
Brill Academic Publishers
P.O. Box 9000, 2300 PA Leiden,
The Netherlands

Lecture Series on Computer
and Computational Sciences

Volume 1, 2006, pp. 1-4

Integer Weight Higher-Order Neural Network
Training Using Distributed Differential Evolution

M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis1

Computational Intelligence Laboratory (CI Lab), Department of Mathematics,
University of Patras Artificial Intelligence Research Center (UPAIRC),

University of Patras, GR–26110 Patras, Greece.
e-mail: {mikeagn, vpp, vrahatis}@math.upatras.gr

Received 1 July, 2006; accepted in revised form 31 July, 2006

Abstract: We study the class of Higher-Order Neural Networks and especially the Pi-Sigma
Networks. The performance of Pi-Sigma Networks is evaluated through several well known
neural network training benchmarks. In the experiments reported here, Distributed Evo-
lutionary Algorithms for Pi-Sigma networks training are presented. More specifically the
distributed version of the Differential Evolution algorithm has been employed. To this end,
each processor is assigned a subpopulation of potential solutions. The subpopulations are
independently evolved in parallel and occasional migration is employed to allow coopera-
tion between them. The proposed approach is applied to train Pi-Sigma networks using
threshold activation functions. Moreover, the weights and biases were confined to a narrow
band of integers, constrained in the range [−32, 32], thus they can be represented by just
6 bits. Such networks are better suited for hardware implementation than the real weight
ones. Preliminary results suggest that this training process is fast, stable and reliable and
the distributed trained Pi-Sigma network exhibited good generalization capabilities.

Keywords: Backpropagation Neural Networks, Integer Weight Neural Networks, Threshold
Activation Functions, ‘Hardware-Friendly’ Implementations, ‘On-chip’ Training, Higher-
Order Neural Networks, Pi-Sigma Networks, Distributed Differential Evolution.

Mathematics Subject Classification: 62M45, 68T10, 92B20

1 Introduction

In this contribution, we study the class of Higher-Order Neural Networks (HONNs) and in partic-
ular Pi-Sigma Networks (PSNs), which were introduced by Shin and Ghosh [6]. Although PSNs
employ fewer weights and processing units than HONNs they manage to indirectly incorporate
many of the capabilities and strengths of HONNs. PSNs have addressed effectively several dif-
ficult tasks, such as zeroing polynomials [1] and polynomial factorization [3]. Here, we compare
PSN’s performance against Feedforward Neural Networks (FNNs) on several well known neural
network training problems. In our experiments, we trained PSNs with small integer weights and
threshold activation functions, utilizing a Distributed Evolutionary Algorithm. More specifically,
a distributed modified version of the Differential Evolution (DE) [5, 8] algorithm has been used.
DE has proved to be an effective and efficient optimization method on numerous hard real-life
problems [4, 5, 7, 9, 10]. The distributed DE algorithms has been designed keeping in mind that

1Corresponding author: e-mail: vrahatis@math.upatras.gr, Phone: +30 2610 997374, Fax: +30 2610 992965



2 M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis

the resulting integer weights and biases require less bits to be stored and the digital arithmetic
operations between them are easier to be implemented in hardware. If the network is trained
in a constrained weight space, smaller weights are found and less memory is required. On the
other hand, the network training procedure can be more effective and efficient when larger integer
weights are allowed. Thus, for a given application a trade off between effectiveness and memory
consumption has to be considered.

The remaining of this paper is organized as follows. Section 2 briefly describes the mathematical
model of PSNs. Section 3 is devoted to the presentation of the distributed DE optimization
algorithm. The paper ends with preliminary experimental results and a discussion in Section 4.

2 Higher-Order Neural Networks

Higher-order Neural Networks (HONNs) expand the capabilities of standard FNNs by including
input nodes which provide the network with a more complete understanding of the input patterns
and their relations. Basically, the inputs are transformed so that the network does not have to learn
the most basic mathematical functions, such as squares, cubes, or sines. The inclusion of these
functions do enhance the network’s understanding of a given problem and has been shown to accel-
erate training on some applications. However, typically only second order networks are considered
in practice. The main disadvantage of HONNs is that the required number of weights increases ex-
ponentially with the dimensionality of the input patterns. On the other hand, a Pi–Sigma Network
(PSN) utilizes product (instead of summation) nodes as the output units to indirectly incorporate
the some of the capabilities of HONNs, while using fewer weights and processing units. Specifically,
PSN is a multilayer feedforward network that outputs products of sums of the input components.
It consists of an input layer, a single ‘hidden’ (or middle) layer of summing units, and an output
layer of product units. The weights connecting the input neurons to the neurons of the middle
layer are adapted during the learning process by the training algorithm, while those connecting
the neurons of the middle layer to the product units of the output layer are fixed. For this reason
the middle layer is not actually hidden and the training process can be simplified and accelerated.

Let the input x = (1, x1, x2, . . . , xN )>, be an (N + 1)-dimensional vector, with xk denoting
the k-th component of x. Each neuron in the middle layer computes the sum of the products
of each input with the corresponding weight. Thus, the output of the j-th neuron in the middle
layer is given by the sum: hj = w>j x =

∑N
k=1 wkjxk + w0j , where j = 1, 2, . . . , K and w0j denotes

a bias term. Output neurons compute the product of the aforementioned sums and apply an
activation function on this product. An output neuron returns y = σ

(∏K
j=1 hj

)
, where σ(·)

denotes the activation function. The number of neurons in the middle layer defines the order of
the PSN. This type of networks are based on the idea that the input of a K-th order processing
unit can be represented by a product of K linear combinations of the input components. Assuming
that (N + 1) weights are associated with each summing unit, there is a total of (N + 1)K weights
and biases for each output unit. If multiple outputs are required (for example, in a classification
problem), an independent summing layer is required for each one. Thus, for an M -dimensional
output vector y, a total of

∑M
i=1(N + 1)Ki adjustable weight connections are needed, where Ki is

the number of summing units for the i-th output. This allows great flexibility as the output layer
indirectly incorporates the some of the capabilities of HONNs with a smaller number of weights
and processing units.

Although FNNs and HONNs can be simulated in software, hardware implementation is required
in real life applications, where high speed of execution is necessary. The natural implementation
of FNNs or HONNs (because of their modularity) is a distributed (or parallel) one. In the next
section we briefly review the distributed DE algorithm.



Integer Weight Higher-Order Neural Networks 3

3 Neural Network Training Using the Distributed DE Algorithm

Differential Evolution (DE) is a minimization method, capable of handling non-differentiable, dis-
continuous and multimodal objective functions. The method requires few, easily chosen, control
parameters. Extensive experimental results have shown that DE has good convergence properties
and outperforms other well known evolutionary algorithms. The original DE algorithm as well as
its distributed implementation have been successfully applied to FNN training [4, 5]. Distributed
Differential Evolution (DDE) for Pi-Sigma networks training is presented here. More specifically
the distributed version of the Differential Evolution algorithm has been employed. To this end,
each processor is assigned a subpopulation of potential solutions. The subpopulations are inde-
pendently evolved in parallel and occasional migration is employed to allow cooperation between
them. The migration of the best individuals is controlled by the migration constant. A good choice
for the migration constant is one that allows each subpopulation to evolve for some iterations in-
dependently before the migration phase actually occur. Extensive description of the DDE can be
found in [5, 9].

The modified DDE maintains a population of potential integer solutions, individuals, to probe
the search space. The population of individuals is randomly initialized in the optimization domain
with NP. At each iteration, called generation, new individuals are generated through the combi-
nation of randomly chosen individuals of the current population. Starting with a population of
NP integer weight vectors, wi

g, i = 1, . . . ,NP , where g denotes the current generation, each weight
vector undergoes mutation to yield a mutant vector, ui

g+1. The mutant vector is obtained through
one of the the following equations:

ui
g+1 = wbest

g + F (wr1
g − wr2

g ), (1)

ui
g+1 = wr1

g + F (wr2
g − wr3

g ), (2)

where wbest
g denotes the best member of the current generation and F > 0 is a real parameter, called

mutation constant that controls the amplification of the difference between two weight vectors.
Moreover, r1, r2, r3 ∈ {1, 2, . . . , i − 1, i + 1, . . . ,NP} are random numbers mutually different and
different from the running index i. Obviously, the mutation operator results in a real weight vector.
As our aim is to maintain an integer weight population at each generation, each component of the
mutant weight vector is rounded to the nearest integer. Additionally, if the mutant vector is not in
the range [−32, 32]N , we take: ui

g+1 = sign(ui
g+1) ×

(∣∣ui
g+1

∣∣ mod 32
)
. During recombination, for

each component j of the integer mutant vector, ui
g+1, a random real number, r, in the interval [0, 1]

is obtained and compared with the crossover constant, CR. If r 6 CR we select as the j-th
component of the trial vector, vi

g+1, the corresponding component of the mutant vector, ui
g+1.

Otherwise, we pick the j-th component of the target vector, wi
g. It must be noted that the result

of this operation is a 6-bit integer vector.

4 Experiments and Discussion

In this study the DDE algorithm is applied to train PSNs with integer weights and threshold
activation functions. Here, we report preliminary results on the MONK’s problem [11]. These
three problems from the UCI Machine Learning Repository [2] are difficult binary classification
tasks which have been used for comparing the generalization performance of learning algorithms.
We call DDE1 the distributed DE algorithm that uses Relation (1) as mutation operator and DDE2

the algorithm that uses Relation (2). We have compared the DDE1 and DDE2 algorithms utilizing
threshold functions and 6-bit integer weights.

For the experiments, we have conducted 1000 independent simulations for each algorithm, using
a distributed computation environment consisting of 16 nodes. We have used fixed values for the



4 M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis

mutation, crossover and migration constants, F = 0.5, CR = 0.7, and φ = 0.1, respectively. The
termination criterion applied to the learning algorithm was either a training error less than 0.01 or
5000 iterations. The generalization capability of the DDE trained integer weight PSNs is exhibited
in Table 1. The results indicate that the training of PSNs with integer weights and thresholds,
using the modified DDE is efficient and promising. The learning process was fast and reliable, and
the performance of the DDE stable. Additionally, the trained PSNs exhibited good generalization
capabilities.

Table 1: Generalization results for the MONK’s Problems
Network Generalization (%)

Problem Topology Algorithm Min Max Mean St.D.
MONK-1 17-2-1 DDE1 81 100 94.5 3.2
MONK-1 17-2-1 DDE2 81 100 94.6 3.2
MONK-2 17-2-1 DDE1 89 100 96.4 1.7
MONK-2 17-2-1 DDE2 87 100 96.0 2.0
MONK-3 17-2-1 DDE1 79 99 92.2 2.8
MONK-3 17-2-1 DDE2 76 99 91.3 3.5

References

[1] D.S. Huang, H.H.S. Ip, K.C.K. Law, and Z. Chi, Zeroing Polynomials Using Modified Con-
strained Neural Network Approach, IEEE Transactions on Neural Networks, 16, no. 3, 721–
732 (2005)

[2] P.M. Murphy and D.W. Aha, UCI Repository of machine learning databases, Irvine, CA:
University of California, Department of Information and Computer Science, (1994)

[3] S. Perantonis, N. Ampazis, S. Varoufakis, and G. Antoniou, Constrained Learning in Neural
Networks: Application to Stable Factorization of 2D Polynomials, Neural Processing Letters,
7, 5–14 (1998)

[4] V.P. Plagianakos and M.N. Vrahatis, Neural network training with constrained integer weights,
Congress on Evolutionary Computation (CEC’99), (1999)

[5] V.P. Plagianakos and M.N. Vrahatis, Parallel evolutionary training algorithms for ‘hardware–
friendly’ neural networks, Natural Computing, 1, 307–322 (2002)

[6] Y. Shin and J. Ghosh, The pi-sigma network: An efficient higher-order neural network for
pattern classification and function approximation, International Joint Conference on Neural
Networks, vol. 1, 13–18 (1991)

[7] R. Storn, System Design by Constraint Adaptation and Differential Evolution, IEEE Trans-
actions on Evolutionary Computation, 3, 22–34 (1999)

[8] R. Storn and K. Price, Differential evolution – a simple and efficient adaptive scheme for global
optimization over continuous spaces, Journal of Global Optimization, 11, 341–359 (1997)

[9] D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N. Vrahatis, Parallel Differential Evo-
lution, IEEE 2004 Congress on Evolutionary Computation (CEC2004), (2004)

[10] D.K. Tasoulis, V.P. Plagianakos, and M.N. Vrahatis, Clustering in Evolutionary Algorithms
to Efficiently Compute Simultaneously Local and Global Minima, Congress on Evolutionary
Computation (CEC 2005), (2005)

[11] S.B. Thrun et al., The MONKs Problems: A performance comparison of different learning
algorithms. Technical Report, Carnegie Mellon University, CMU-CS-91-197, (1991).


