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In this contribution, we study the class of Higher-Order Neural Networks, especially Pi-Sigma Networks. The
performance of Pi-Sigma Networks is considered through well known neural network training problems. In our
experiments, for the training process, we used Evolutionary Algorithms and more specifically the Differential
Evolution algorithm. Preliminary results suggest that this training process is fast, stable and reliable and the
trained Pi-Sigma network exhibited good generalization capabilities.

1 Introduction

We study the class of Higher-Order Neural Networks (HONNs), and in particular Pi-Sigma Networks (PSNs)
which were introduced by Shin and Ghosh [8,9]. Although PSNs employ fewer weights and processing units than
HONNs they manage to incorporate indirectly the capabilities and strengths of HONNs. PSNs have addressed
effectively several difficult tasks, such as zeroing polynomials [1–3], and polynomial factorization [5]. In this
contribution, we compare PSNs’ performance with Feedforward Neural Networks (FNNs) on well known neural
network training problems. In our experiments training is performed through an Evolutionary Algorithm, namely
the Differential Evolution (DE) [11] algorithm. DE has proved to be an effective and efficient optimization
method on numerous hard real-life problems [6, 7, 10, 12, 13]. The remaining of this contribution is organized
as follows. Section 2 outlines the mathematical model of FNNs, while Section 3 briefly describes the PSNs.
Section 4 is devoted to the presentation of the DE global optimization method. The paper ends with preliminary
experimental results and a discussion in Section 5.

2 Feedforward Neural Networks

Although many models of neural networks have been proposed Feedforward Neural Networks (FNNs) are the
most commonly encountered. FNNs consist of a large number of interconnected, simple, processing units, called
neurons, or nodes. Each node calculates the inner product of the incoming signals with its weights, adds the bias
to the result, and passes this sum to its activation function. In a multilayer network, neurons are organized in
layers with no feedback connections.

The efficient supervised training of FNNs is a subject of considerable ongoing research and numerous algo-
rithms have been proposed to this end. A common training approach is to minimize the network learning error,
which is a measure of network performance. The computation of the learning error is usually based on the dif-
ference between the actual output vector of the network and the desired output vector (supervised learning). The
rapid computation of a set of weights that minimizes this error function is a difficult task since the number of
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network weights is usually large and the error function generates a complicated surface in the weight space, pos-
sessing multitudes of local minima and broad flat regions adjoined to narrow steep ones, that need to be searched
to locate an “optimal” weight set.

More formally, assuming that the l-th layer of an FNN contains Nl neurons, and l = 1, . . . , M , the operation
of the network is described by the following equations:

netl
j =

Nl−1
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ij yl−1
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j = f(netl

j),

where, wl−1,l
ij is the weight connecting the i-th neuron of the (l−1)-th layer to the j-th neuron of the l-th layer; y l

j

is the output of the j-th neuron of the l-th layer; and f(·) is the j-th’s neuron activation function. FNNs typically
use analogue activation functions, such as the well known sigmoid function:

s(netl
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where the factor β (conventionally, β = 1) is introduced to achieve slope modification. The training process can
be realized by minimizing the error function E defined as:
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where p is an index over the training input-output pairs, P is the number of these pairs, NM is the number of
neurons in the output layer and (yj,p − tj,p)

2 is the squared difference between the output yj,p of the j-th neuron
in the output layer, for pattern p, and the corresponding target value tj,p.

To simplify the formulation of the above equations, let us use a unified notation for the weights. For an FNN
with n weights, let w be a column weight vector with components w1, w2, . . . , wn, defined on the n–dimensional
Euclidean space R

n, and w? be an optimal weight vector with components w?
1 , w?

2 , . . . , w?
n. Also, let E be the

batch error measure defined in Eq. (1), and ∇E(w) be the gradient vector of the error function E at w. Each
pass through the entire training set is called an epoch. The batch training of an FNN is consistent with the theory
of unconstrained optimization as it uses information from all the training set (i.e. the true gradient is employed)
and can be viewed as the minimization of the error function E. This minimization task corresponds to the weight
update by epoch and, requires a sequence of weight vectors {wk}∞k=0

, where k indicates epochs. Successful
training implies that {wk}∞k=0

converges to the point w? that minimizes E.

3 Higher-Order Neural Networks

Higher-order Neural Networks (HONNs) expand standard FNNs by including nodes at the input layer that provide
the network with a more complete understanding of the input patterns and their relations. Basically, the inputs
are transformed in a well understood mathematical way so that the network does not have to learn the most basic
mathematical functions. These functions do enhance the network’s understanding of a given problem, while they
transform the inputs via higher-order functions such as squares, cubes, or sines. Although, this technique has
been shown to accelerate training on some applications, typically only second order networks are considered in
practice. The main disadvantage of HONNs is that the required number of weights increases exponentially with
the dimensionality of the input patterns.

A Pi–Sigma Network (PSN) utilizes product cells as the output units to indirectly incorporate the capabilities
of HONNs, while using fewer weights and processing units. More specifically, PSN is a multilayer feedforward
network that outputs products of sums of the input components. It consists of an input layer, a single “hidden” (or
middle) layer of summing units, and an output layer of product units. The weights connecting the input neurons
to the neurons of the middle layer are adapted during the learning process, while those connecting the neurons of
the middle layer to the product units of the output layer are fixed. For this reason the middle layer is not actually
hidden and the training process can be simplified and accelerated.
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Specifically, let the input x = (1, x1, x2, . . . , xN )>, be an (N + 1)-dimensional vector, with xk denoting the
k-th component of x. Each neuron in the middle layer computes the sum of the products of each input with the
corresponding weight. Thus, the output of the j-th neuron in the middle layer is given by the sum:

hj = w>

j x =

N
∑

k=1

wkjxk + w0j ,

where j = 1, 2, . . . , K and w0j denotes a bias term. Output neurons compute the product of the aforementioned
sums and apply an activation function on this product. An output neuron returns y = σ

(

∏K

j=1
hj

)

, where σ(·)

denotes the activation function. We define as the order of the network, the number of neurons in the middle layer.
This type of networks is based on the idea that the input of a K-th order processing unit can be represented by

a product of K linear combinations of the input components. Assuming that (N +1) weights are associated with
each summing unit, there is a total of (N + 1)K weights and biases for each output unit. If multiple outputs are
required, an independent summing layer is required for each one. Thus, for an M -dimensional output vector y, a
total of

∑M

i=1
(N +1)Ki adjustable weight connections are needed, where Ki is the number of summing units for

the i-th output. This allows great flexibility as the output layer indirectly incorporates the capabilities of HONNs
with a smaller number of weights and processing units.

4 Training Neural Networks Using the Differential Evolutionary Algorithm

Differential Evolution (DE) is a minimization method, capable of handling non-differentiable, discontinuous and
multimodal objective functions. To fulfill this requirement, DE has been designed as a stochastic parallel direct
search method, which utilizes concepts borrowed from the broad class of evolutionary algorithms. The method
requires few, easily chosen, control parameters. Extensive experimental results have shown that DE has good
convergence properties and outperforms other well known evolutionary algorithms. DE has been successfully
applied to FNN training [6, 7].

DE maintains a population of potential solutions, individuals, to probe the search space. The population
of individuals is randomly initialized in the optimization domain with NP, n-dimensional vectors, following a
uniform probability distribution and is evolved over time to explore the search space and locate the minima of
the objective function. NP is fixed throughout the training process. At each iteration, called generation, new
individuals are generated through the combination of randomly chosen individuals of the current population.
This operation in our context can be referred to as mutation. The resulting vectors are then mixed with other
predetermined vectors - the target vectors - and this operation can be called recombination. We briefly describe
the mutation and recombination operations. Starting with a population of NP weight vectors, wi

g , i = 1, . . . ,NP ,
where g denotes the current generation, each weight vector undergoes mutation to yield a mutant vector, ui

g+1.
The mutant vector is obtained through the following equation:

ui
g+1 = wbest

g + F (wr1

g − wr2

g ),

where wbest
g denotes the best member of the current generation and F > 0 is a real parameter, called muta-

tion constant that controls the amplification of the difference between two weight vectors. Moreover, r1, r2 ∈
{1, 2, . . . , i − 1, i + 1, . . . ,NP} are random numbers mutually different and different from the running index i.
During recombination, for each component j of the mutant vector, ui

g+1, a random real number, r, in the inter-
val [0, 1] is obtained and compared with the crossover constant, CR. If r 6 CR we select as the j-th component
of the trial vector, vi

g+1, the corresponding component of the mutant vector, ui
g+1. Otherwise, we pick the j-th

component of the target vector, wi
g .

5 Experiments and Discussion

In this study the DE algorithm is applied to train PSNs. Our experimental results on many classical neural
network training problems indicate that this is a promising approach. Here, we report preliminary results from the
handwritten digits classification problem, which is part of the UCI Repository of Machine Learning Databases [4],
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and is characterized by a real-valued training set of approximately 7500 patterns. In this experiment, a digit
database has been assembled by collecting 250 samples from 44 independent writers. The samples written by
30 writers are used for training, and the rest are used for testing. The training set consists of 7494 real valued
samples and the test set of 3498 samples.

For this problem, we have used the fixed values of F = 0.5 and CR = 0.7 as the mutation and crossover con-
stants respectively. We have trained one network for each digit and have conducted 250 independent simulations
for each network. The termination criterion applied to the learning algorithm was either a training error less than
0.001 or 5000 iterations.

A different PSN is trained to discriminate samples from each problem class. To this end, in order to train and
test the network for each class, we used all the patterns from the training, and the test set respectively.

To present the experimental results the following notation is used: Min indicates the minimum generalization
capability of the trained PSNs; Max is the maximum generalization capability; Mean is the average gener-
alization capability; St.D. is the standard deviation of the generalization capability. The experimental results
exhibited in Table 1 indicate that the training of PSNs using Evolutionary Algorithms (DE in particular) is ef-
ficient and promising. The learning process was fast, stable, and reliable and the trained PSNs exhibited good
generalization capabilities.

Table 1 Generalization results for the Pendigit Problem.

Network Generalization (%)
Topology Min Max Mean St.D.

16-2-1 80.475 87.650 84.256 1.4171

16-3-1 80.560 87.993 84.521 1.4165
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