, 2.3552 for the 4-2-3 network and 2.0328 for
the 4-5-3 network. These numbers support the results derived
by the previous experiment.

IV. DISCUSSION

A. Interpreting the area of the domain of validity

Suppose that we have a multi-layer perceptron (MLP)
with one hidden layer having h nodes which is trained on
a general M -class classification problem. The MLP is given
a sample data set D = (X,Y ) of P objects defined by
the n-dimensional patterns x1, x2, . . . , xP . In addition, let
C1, C2, . . . , CM denote the M classes of the classification
problem. As we have seen, the inversion of the trained MLP,
using SIVIA, results in partitioning the pattern space in a
number of disjoint regions. For each specific class this network
inversion reveals the part of the input space which is mapped
inside those interval of the network outputs’ range which
correspond to some specific class of the input patterns.

More specifically, for each class Cj , 1 6 j 6 M ,
network inversion results in defining a set of Nj boxes
{B1, B2, . . . , BNj

}, with Bk ∈ Rn for 1 6 k 6 Nj , whose
union XIn,j =

⋃Nj

k=1Bk encloses the part of the pattern
space containing all the patterns that the network maps to
class Cj . If VBk

denotes the volume of the box Bk then
the total volume of the input area for class Cj is given by
VCj

=
∑Nj

k=1 VBk
. Any pattern not belonging to class Cj

but found inside the area enclosed by XIn,j is a misclassified
pattern and so an elementary volume Velem corresponding to
this pattern needs to be subtracted from VCj

. The resulting
volume, VCj

, provides a quantitative estimation of the part of
the pattern space corresponding to class Cj via the mapping
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computed by the MLP.
In the context of our approach, neural network inversion

establishes for each class Cj a mapping between a specific
area of the input space and the MLP output encoding the
membership to class Cj for any pattern from this specific area.
Hence, we expect that the estimation of Bayesian probabilities
defined by the network outputs are mapped via network
inversion to respective measures (Bayesian probabilities) in the
input space. We consider this statement being true if we take
into account the volumes in the input space, as defined above,
and define the following quantities

VC1

Vtotal
,
VC2

Vtotal
, . . . ,

VCM

Vtotal
,
Vmissd

Vtotal
,
Vuncrt
Vtotal

. (5)

All these ratios give positive real number which sum up to 1.
So they seem to be a sort of probabilities which are related
to the network output values. Such an empirical conclusion is
a conjecture that needs to be further studied especially in a
context such as the one presented by Richard and Lippmann
[22]. We expect this study to shed light in the reliability aspects
of neural network generalization.

B. Interpretation in terms of best fitting model

It is common knowledge in the neural network research
area that different number of nodes in the hidden layer of
an MLP define different network architectures which in their
turn define different models for the underlying process. It has
also been verified, by our experiments, that for the same input
data set D = (X,Y ) different models provides a different
classification function with different results. Suppose that a
number of different models H1,H2, . . . ,HL are available after
training of the respective network architectures for the problem
at hand. Moreover, for each one of these models, say Hl,
network inversion computes a partition of the input space
which is specific for this model.

When a number of different models approximate a problem
the question posed is which one of these models fits better
the sample data D available for the problem. In terms of
a Bayesian decision framework, if one requires to assess
the best model for the problem one needs to estimate the
plausibility of each one of the models H1,H2, . . . ,HL. So,
using Bayesian inference to evaluate model plausibility given
the data D, we first need to compute the posterior probability
P (Hl|D) for each model and the perform model comparison.
In consequence, for each model Hl one needs to consider that

P (Hl|D) ∝ P (D|Hl)P (Hl). (6)

In order to compute the left hand side of the previous relation
one needs to compute the likelihood of the model P (D|Hl)
and the prior P (Hl). For some model Hl a priori we have
no reason to believe that this model fits better the data than
the other models and so the prior probability P (Hl) is the
same for all available models. Hence, in order to consider
some model Hl more plausible than the others we need to
compute the posterior probability P (D|Hl). At this point, if
the previous analysis of the previous subsection is true we
may use the quantity Vclassd/Vtotal to approximate P (D|Hl).

C. Other issues

Other important issues regarding the proposed method are
those concerning performance related to the application of
SIVIA. The experimental verification of the method, presented
here, concerns low dimension problems and small sized neural
networks. Further experiments are needed on problems with
higher input dimension and medium sized network. This is
mandatory in order to verify that no overestimation effects are
produced when performing interval computations with neural
networks in higher dimension problems.

Inverting a neural network and estimating its domain of
validity with SIVIA is an exhaustive research process of the
input space. Hence, performance of the method is exponential
with the number and the domain of the inputs. However, given
that inversion is typically done off-line, after a network has
been trained, it is legitimate to consider that applying SIVIA
is affordable when used off-line.

V. CONCLUSION

In this paper we presented a new approach to perform
accurate estimation of the domain of validity of feed-forward
neural networks. The approach relies exclusively on IA con-
cepts making use of SIVIA a method performing set inversion
via interval analysis. SIVIA has been successfully applied to
problems where nonlinear analysis is involved. Hence, defining
the domain of validity of a neural network is considered to be
a nonlinear parameter estimation problem. The method was
experimentally tested on a number of problems and the results
obtained in terms of detecting the domains of validity proved to
be very promising for obtaining reliable conclusions on aspects
of the neural network such as its ability to generalize well and
its ability to be explicative. Compared to contour maps the
proposed method has the advantage to provide quantitative
information on the part of the input space covered by the
domain of validity.

The domain of validity may be used to indicate the part
of the input area where the network is stable in terms of
classification. Another tangible result concerns the possibility
to define rules describing in symbolic terms the classification
function. In the paper we discussed a number of issues that
seem to characterize the generalization ability of the neural
network both in terms of estimating a probability of correct
classification as well as in terms of the effectiveness of a
network architecture to correctly map the input space. We
believe that, these issues constitute interesting questions for
carrying on the research initiated in this paper.
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