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Abstract  
This paper introduces Locally Recurrent Probabilistic Neural 
Networks (LRPNN) as an extension of the well-known Prob-
abilistic Neural Networks (PNN). A LRPNN, in contrast to a 
PNN, is sensitive to the context in which events occur, and 
therefore, identification of time or spatial correlations is at-
tainable. Besides the definition of the LRPNN architecture a 
fast three-step training method is proposed. The first two steps 
are identical to the training of traditional PNNs, while the 
third step is based on the Differential Evolution optimization 
method. Finally, the superiority of LRPNNs over PNNs on the 
task of text-independent speaker verification is demonstrated.  

1. Introduction
The contemporary classification techniques, such as Vector 
Quantization (VQ) and Gaussian Mixture Models (GMM), 
used in the text-independent speaker verification task, assume 
context independence between neighbouring feature vectors 
extracted from a speech utterance. It is well-known, that 
speech signals contain an abundance of short- and long-term 
correlations, which if identified could be exploited to produce 
a superior speaker verification performance. 

At present, the most popular speech features, like cepstral 
coefficients and PLP, used in both speaker and speech recog-
nition tasks, represent the static spectrum for a given speech 
frame. The ∆ and ∆2 derivatives of these parameters are 
widely used in addition to the basic parameters in an attempt 
to capture the inter-frame correlation inherent to the speech 
signal. A more effective approach to utilize inter-frame in-
formation is to use a classifier sensitive to it. For example: 
HMM, time-delay neural networks or recurrent neural net-
works. Here we only consider neural networks. Time-delay 
neural networks are able to capture the inter-frame correla-
tions at the cost of a significant increase of network size and 
computational requirements, when compared to their static 
counterparts. Recurrent neural networks are much more effi-
ciently, but suffer from stability problems, and their training 
is computationally more demanding compared to time-delay 
neural networks. 

In this work, we propose a locally recurrent global-
feedforward PNN-based classifier, combining the desirable 

features of both feedforward and recurrent neural networks. 
More specifically, we extend the traditional PNN architecture, 
proposed by Specht [1], to Locally Recurrent PNN (LRPNN), 
in order to capture the inter-frame correlations present in 
speech signals, without imposing extra computational burden 
for training.  

The local recurrent global-feedforward architecture was 
originally proposed by Back and Tsoi [2], who considered an 
extension of the Multilayer Perceptron (MLP) neural network 
to exploit contextual information. In the work of Back and 
Tsoi each recurrent neuron has only connections to his own 
current and delayed inputs and outputs. The work presented 
here is based on the local recurrent global-feedforward archi-
tecture and the locally recurrent layer we introduce is similar 
to the IIR synapse proposed in [2]. Our approach differs from 
the one proposed in [2] primarily because we consider PNNs 
instead of MLPs. Most importantly, though, in our architec-
ture each summation unit in the recurrent layer receives as 
input not only current and past values of its input and output, 
but it is also fully connected to the other neurons of the same 
layer. In other words, each neuron in the recurrent layer also 
receives as input the previous output of all other neurons in 
that layer. Overall, the input signal, acting on a recurrent neu-
ron located in the third hidden layer of a LRPNN, is a sum of 
two differences. The first difference is between the weighted 
probability of the given class and the sum of probabilities 
computed for all the other classes. The second difference is 
between the past output values of the given unit and the sum 
of the past output values of all other neurons in this layer.  

Finally, a comparative evaluation of LRPNN’s perform-
ance, with that of PNNs, was performed, on the task of text-
independent speaker verification. The experimental results are 
discussed in Section 4. 

2. The LRPNN architecture
The LRPNN is derived from the PNN by including a third 
hidden layer, which consists of summation neurons possessing 
feedbacks. The LRPNNs, as their predecessor -- the PNNs, 
implement the Parzen window estimator by using a mixture of 
Gaussian basis functions (see [1] for details). If a LRPNN for 
classification in K classes is considered, the probability den-
sity function ( )i pf x of each class iκ  is defined by (1), where 
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ijx  is the j-th training vector from class iκ , px  is the p-th 

input vector, d  is the dimension of the speech feature vectors, 
and iM  is the number of training patterns in class iκ . Each 

training vector ijx  is assumed to be a centre of a kernel func-

tion, and consequently the number of pattern units in the first 
hidden layer of the neural network is given by the sum of the 
pattern units for all the classes. The variance iσ  acts as a 
smoothing factor, which softens the surface defined by the 
multiple Gaussian functions. The value of iσ  is the same for 
all pattern units from a specific class, or, as it was originally 
proposed by Specht, it can be the same for all pattern units 
regardless of the classes they belong to. The architecture of 
the LRPNN for the case of two classes (K=2) and one-time-
step-deep recurrence (N=1), is shown in Fig. 1. The dashed 
line delineates the locally recurrent layer.  

The summation units output yi(xp) of the locally recurrent 
layer is computed by (2), where fi(xp) is the probability den-
sity function of each class ki, xp is the input vector, K is the 
number of classes, N is the recurrence deepness, z-t is a time
delay of t steps, and ai,i,t and bi,i are weight coefficients. Fur-
ther, the output yi(xp) of each summation unit is subject to a 
regularization transformation 
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probabilistic sense at the recurrent layer output. The designa-
tion sgm stands for a sigmoid activation function. As a whole, 
the recurrent layer can be considered as a form of Infinite 
Impulse Response filter, which smoothes the difference be-
tween the probabilities generated for each class, by using one 

or more past values of the summation outputs. 
Finally, the Bayesian decision rule (3) is applied to distin-

guish class  ki, to which the input vector  xp  belongs:  

( ) argmax{ ( )},  1, 2,...,p i i i p
i

D h c y i K= =x x    (3) 

where hi is a-priori probability of occurrence of the patterns of 
category ki, and ci is the cost function in case of misclassifica-
tion of a vector belonging to class ki. The averaged for all test 
vectors { }, 1, 2, ...,p p P= =X x  probability P( | )ik X , X to 

belong to class ki is computed by: 
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3. The LRPNN training
A three-step training procedure for the LRPNN is proposed. 
By analogy to the original PNN, the first training step creates 
the actual topology of the network. In the first hidden layer, a 
pattern unit for each training vector is created, by setting its 
weight vector equal to the corresponding training vector. The 
outputs of the pattern units associated with the class ki are 
then connected to one of the second hidden layer summation 
units. The number of summation units is equal to the number 
of classes K. We consider a modification of the PNN, where 
only the n-best results are summed together, with n usually 
ranging between 1 and 6.  

The second training step is to compute the smoothing pa-
rameter iσ  for each class, through Cain’s rule [3]. Therefore, 

iσ  is proportional to the mean value of the minimum dis-
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Figure 1: Architecture of the Locally Recurrent Probabilistic Neural Network 
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tances between the training vectors in class iκ : 

1
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i
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=
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where dij is the minimum Euclidean distance for each pattern 
unit from class ki, with the pattern units from the same class. 
Usually, the constant λ  is between 1.1 and 1.4. In case iσ  is 
common for all classes it is chosen empirically, or it is com-
puted by applying (5) on the entire training data.  

The third step is adjusting the weights of the locally recur-
rent layer by using the same training data, exploited at step 
one to construct the vectors utilized in the Radial Basis layer 
training. As a training method, we selected the Differential 
Evolution method (DE) introduced by Storn and Price [4]. 
Supervised training of the recurrent layer is equivalent to the 
minimization of the error function (6): 
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where the parameter ci is the relative cost of detection error 
for the corresponding class ki, ( | )iP Miss k  is the post prob-
ability of misclassification of the patterns belonging to class 
ki, and the P(ki) is the a-priori probability of occurrence  the 
patterns of class ki into the training data set. The values of 

( | )iP Miss k  are obtained in the following way: For a given 

weight vector w={a, b}, the values of  yi  are computed, ac-
cording to (2), and then (3) is applied. Finally, ( | )iP Miss k  is 

computed as ( | )=1 P( | )i iP Miss k k− X , where P( | )ik X  is 
obtained from (4) for the case of the training data set.  

The total error E(w)=E(a,b) is reduced by adjusting the 
weight vectors b and a by means of the DE algorithm. The DE 
method exploits a population of potential solutions, which 
have a fixed number of members over the whole training proc-
ess, to probe the function space. At each iteration, called gen-

eration g, three steps, named mutation, recombination, and 
selection are performed [5]. First, all weight vectors are ini-
tialized by using a random number generator. Then at the 

mutation step, new mutant weight vectors 1
i
gv +  are generated 

by combining weight vectors, randomly chosen from the 
population: 

1 2
1 ( ) ( )i i best i r r

g g g g g gv w w w w wμ μ+ = + − + −    (7) 

where 1r
gw and 2r

gw are two randomly selected vectors, differ-

ent from i
gw , best

gw is the best member of the current genera-

tion, and the positive mutation constant μ  controls the mag-
nification of the difference between two weight vectors. At the 
recombination step, each component j=1,2,…,L of these new 
weight vectors is subject to a further modification. A random 
number r ∈ [0, 1] is generated, and if r is smaller than prede-
fined crossover constant p, the j-th component of the mutant 

vector 1
i
gv + becomes j-th component of the trial vector. Oth-

erwise the j-th component is picked up from the target vector. 
Finally, at the selection step, the trial weight vectors obtained 
at the crossover step are accepted for the next generation only 
if they yield a reduction of the value of the error function, 
otherwise the previous weights are retained. 

4. Experiments and results 
Our text-independent speaker verification system WCL-1 [6], 
which participated in the 2002 NIST Speaker Recognition 
Evaluation [7], was used as a platform to compare the per-
formances of the LRPNN and the traditional PNN.  

In the experiments, the LRPNN in its simplest form, with 
only one-step-deep recurrence (N=1), was compared with the 
traditional PNN. In the speaker verification task we consider 
two classes (K=2), one for the enrolled user and one for the 
collective model of non-users. 

Fifty male speakers, extracted from the PolyCost v1.0 tele-
phone-speech speaker recognition corpus [8], were enrolled as 
authorized users. As a training data, ten utterances obtained 
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Figure 2: Speaker verification score distribution for the: a) PNN system, and b) LRPNN system. 
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from the first session of each speaker, containing both num-
bers and sentences, were used. In average, about 17 seconds 
of voiced speech per speaker were available for training each 
user model. Utterances from all male speakers available in the 
database were used to perform test trials. Each user model was 
tested by four utterances extracted from the second session of 
the corresponding enrolled user, and by 292 trials from impos-
tors. About 1.3 seconds of voiced speech per test utterance 
were available. The actual amount of voiced speech in the 
particular trials was in the range of 0.4 to 2.1 seconds. Impos-
tor trials from opposite sex speakers were not performed. 

Fig. 2 presents the normalized distribution of the scores for 
the enrolled users (dashed line) and the impostors (solid line). 
The considerable spread of the scores of both users’ and im-
postors’ for the PNN case, shown in Fig. 2 a), is obvious. In 
contrast, as Fig. 2 b) demonstrates, the LRPNN classifier pro-
duces a smaller deviation from the mean value for both the 
users and the impostors. In 86% of the cases, a zero probabil-
ity for the impostor trials was produced, which is a major 
improvement compared to the only 40% of the traditional 
PNN. Moreover, the LRPNN exhibited a significant concen-
tration of the enrolled users’ scores at the maximum probabil-
ity point (more than 50 % of all trials), in contradistinction to 
the PNN case where the user scores were spread out over a 
much wider area in the upper part of the scale. Therefore, not 
only major concentration of the score distributions, but also a 
clearer separation of the two classes, and a decrease of the 
overlapping area were detected.  

In Fig. 3, the Detection Error Trade-Off (DET) curves for 
the baseline PNN (dashed line) and the LRPNN (solid line) 
are shown. The ‘triangle’ and the ‘circle’ marks in the DET 
plot show the optimal performance point for the correspond-
ing system (as it is defined in [7]). At the optimal performance 
point, an improvement of the absolute speaker verification 
performance by more than 5 % for the LRPNN, when com-
pared to the PNN, is observed. This corresponds to relative 
reduction of the error rate by more than 30 %.  

From a practical point of view, the low false acceptance 

rate section of the DET plot, which corresponds to the high 
security zone, is more important. In authorised access applica-
tions false acceptance rates of around 0.1% or less are consid-
ered plausible. At that level of security the proposed LRPNN 
in its simplest form, with one level deep recurrence, has ex-
hibited a significant advantage over the PNN considered here. 
In fact the improvement was smaller than expected, due to 
some files containing saturated speech signal, for which the 
target users’ models in both the systems produced extremely 
low probabilities. 

5. Conclusion 
Introducing the Locally Recurrent PNN, we extended the 
traditional PNN architecture to exploit the inter-frame correla-
tion among the features extracted from successive speech 
frames. Beside the LRPNN architecture definition, a fast 
three-step training method was proposed. Comparative ex-
perimental results for text-independent speaker verification 
were presented. They demonstrated superiority of the new 
LRPNN architecture over the traditional PNN one. Reduction 
of the absolute error rate by more than 5 %, at the optimal 
decision point, due to better grouping of both classes of users’ 
and impostors’ scores were observed. This corresponds to 
relative decrease of the error rate by more than 30 %.  
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Figure 3: DET plots for the PNN and LRPNN systems. 
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