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Abstract—An active research direction in Particle Swarm
Optimization (PSO) is the integration of PSO variants in adap-
tive, or self-adaptive schemes, in an attempt to aggregate their
characteristics and their search dynamics. In this work we
borrow ideas from adaptive filter theory to develop an “online”
algorithm adaptation framework. The proposed framework is
based on tracking the parameters of a multinomial distribution
to capture changes in the evolutionary process. As such, we design
a multinomial distribution tracker to capture the successful evo-
lution movements of three PSO variants. Extensive experimental
results on ten benchmark functions and comparisons with five
state-of-the-art algorithms indicate that the proposed framework
is competitive and very promising. On the majority of tested
cases, the proposed framework achieves substantial performance
gain, while it seems to identify accurately the most appropriate
algorithm for the problem at hand.

I. INTRODUCTION

The Particle Swarm Optimization (PSO) algorithm belongs

to the broad class of Swarm Intelligence methods. It was

introduced by Kennedy and Eberhart [1] and is inspired

by the social behavior of bird flocking and fish schooling.

Several variations and hybrid approaches, with altered search

dynamics, have been proposed, to improve the performance

and the convergence characteristics of the algorithm [2]–[12].

Nevertheless, a relatively small number of PSO variants have

exhibited substantial performance gains over a multitude of

different real-world applications, and hence have attracted the

attention of the Evolutionary Computing research community.

This is strongly related to and justified by the No Free Lunch

theorem (NFL) [13]. The NFL theorem mathematically proves

that the average performance of any pair of optimization algo-

rithms, across all possible optimization problems is identical,

i.e. there is not an ideal algorithm for handling all possible

optimization problems. The aforementioned variants success-

fully exploit different aspects of the PSO algorithm, either

by utilizing novel velocity update rules that enhance PSO’s

exploratory/exploitative search power, or by incorporating spe-

cial schemes to exploit the structure of the benchmark function

at hand. Representative examples of the former type include

fully informed topologies [10], barebones velocity updates [6],

multiple swarms [3], [7], unified operators [11], [14], and

comprehensive learning schemes [8]. Variants of the latter type

include schemes such as cooperation and coevolution [2], [9].

A different active research direction in PSO is the integra-

tion of PSO variants in new adaptive or self-adaptive schemes,

in an attempt to aggregate their characteristics and their search

dynamics. To this end, Frankenstein’s PSO [15] integrates

three distinct algorithmic PSO components to combine their

characteristics and produce an effective optimizer. Wang et

al. [16] proposed a self-adaptive learning PSO scheme, which

simultaneously adopts four PSO search strategies with differ-

ent characteristics. The model adapts a probability of selecting

each strategy based on their ability to generate fitter solutions

during the optimization procedure. In turn, the concept of

heterogeneous PSO variants has been adopted in many recent

works [17]–[19]. This concept includes either sub-swarms that

incorporate different meta-heuristics and cooperate with each

other, or swarms with different strategies per particle which

are selected from a pool of strategies in a predefined, or a

dynamic manner. Finally, Unified PSO [11], [14] has been

proposed as a modification of PSO that aggregates its local and

global variants, combining their exploration and exploitation

abilities without imposing additional requirements with respect

to function evaluations.

From the above we can see that there is a large number

of different PSO variants and parameter settings. Identifying

which of them is most suitable for a specific problem may

consume a large amount of computational cost. Thus, inte-

grating the advantages of each variant becomes crucial. Such

a scheme should be capable of choosing the most appropriate

algorithm, or parameter set without wasting computational

cost, i.e. learning from its environment and choosing the best

candidate to apply throughout the evolution.

In this study, we borrow ideas from adaptive filter theory and

statistical pattern recognition to develop an “online” algorithm

adaptation technique. The proposed approach uses three state-

of-the-art PSO variants, namely the Fully Informed Particle



Swarm Optimization (FIPS) [10], the Comprehensive Learning

Particle Swarm Optimizer (CLPSO) [8], and the Bare Bones

Particle Swarm Optimization (BBPSO) [6]. It allows each

particle to randomly select amongst them to evolve in each

time step. The probability of selecting each variant depends

on its history of generating successful evolution movements.

Extensive experimental results on 10 benchmark functions

demonstrate that the proposed framework is very promising.

For the majority of tested cases, the proposed framework

exhibits great performance gains, while it successfully incor-

porates the most appropriate algorithm for the problem at

hand.

The rest of the paper is organized as follows: Section II

briefly describes the multinomial distribution tracker along

with its main characteristics. Its incorporation into the PSO

algorithm as a new strategy adaptation framework is briefly

described in Section III. Section IV presents an extensive ex-

perimental and statistical analysis of the proposed framework.

The paper concludes with a discussion and some pointers for

future work.

II. MULTINOMIAL DISTRIBUTION TRACKING THROUGH

EXPONENTIAL FORGETTING

In this section we briefly present the multinomial distribu-

tion and its extension to include exponential forgetting. The

binomial distribution is the probability distribution of the num-

ber of “successes” in N independent Bernoulli trials, with a

constant probability of success for each trial. The multinomial

distribution is a generalization of the binomial distribution, in

which each trial results in one out of a fixed finite number K
of possible outcomes, with probabilities θ1, θ2, . . . , θK and N
independent trials. A random variable Xi indicates the number

of times outcome i was observed over the N trials. Thus,

the vector X = (X1, X2, . . . , XK) follows a multinomial

distribution with parameters N, θ, where θ = (θ1, θ2, . . . , θK)
and probabilities:

P (X1 = x1, . . . , XK = xK |θ,N) =
N !

∏K

i=1
xi!

K∏

i=1

θxi

i .

Based on a data sample D we can estimate the parameter

θ̂ = θ(D) through Maximum Likelihood Estimation (MLE).

The likelihood function is defined as the probability density

of the data measurements given a specific value θ of the

distribution parameters. Thus given a data sample D, the

likelihood function is defined as: L(θ;D) = p(D|θ) =
p(x1, x2, . . . , xK |θ). In MLE we seek the parameter θ̂ that

maximizes the likelihood function defined using the data sam-

ple D at hand: L(θ̂;D) = maxθ L(θ;D). In the i.i.d. context

the likelihood function can be written as a product of the

known conditional densities for θi, i.e. L(θ;D) = p(D|θ) =∏K

i=1
p(xi|θi). Without loss of generality the maximization

of the likelihood can be easily converted as a maximization

of the log-likelihood or as a minimization of the negative

log-likelihood function. For the multinomial distribution case

one can easily calculate the MLE estimator of θ by applying

Lagrange multipliers in the log-likelihood function. Hence we

can obtain the MLE of the multinomial distribution by the

following form: θ̂ ML
i = mk/N, where mk =

∑K

i=1
xi.

In the context of an online strategy adaptation scheme

where the optimization procedure frequently changes phases,

a reasonable assumption is that the impact of each observation

should be related to the time of observation. More recent

information about the evolution phase is expected to be more

relevant to the optimization procedure while earlier informa-

tion should be slowly discarded. Here we develop a tracking

framework that is based on the Recursive Least Squares (RLS)

adaptive filter [20]–[24]. To this end, we incorporate weights

to the likelihood function and adopt the RLS filter framework

proposed in [22]–[24].

We make the assumption that the data sample appears as a

signal or a data stream in time, D = {D1, D2, . . . , Dt, . . .},
where t denotes the current time step. As in the RLS filter,

we incorporate an exponential weighting factor in the log-

likelihood function and produce a new likelihood which in-

corporates time, Lλ(θ|D1, D2, . . . , Dt). The new likelihood

can be defined as:

Lλ(θ|D1, D2, . . . , Dt)=

t∑

j=1

λt−jL(θ|D1, . . . , Dj)

=L(θ|Dt) + λL(θ|D1, . . . , Dt−1),

where λ ∈ [0, 1] is a weighting factor which is also called

forgetting factor. The forgetting factor discounts the impact

of past observations on the log-likelihood and hence enables

the estimated parameters to adapt to changes. As λ increases to

unity all data examples are assigned equal weights, while as λ
decreases more recent data samples become more important.

By applying Lagrange multipliers we obtain the MLE θ̂ MLλ

i :

θ̂ MLλ

i (t) =
ni(t)∑K

k=1
nk(t)

. (1)

where ni(t) represents the effective window width which can

be recursively calculated through the following equation:

ni(t) = λni(t− 1) +Di
t, (2)

for t = 1, 2, . . . and ni(0) = 0, where Di
t denotes the

number of success of outcome i at time t. For λ = 1 the

aforementioned framework corresponds to the simple case

with the θ̂ ML
i MLE.

Through this approach we can track the parameters of

a multinomial distribution with the potential of forgetting

the history of past observations in an exponential manner.

To demonstrate the behavior of the multinomial distribution

tracker with exponential forgetting we conduct a constructive

simulation with an abrupt change. In particular, we construct

a two class problem, where each class corresponds to the

success of one strategy, with pre-specified class probabilities

(here 0.8 and 0.2 respectively). After 1000 observations there

is a abrupt change in which the classes (strategies) interchange

their probabilities (0.2, 0.8). Hence, Figure 1 illustrates the

behavior of the estimated probabilities through the multinomial

distribution tracker, for four different forgetting factor values,



Fig. 1. Illustration of the multinomial distribution behavior in the case of
an abrupt change: (left) The distribution of real successes for two different
strategies. (right) The real probability against the estimated probabilities of
the multinomial distribution tracker for different forgetting factor values, λ ∈
{0.950, 0.990, 0.999, 1.000}.

λ ∈ {0.950, 0.990, 0.999, 1}. We can clearly observe that in

the case of an abrupt change point, a lower forgetting factor

enables a faster adaptation. In contrast the no forgetting case

(λ = 1) performs very poorly, and cannot successfully track

the true parameters after the change.

III. THE MULTINOMIAL DISTRIBUTION-BASED PARTICLE

SWARM OPTIMIZATION FRAMEWORK

In this section, we discuss the main concepts behind the pro-

posed framework, namely the Multinomial distribution-based

PSO (MultiPSO). The PSO algorithm is a population–based

stochastic algorithm that exploits a population of individuals

to effectively probe promising regions of the search space.

Therefore, each individual (particle) of the population (swarm)

moves with an adaptable velocity within the search space and

retains in its memory the best position it ever encountered.

A thorough description of the PSO algorithm can be found

in [4], [6], [11], [25], [26].

The proposed framework introduces two main concepts

different from the standard PSO. Firstly, it probabilistically

assigns to each particle one PSO variant, kstr, chosen from

a pool of candidate algorithms, kstr ∈ {1, 2, . . . ,K}. Conse-

quently, based on the particle’s movements, it adopts its prob-

ability during the evolution stages through the aforementioned

multinomial distribution tracker. The remaining evolution steps

of the PSO algorithm remain the same. More specifically,

we incorporate a pool of K state-of-the-art PSO variants.

Here, we utilize three well-known and widely used variants

that have efficiently tackled several real or artificial problem

landscapes [6], [8], [10], namely the FIPS, the CLPSO, and the

BBPSO algorithms. It is obvious that any PSO variant could

be incorporated into the pool to enhance the exploratory and

exploitative power of the proposed framework.

In turn, one of the available algorithms is assigned to each

particle based on a probability. This probability is adapted

at each generation through the aforementioned multinomial

distribution tracker, based on its successful and unsuccessful

evolution steps. An evolution step is characterized as success-

ful, if the applied algorithm succeeds to find a better personal

best position of the particle.

In detail, for each algorithm i in the pool i ∈ {1, 2, . . . ,K},
we incorporate a memory for its successful (SStep(i)) and un-

Algorithm 1 The MultiPSO algorithmic scheme

1: Initialize particles in the swarm
2: Initialize the multinomial distribution tracker, for each algorithm

i : ni(t0) = 0 and θ̂
MLλ
i

(t0) =
1

K
.

3: for each time step t do
4: for each particle j in the swarm do
5: Sample kstr from the multinomial distribution with

parameters θ̂
MLλ
i

(t).
6: Update its position using algorithm kstr, kstr ∈

{1) FIPS, 2) CLPSO, 3) BBPSO}.
7: Evaluate particle j
8: Update social and cognitive experience
9: if particle j has a better personal best position then

10: Add a success point to the corresponding strategy
11: else
12: Add a failure point to the corresponding strategy
13: end if
14: end for
15: Update the multinomial distribution tracker through

Eqs. (2)–(3)
16: end for

successful (FStep(i)) evolution steps. Thus, for each algorithm

we assign a score based on the percentage of its successful

evolution steps during the last generation. The score, Score(i),
can be calculated through the following formula:

Score(i)= round

(
100

w(i)
∑K

i=1
w(i)

)
,with

w(i)=

(
SStep(i)

SStep(i) + FStep(i) + ε
+ pmin

)
, (3)

where pmin = 0.01 is a small constant that prevents the

extinction of an algorithm, while ε = 10−6 helps to avoid

divisions by zero, in the case that an algorithm has not been

selected in the previous generation. The rounding procedure

as well as the multiplication by 100 will fix the score to the

required integer value, by the multinomial distribution. The

final score assists the algorithm which produces the higher

percentage of successful evolution steps in the last generation.

To this end, the multinomial distribution tracker learns from

the current evolution stage and promotes the algorithm that

is more likely to efficiently evolve the swarm to promising

search regions. Having calculated the final scores, we esti-

mate the probabilities of each algorithm by calculating the

aforementioned maximum likelihood estimator θ̂ MLλ

i , given

by Eqs. (1) and (2). The main algorithmic scheme of the

proposed framework is briefly demonstrated in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section we perform an experimental evaluation of the

proposed approach. We employ ten high dimensional, scalable

benchmark functions with shifted search space domains and

different characteristics. The first six functions have been

acquired from the recent CEC’2008 Special Session on Large

Scale Global Optimization [27]. Two of them are unimodal

functions (f1 and f2), while the next four are multimodal

with a large number of local optima (f3 − f6). The remaining

four test functions are hybrid composition functions, recently



proposed in [28], and correspond to the functions f16 − f19
of the test suite. In this study, we consider the 50-dimensional

versions of the aforementioned benchmark functions. A de-

tailed description of the benchmark set can be found in [27],

[28].

To demonstrate the efficiency of the proposed approach, we

compare it with five state-of-the-art PSO variants, namely the

local version of the PSO with constriction factor (xPSOl), the

local version of the inertia weight PSO with a linearly de-

creasing weight rule (wPSOl), the Bare Bones Particle Swarm

Optimization (BBPSO) [6], the Fully Informed Particle Swarm

Optimization (FIPS) [10], and the Comprehensive Learning

Particle Swarm Optimizer (CLPSO) [8]. We implement the

proposed approach with three different predefined forgetting

factor values, λ ∈ {0.92, 0.99, 1}. The first two values force

to forget the history of the strategy probabilities with either a

fast or a slow rate, respectively, i.e. a sliding window size of

w ≈ 12.5, or w ≈ 100 generations respectively. The sliding

window can be approximated using the λ parameter, through:

w ≈ 1/(1 − λ) [21]. In turn, λ = 1 corresponds to no

forgetting. A brief analysis on the forgetting factor parameter

is demonstrated bellow (see Section IV-B).

For each simulation and method, we have initialized the

swarms using a uniform random number generator with the

same random seeds. Furthermore, all methods have been

implemented with the default parameters settings as have

been proposed in the literature. Regarding the PSO with

constriction factor parameters, the common setting of ϕ = 4.1,

χ = 0.72984 and c1 = c2 = 2.05 and a ring topology has

been utilized [4], [29]. The swarm size has been kept fixed

to NP = 100 particles and for each simulation, a budget

of maxNFEs = 5000 · D function evaluations has been

employed [27].

To evaluate the performance of the PSO variants we will

use the solution error measure, or simply error, defined

as f(x′) − f(x⋆), where x⋆ is the global optimum of the

benchmark function and x′ is the best solution achieved within

a budget of maxNFEs function evaluations. Each algorithm

was executed independently 50 times to obtain an estimation

of the median (Median), the mean solution error (Mean), its

standard deviation (St.D.) and the success (Success). For each

benchmark function we use boldface font to indicate the best

performing algorithm in terms of median and mean solution

error. To evaluate the statistical significance of the observed

performance differences, for each variant we conducted three

two-sided Wilcoxon rank sum tests between the corresponding

variant and MultiPSO, using the aforementioned λ values,

λ ∈ {0.92, 0.99, 1}. The null hypothesis in each test is that

the samples compared are independent samples from identical

continuous distributions with equal medians. We mark with

“+” the cases when the null hypothesis is rejected at the 5%

significance level and the proposed approach exhibits superior

performance. Mark “–” indicates that the null hypothesis is

rejected at the same level of significance and the proposed ap-

proach exhibits inferior performance, while mark “=” indicates

that the performance difference is not statistically significant.

To this end, Table I reports the experimental results on

the 50–dimensional versions of the considered benchmark set.

It is evident that the evolution of the state-of-the-art PSO

variants through the multinomial distribution tracker results

in an enhanced PSO scheme with superior performance. Gen-

erally speaking, MultiPSO exhibits a significant performance

improvement, in terms of median and mean error values, in

the majority of the tested functions. More specifically, in seven

out of ten functions, (f1−f3 and f5−f8), there is a MultiPSO

variant that exhibits a significantly better performance against

all state-of-the-art PSO variants. In three cases, (f1, f5, and

f6), all MultiPSO versions exhibit 100% success. Only in

three functions (f4, f9 and f10) either CLPSO or FIPS, exhibit

superior performance against all MultiPSO versions. Finally,

in f8, FIPS exhibits a significantly better performance against

MultiPSOλ=0.92, MultiPSOλ=0.99 and a significantly worse

performance against MultiPSOλ=1.
Regarding the three MultiPSO versions, the results in the

ten considered benchmark functions do not allow us to draw

safe conclusions. In four out of ten functions, no statistically

significant differences exist between the three approaches

(f1, f3, f5, and f6). On the remaining functions, there are

three functions in which MultiPSO with a forgetting strategy,

i.e. λ ∈ {0.92, 0.99}, exhibit significant performance gains

(f4, f7, f10), while in the f8 and f9 functions MultiPSOλ=1

performs better. More specifically, the forgetting mechanism

does not seem to enhance the proposed approach in the

f8 and f9 functions, since MultiPSOλ=1 exhibits significant

performance differences against both MultiPSOλ=0.92 and

MultiPSOλ=0.99. Similarly, in the f2 function, MultiPSOλ=1

is significantly better than the MultiPSOλ=0.99, while it

performs equally well with MultiPSOλ=0.92. Among the

MultiPSO approaches that incorporate the forgetting mech-

anism, MultiPSOλ=0.92 performs better, since it exhibits a

significantly better performance in the f4 and f10 functions

against both MultiPSOλ=0.99 and MultiPSOλ=1. Additionally

MultiPSOλ=0.92 is better against the MultiPSOλ=1 in the f7
function.

A first suggestion that can be made from the aforementioned

observations is that the forgetting procedure exhibits a problem

dependent behavior. This behavior seems reasonable since the

forgetting mechanism is applied in the probability adaptation

of each strategy, i.e. at each evolution stage an algorithm may

perform better and needs to forget either slowly or quickly its

history based on the current problem’s surface. Nevertheless,

there are relatively few cases where the forgetting approaches

exhibit significant performance deterioration against the no-

forgetting approach.

To illustrate the behavior of the proposed approach during

the simulations, in Figure 2, we provide convergence graphs

for the first six shifted functions (f1−f6). The graphs demon-

strate median solution error value curves of 50 independent

simulations for all PSO variants considered in this paper. As

expected, the graphs capture the previously observed behavior

of the PSO algorithms, while they indicate that in most of the

cases the MultiPSO approach either enhances the convergence



TABLE I
ERROR VALUES OF THE PROPOSED PSO METHOD (MULTIPSO) AND FIVE STATE-OF-THE-ART PSO VARIANTS ON THE 50–DIMENSIONAL VERSIONS OF

THE CONSIDERED BENCHMARK SET.

Algorithm Median Mean St.D. NFE Success St. Sig. Median Mean St.D. NFE Success St. Sig.

f1 : Shifted Sphere Function f2 : Shifted Schwefel’s Problem 2.21

xPSOl 7.405e+03 7.508e+03 9.342e+02 N/A 0.0 (+/+/+) 2.911e+01 2.915e+01 1.621e+00 N/A 0.0 (+/+/+)
wPSOl 2.519e+03 2.583e+03 4.175e+02 N/A 0.0 (+/+/+) 2.588e+01 2.564e+01 2.326e+00 N/A 0.0 (+/+/+)

BBPSO 0.000e+00 0.000e+00 0.000e+00 N/A 0.0 (+/+/+) 5.372e+01 5.245e+01 4.420e+00 N/A 0.0 (+/+/+)
CLPSO 2.550e-02 2.556e-02 5.718e-03 N/A 0.0 (+/+/+) 5.442e+01 5.400e+01 2.992e+00 N/A 0.0 (+/+/+)

FIPS 6.746e+03 6.836e+03 7.820e+02 N/A 0.0 (+/+/+) 3.478e+01 3.462e+01 2.300e+00 N/A 0.0 (+/+/+)
MultiPSOλ=0.92 0.000e+00 0.000e+00 0.000e+00 1.600e+05 100.0 (=/=/=) 9.945e-01 1.216e+00 5.522e-01 N/A 0.0 (=/=/=)
MultiPSOλ=0.99 0.000e+00 0.000e+00 0.000e+00 1.598e+05 100.0 (=/=/=) 1.141e+00 1.200e+00 4.202e-01 N/A 0.0 (=/=/–)
MultiPSOλ=1.00 0.000e+00 0.000e+00 0.000e+00 1.600e+05 100.0 (=/=/=) 1.032e+00 1.011e+00 2.798e-01 N/A 0.0 (=/+/=)

f3 : Shifted Rosenbrock’s Function f4 : Shifted Rastrigin’s Function

xPSOl 3.314e+06 3.838e+06 3.056e+06 N/A 0.0 (+/+/+) 2.335e+02 2.319e+02 2.580e+01 N/A 0.0 (+/+/+)
wPSOl 1.782e+02 1.876e+02 4.294e+01 N/A 0.0 (+/+/+) 1.703e+02 1.678e+02 1.957e+01 N/A 0.0 (+/+/+)

BBPSO 2.952e+02 3.141e+02 1.056e+02 N/A 0.0 (+/+/+) 1.483e+02 1.489e+02 2.166e+01 N/A 0.0 (+/+/+)
CLPSO 9.838e+02 9.988e+02 1.944e+02 N/A 0.0 (+/+/+) 3.305e-01 3.407e-01 8.753e-02 N/A 0.0 (–/–/–)

FIPS 9.503e+05 2.023e+06 2.493e+06 N/A 0.0 (+/+/+) 1.846e+02 1.851e+02 1.531e+01 N/A 0.0 (+/+/+)
MultiPSOλ=0.92 4.565e+01 4.709e+01 7.751e+00 N/A 0.0 (=/=/=) 1.686e+01 1.791e+01 7.200e+00 N/A 0.0 (=/+/+)
MultiPSOλ=0.99 4.554e+01 4.739e+01 1.152e+01 N/A 0.0 (=/=/=) 3.480e+01 3.340e+01 6.900e+00 N/A 0.0 (–/=/+)
MultiPSOλ=1.00 4.541e+01 4.576e+01 7.768e+00 N/A 0.0 (=/=/=) 5.804e+01 5.740e+01 1.255e+01 N/A 0.0 (–/–/=)

f5 : Shifted Griewank’s Function f6 : Shifted Ackley’s Function

xPSOl 4.189e+01 4.286e+01 6.178e+00 N/A 0.0 (+/+/+) 8.428e+00 8.476e+00 5.340e-01 N/A 0.0 (+/+/+)
wPSOl 1.316e+01 1.325e+01 2.603e+00 N/A 0.0 (+/+/+) 2.840e+00 2.867e+00 4.881e-01 N/A 0.0 (+/+/+)

BBPSO 0.000e+00 3.600e-04 1.687e-03 N/A 0.0 (+/+/+) 1.438e+00 1.045e+00 8.457e-01 N/A 0.0 (+/+/+)
CLPSO 3.400e-02 3.500e-02 8.899e-03 N/A 0.0 (+/+/+) 5.900e-02 6.018e-02 1.020e-02 N/A 0.0 (+/+/+)

FIPS 4.009e+01 4.027e+01 6.103e+00 N/A 0.0 (+/+/+) 8.204e+00 8.091e+00 6.703e-01 N/A 0.0 (+/+/+)
MultiPSOλ=0.92 0.000e+00 0.000e+00 0.000e+00 1.657e+05 100.0 (=/=/=) 0.000e+00 0.000e+00 0.000e+00 2.041e+05 100.0 (=/=/=)
MultiPSOλ=0.99 0.000e+00 0.000e+00 0.000e+00 1.677e+05 100.0 (=/=/=) 0.000e+00 0.000e+00 0.000e+00 2.046e+05 100.0 (=/=/=)
MultiPSOλ=1.00 0.000e+00 0.000e+00 0.000e+00 1.646e+05 100.0 (=/=/=) 0.000e+00 0.000e+00 0.000e+00 2.053e+05 100.0 (=/=/=)

f7 : Hybrid Composition Function 1 (f16 [28]) f8 : Hybrid Composition Function 2 (f17 [28])

xPSOl 1.937e+03 1.960e+03 3.495e+02 N/A 0.0 (+/+/+) 1.743e+02 1.706e+02 3.124e+01 N/A 0.0 (+/+/+)
wPSOl 7.098e+02 6.993e+02 1.382e+02 N/A 0.0 (+/+/+) 1.701e+02 1.677e+02 2.393e+01 N/A 0.0 (+/+/+)

BBPSO 4.285e+01 4.197e+01 1.423e+01 N/A 0.0 (+/+/+) 1.571e+02 1.568e+02 2.567e+01 N/A 0.0 (+/+/+)
CLPSO 6.576e+00 6.646e+00 6.620e-01 N/A 0.0 (+/+/+) 1.473e+02 1.472e+02 1.259e+01 N/A 0.0 (+/+/+)

FIPS 1.686e+03 1.677e+03 2.537e+02 N/A 0.0 (+/+/+) 1.281e+01 2.450e+01 2.547e+01 N/A 0.0 (–/–/+)
MultiPSOλ=0.92 9.215e-05 1.136e-04 9.575e-05 N/A 0.0 (=/=/+) 5.980e+01 6.549e+01 2.812e+01 N/A 0.0 (=/–/–)
MultiPSOλ=0.99 9.147e-05 1.100e-04 5.146e-05 N/A 0.0 (=/=/+) 4.354e+01 4.952e+01 2.597e+01 N/A 0.0 (+/=/–)
MultiPSOλ=1.00 1.260e-04 1.406e-04 6.537e-05 N/A 0.0 (–/–/=) 1.261e+01 1.753e+01 1.056e+01 N/A 0.0 (+/+/=)

f9 : Hybrid Composition Function 3 (f18 [28]) f10 Hybrid Composition Function 4 (f19 [28])

xPSOl 6.600e+01 6.504e+01 4.219e+00 N/A 0.0 (+/+/+) 2.085e-12 2.643e-12 2.696e-12 1.928e+05 100.0 (+/+/+)
wPSOl 5.711e+01 5.654e+01 4.577e+00 N/A 0.0 (+/+/+) 1.568e-07 1.799e-07 1.231e-07 N/A 0.0 (+/+/+)

BBPSO 5.352e+01 5.247e+01 6.974e+00 N/A 0.0 (+/+/+) 9.474e-05 2.999e-04 8.665e-04 N/A 0.0 (+/+/+)
CLPSO 4.168e+00 4.212e+00 3.270e-01 N/A 0.0 (–/–/–) 6.998e-03 7.215e-03 1.226e-03 N/A 0.0 (+/+/+)

FIPS 3.824e+01 3.784e+01 6.513e+00 N/A 0.0 (+/+/+) 7.652e-22 1.090e-21 1.267e-21 1.267e+05 100.0 (–/–/–)
MultiPSOλ=0.92 1.764e+01 1.814e+01 4.414e+00 N/A 0.0 (=/=/–) 1.935e-17 2.280e-17 1.520e-17 1.749e+05 100.0 (=/+/+)
MultiPSOλ=0.99 1.742e+01 1.789e+01 3.898e+00 N/A 0.0 (=/=/–) 2.968e-17 3.631e-17 2.208e-17 1.763e+05 100.0 (–/=/+)
MultiPSOλ=1.00 1.319e+01 1.320e+01 2.246e+00 N/A 0.0 (+/+/=) 4.761e-16 1.504e-15 2.336e-15 1.795e+05 100.0 (–/–/=)

of a PSO variant or converges similarly. There are relatively

few cases where the proposed approaches exhibit performance

deterioration.

Additionally, Figure 3 illustrates a typical behavior of the

probabilities adapted by the multinomial tracker over the first

six shifted functions (f1−f6). The graphs demonstrate median

probability value curves of 50 independent simulations for

the considered lambda values. It can be easily observed that

the adaptation of the strategy probabilities behave differently

based on the benchmark problem at hand as well as the evo-

lution phase, in which there are numerous probability trends.

More specifically, it can be easily observed that in the majority

of the illustrated cases, there are three main stages through the

evolution procedure, approximately every 1000 generations.

In the first evolution stage, there are rapid changes in the

multinomial probabilities (f1 − f6), with many alterations for

the leading probability position. A similar behavior is also

exhibited in the last stage (f1, f4, f5), while in the middle

stage the probability curves exhibit stable and robust trends.

In general, this is an expected behavior, since each problem

exhibits different characteristics and the strategies perform

differently. Moreover, concerning the forgetting factor values,

it can be observed that when the multinomial tracker does not

forget (λ = 1), the probability curves are stable, with no rapid

changes throughout the evolution. On the contrary, the more

the multinomial tracker forgets (i.e. the λ value decreases)

the more rapidly the probabilities change. This trend can be

easily observed for the λ = 0.99 and λ = 0.92 cases. It is

worth noting that although in three cases (f4, f9, and f10) the

proposed framework does not exhibit superior performance,

the multinomial distribution tracker tries to capture the best

performing algorithm, e.g. in Figure 3 observe the trends of the



Fig. 2. Convergence graph (median curves) for the considered PSO variants
over the shifted 50–dimensional functions f1 − f6. The horizontal axis
illustrates the number of generations, and the vertical axis illustrates the
median of solution error values over 50 independent simulations.

Fig. 3. Multinomial probabilities graph (median curves) for the lambda
parameter (λ ∈ {0.92, 0.99, 1}) over the shifted 50–dimensional functions
f1 − f6. The horizontal axis illustrates the number of generations, and
the vertical axis illustrates the median probabilities per strategy over 50
independent simulations.

TABLE II
AVERAGE RANKINGS OF THE CONSIDERED PSO VARIANTS, ACHIEVED BY

THE FRIEDMAN AND THE QUADE STATISTICAL TESTS

Average Ranking

Friedman test Quade test
Algorithms Score Rank Score Rank

xPSOl 7.3999 (8) 7.1090 (8)
wPSOl 5.9000 (7) 6.0000 (7)
BBPSO 5.1000 (5) 5.3636 (6)
CLPSO 4.7000 (4) 5.0000 (5)

FIPS 5.5000 (6) 4.9818 (4)
MultiPSOλ=0.92 2.5000 (2) 2.3818 (1)
MultiPSOλ=0.99 2.5000 (2) 2.6181 (3)
MultiPSOλ=1.00 2.4000 (1) 2.5454 (2)

Statistic 40.30000 7.40772
p-value 1.1028e-6 1.7568e-6

estimated probabilities for the f4 function, where in the first

and last stages of evolution the scheme promotes the CLPSO

variant, which is the best performing algorithm.

The aforementioned observations suggest the need to adapt

the forgetting factor value through different evolution phases

by utilizing either an adaptive or a self-adaptive procedure.

This is a very interesting research area that we intend to

extensively study in the future.

A. Statistical Significance Analysis

To evaluate the statistical significance of the observed per-

formance differences, we apply the Friedman and the Quade

tests [30], [31]. These tests rank the performance of a set

of k algorithms and can detect if there exists a significant

difference in the performance of at least two algorithms.

Table II, depicts the average rankings computed through the

aforementioned tests, while at the bottom of the table we

illustrate the statistics of each test along with its corresponding

p-values.

The p-values computed through the Friedman and the Quade

statistical tests (1.1028e-6 and 1.7568e-6, respectively) along

with the Iman and Davenport extension (Ff = 12.2121, p-

value: 9.5316e-10), strongly suggest the existence of signifi-

cant differences among the considered algorithms, at the α =
0.05 level of significance. Notice that the Quade test is a

variation of the Friedman test, which takes into account the

fact that some cases in the sample maybe more important than

others. Thus, it calculates scaled rankings depending on the

differences observed in the samples [31]. The Quade test may

therefore indicate that the corresponding algorithms exhibit

significant differences in more benchmark functions at any

given level of significance.

It can be observed that all versions of the proposed ap-

proach (MultiPSOλ=0.92, MultiPSOλ=0.99, and MultiPSOλ=1,
always come in the first three positions of the rankings, while

the next three positions, are usually occupied by BBPSO,

CLPSO, and FIPS. This observation suggests that combining

the dynamics and the characteristics of the aforementioned

three PSO variants through the proposed methodology, is an

efficient approach with a lot of potential. Moreover, regarding

the MultiPSO versions with different forgetting factor values,



Fig. 4. Empirical cumulative probability distribution of the solution error val-
ues for the proposed PSO approach against five state-of-the-art PSO variants
on the 50–dimensional versions of the considered benchmark functions.

the Friedman test suggests that MultiPSOλ=1 comes first,

i.e. a no forgetting procedure exhibits better behavior in the

considered benchmark functions. On the other hand, the Quade

test indicates that in the most benchmark functions a rapidly

forgetting procedure (λ = 0.92) is suitable.

We conclude the statistical analysis with the application

of the Empirical Cumulative probability Distribution Func-

tion of the performance error values (ECDF ). The ECDF

graphically demonstrates the performance of the implemented

algorithms on all benchmark functions and can be utilized

as an overall performance visualization statistic. Specifically,

for an algorithm A on a function f , the error value (error)

achieved by A on function f is computed. Therefore, smaller

values of error correspond to better performance. The ECDF

of errors for an algorithm in a number of functions nf

is a cumulative probability distribution function defined as:

ECDF (x) = (1/nf)
∑nf

i=1
I(errori 6 x), where I(·) is

the indicator function. In other words, the ECDF measure

captures the empirical probability of observing an error value

smaller or equal to x. First, we compute the errors for all con-

sidered algorithms on all the functions and then we compute

the ECDF for each algorithm. This enables a summarizing

comparison of the algorithms in all the benchmarks, as larger

ECDF values for the same argument correspond to better

performance.

Figure 4, illustrates the ECDF of the error for all versions

of the proposed MultiPSO versus the five state-of-the-art

PSO variants. It can be clearly observed that all proposed

approaches exhibit a great potential on the considered function

set. All MultiPSO versions exhibit higher ECDF values com-

pared with the other variants in the majority of the observed

error values. Only CLPSO exhibits higher ECDF values for

some observations. In general, the MultiPSO versions produce

one or more orders of magnitude lower error values, i.e. the

MultiPSO curves reach unity at approximately error ≈ 100,

while BBPSO and CLPSO curves at error ≈ 1000 (please refer

to the zoomed sub-figure inside Figure 4). A similar behavior

can be observed for the FIPS and xPSOl variants, where they

TABLE III
AVERAGE RANKINGS OF THE MULTIPSO APPROACH FOR SEVERAL

FORGETTING FACTOR VALUES, ACHIEVED BY THE FRIEDMAN, AND

QUADE STATISTICAL TESTS

Forgetting with Average Ranking

lambda value sliding window Friedman test Quade test

λ = 0.000 immediately forget 10.2500 (14) 9.2636 (9)
λ = 0.500 w = 1.0000 9.0500 (4) 8.5181 (3)
λ = 0.800 w = 5.0000 9.3500 (10) 8.7181 (5)
λ = 0.900 w = 10.0000 9.1500 (6) 9.1181 (6)
λ = 0.910 w = 11.1100 8.3500 (2) 8.6272 (4)
λ = 0.920 w = 12.5000 7.0500 (1) 7.3000 (1)
λ = 0.930 w = 14.2857 9.3500 (10) 9.3181 (10)
λ = 0.940 w = 16.6667 9.1500 (6) 9.1909 (8)
λ = 0.950 w = 20.0000 8.6499 (3) 8.1181 (2)
λ = 0.960 w = 25.0000 9.9500 (13) 9.4090 (11)
λ = 0.970 w = 33.3333 9.1500 (6) 9.1727 (7)
λ = 0.980 w = 50.0000 10.6499 (15) 10.2636 (14)
λ = 0.990 w = 100.0000 11.1500 (17) 10.9181 (16)
λ = 0.995 w = 200.0000 11.3500 (18) 11.4272 (18)
λ = 0.996 w = 250.0000 9.2500 (9) 9.9181 (12)
λ = 0.998 w = 500.0000 10.6500 (16) 11.3727 (17)
λ = 0.999 w = 1000.0000 9.4500 (12) 10.2818 (15)
λ = 1.000 Do not forget 9.0500 (4) 10.0636 (13)

Statistic 6.48596 0.37953
p-value 0.9892 0.9879

reach unity at approximately error ≈ 107. Among the three

MultiPSO versions there is no visible difference. Only in a

very small range of error values, MultiPSOλ=1 exhibits higher

ECDF values.

B. A brief analysis on the forgeting factor parameter

In this subsection, we briefly analyze the forgetting factor

parameter and try to capture its main characteristics and

understand its behavior. To this end, we have utilized eighteen

different forgetting factor values in the range [0, 1]. For each

forgetting factor value we have conducted 50 independent

simulations over all considered benchmark functions and

ranked their performance through the Friedman and the Quade

statistical ranking tests. Table III demonstrates the average

rankings computed by the tests. For each forgetting factor

value, we report the corresponding sliding window size and its

ranking scores. Notice that the forgetting factor corresponds

to an exponential function in terms of a sliding window size.

Additionally, λ = 0 corresponds to an immediately forgetting

procedure, while λ = 1 corresponds to a non-forgetting

procedure.

The p-values computed through the statistical tests (0.9892

and 0.9879, respectively) suggest that the performance among

the considered forgetting factors does not exhibit statistically

significant differences. The considered statistical tests take into

account the general behavior of the algorithms in all test cases.

We observe that in the specific benchmark suite, we cannot

draw safe conclusions regarding the forgetting procedure. Nev-

ertheless, given their previously documented performance, we

can conclude that the majority of the MultiPSOλ approaches

outperform the state-of-the-art PSO variants. Moreover, it can

be observed that there exists a forgetting factor value that

exhibits better performance than the non-forgetting and the

immediately forgetting cases. To clearly show the three better



performing forgetting values, we mark them with a bold-face

font. To conclude, the overall most promising forgetting factor

value seems to be in the vicinity of λ = 0.92.

V. CONCLUSIONS

Recent developments in the PSO research community sug-

gest that the advantages of several PSO variants can be

exploited by integrating them in adaptive schemes. We attempt

to exploit the characteristics of different PSO variants so as

to improve their performance. Borrowing ideas from adaptive

filter theory we develop an “online” algorithm adaptation

framework. The proposed framework is based on tracking

the parameters of a multinomial distribution to capture the

potentially changing probabilities of success of the different

strategies involved.

Extensive experimental results on 10 benchmark functions

demonstrate that the proposed framework is very promising.

For the majority of the tested cases, it exhibits great perfor-

mance gains against five state-of-the-art PSO variants. The

multinomial distribution tracker is able to successfully capture

the most appropriate algorithm for the problem at hand.

The most appropriate degree of forgetting depends on the

evolution stage, as well as the problem. It would be interesting

to further study it in the future, and develop an adaptive

forgetting factor scheme. We also intent to utilize different

PSO variants and study their performance on more benchmark

functions.
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