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A well-known and widely used model for classification and prediction is the Probabilistic Neural Network
(PNN). PNN’s performance is influenced by the kernels’ spread parameters so recently several approaches have
been proposed to tackle this problem. The proposed approach is a combination of two well known methods
applied to PNNs. First, it incorporates a Bayesian model for the estimation of PNN’s spread parameters and
then an evolutionary optimization algorithm is used for the proper weighting of PNN’s outputs. The Particle
Swarm Optimization (PSO) algorithm is used for a better estimation of PNN’s prior probabilities. The new
model is called Evolutionary Bayesian Probabilistic Neural Network (EBPNN). Furthermore, a different kernel
function, namely the Epanechnikov kernel, is used besides the typical Gaussian kernel. The above approach
is applied to two biomedical applications with encouraging results and is compared with Feed-Forward Neural
Networks.

1 Introduction

Recently a rapid development of classification models has taken place. One of the models used for supervised
classification purposes is the Probabilistic Neural Network (PNN) [1]. PNNs have been used to several bioin-
formatics and medical informatics applications [2, 3] as well as to other areas of science [4, 5] with promising
results.

PNNs are supervised classification and prediction models that classify an unknown input vector X into K
predefined classes. They are closely related to the well-known discriminant analysis [6] using kernel functions
for the estimation of the Probability Density Function (PDF) of each class [7]. The PDF of each class is weighted
by its prior probability. This model is introduced by Specht in a neural network framework. In our contribution,
a Bayesian model is incorporated for the estimation of the spread parameters of PNN’s kernels [8] and the
Particle Swarm Optimization (PSO) is used for the weighting of PNN’s kernels [9, 10, 11]. We named this model
Evolutionary Bayesian Probabilistic Neural Network (EBPNN).

The proposed model is applied to two biomedical data sets from UCI data repository [12]. The implemen-
tation has been made according to Proben1 specifications [13] and the obtained results are compared with the
corresponding results obtained by FNNs.

2 Background Material

For completeness purposes, let us briefly present some background material. PNN was introduced by Specht [1]
as a neural network implementation of kernel discriminant analysis which incorporates the Bayes decision rule
and the non–parametric density function estimation of a population according to Parzen [7]. The training proce-
dure of PNN is quite simple and requires only a single pass of the patterns of the training data, which has as a
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result a short training time. The training procedure is just the construction of PNN from the available data. The
structure of a PNN has always four layers; the input layer, the pattern layer, the summation layer, and the output
layer [1, 14]. An input feature vector, X ∈ Rp, is applied to the p input neurons and is passed to the pattern
layer. The pattern layer is fully interconnected with the input layer. The pattern layer is organized into K groups,
where K is the number of classes present in the data set. Each group of neurons in the pattern layer consists of
Nk neurons, where Nk is the number of training vectors that belong to class k, k = 1, . . . ,K. The ith neuron in
the kth group of the pattern layer computes its output using a kernel function. The kernel function is typically a
Gaussian kernel function of the form:

fik(X) = exp
(
−1

2
(X−Xik)>Σ−1

k (X−Xik)
)

, (1)

where Xik ∈ Rp is the center of the kernel and Σk is the matrix of spread (smoothing) parameters of the kernel.
Besides the Gaussian kernel, several other kernels can be used such as the Epanechnikov kernel of the form:

fik(X) = max
{

1− 1
2κ2

(X−Xik)>Σ−1
k (X−Xik) , 0

}
, (2)

where κ is a known parameter [15]. This results into a faster implementation, since there is no need to calculate
time-consuming exponential functional values.

Only K neurons comprise the summation layer and each one estimates the conditional probability of each
class given the unknown vector X:

Gk(X) ∝
Nk∑
i=1

πkfik(X), k ∈ {1, . . . ,K}, (3)

where πk is the prior probability of class k,
∑K

k=1 πk = 1. So a vector X is classified to the class that has the
maximum output of the summation neurons.

In order to obtain a faster version of the PNN, only a part of the training data set is used instead of the whole
training data set. We can obtain such a training set either by randomly sampling from the available data or by
finding some “representatives” of the training data through a clustering technique. We created a small training set
from each class by using the well-known and widely used K-medoids clustering algorithm [16], on the training
data of each class. The extracted medoids from each class are used as centers for the PNN’s kernels, instead of
using all the available training data. This results into a much smaller PNN architecture. The number of medoids
that were extracted from each class was only the 5% of the size of each class. Thus, the pattern layer’s size of the
proposed PNN is about twenty times smaller than the corresponding PNN which utilizes all the available training
data.

3 The Proposed Approach

One of the PNN’s drawbacks is the influence of its classification accuracy by the spread parameters of its kernels.
It is assumed that each class has its own matrix of spread parameters Σk = diag(σ2

1k, . . . , σ2
pk), k = 1, . . . ,K.

For the estimation of the spread parameters, a Bayesian model has been proposed [8]. We consider the following
two–parameter Bayesian model for each dimension of the data in each one of the K classes, since it is assumed
that the matrix of spread parameters is diagonal:

Xik
iid∼ Np(µk,Σk) i = 1, . . . , Nk,

µjk ∼ N (0, 1),
τjk ∼ G(α, β), j = 1, . . . , p,

where τjk = σ−2
jk and α, β > 0 are known parameters.

It is assumed that Xik are conditionally independent given µk, τjk and µk as well as τjk are themselves
independent. The joint posterior distribution of µjk and τjk is:

π(µjk, τjk|Xjk) ∝ τNk/2+α−1 exp

(
−τjk

(∑Nk

i=1 (Xijk − µjk)2

2
+ β

)
−

µ2
jk

)
,

2



ICNAAM – 2006 3

Table 1 Classification accuracy of the models

Dataset EBPNN Mean EBPNN St. Dev. FNN Mean FNN St. Dev.
Heart1 80.04 0.72 80.11 2.27
Heart2 82.83 0.27 82.12 1.57
Heart3 77.48 0.39 76.57 1.29
WBCD1 98.47 0.38 98.53 0.60
WBCD2 95.98 0.31 95.48 0.70
WBCD3 95.93 0.23 96.63 0.71

In order to estimate τjk, we use Gibbs sampler [17], with transition kernel the product of the full conditional
for µjk and τjk, which produces a Markov chain with stationary distribution the posterior of them. In this model,
conjugated prior distributions have been chosen so that the full conditional distributions are given in closed form.

In order to further improve the PNN’s performance, a new way of weighting the kernels’ outputs is proposed.
This weighting technique is achieved by an evolutionary optimization algorithm, namely Particle Swarm Op-
timization (PSO). PSO is a stochastic, population–based optimization algorithm [9, 18] and the concept of the
algorithm is to exploit a population of individuals to synchronously probe promising regions of the search space.
In this context, the population is called a swarm and the search points are called particles. Each particle moves
with an adaptable velocity within the search space, and retains in a memory the best position it ever encountered.
At every iteration, this best position is communicated to other particles of the swarm. Here we use the PSO with
constriction factor. For details we refer to [10, 11]. So, instead of estimating the prior probability of each class
directly from the training data, we let PSO to find promising values for the weighting of the PNN’s kernels with
respect to the classification accuracy. The obtained values minimize the misclassification proportion on the whole
training set.

4 Experimental Results

The proposed model has been applied to two biomedical problems from the UCI repository. The first data set is
the “Heart Disease” and its aim is to predict whether at least one of the four major vessels of the heart is reduced
in diameter by more than 50%. There are 35 inputs and 920 instances. In the second data set, namely “Wisconsin
Breast Cancer Database” (WBCD), the aim is to predict whether a tumour in the breast is benign or malignant.
There are 9 continuous inputs and 699 instances.

EBPNN is applied to each data set for 50 times. For the Heart data set a Gaussian kernel function obtained
better results while in the WBCD an Epanechnikov kernel function achieved a better performance. In Table 1 the
mean classification accuracy and its standard deviation are presented for the proposed EBPNN together with the
results of Proben1’s FNN [13] for the two considered problems. The mean performance of the EBPNN in the
Heart data set is slightly superior than the performance of the FNN (80.12 to 79.6). For the WBCD, EBPNN as
well as FNN achieved an equivalent mean performance (96.79 to 96.88). It should be noted here that the standard
deviation of the classification accuracy is much lower on the EBPNN compared with the FNN’s. This seems that
the EBPNN is a robust model with adequate performance.

5 Conclusion

In this contribution a new model is proposed for supervised classification tasks. The Evolutionary Bayesian
Probabilistic Neural Network incorporates a two–parameter Bayesian model for the estimation of the PNN’s
spread parameters. Moreover, the Particle Swarm Optimization algorithm is employed for the weighting of
PNNs’ kernels. In other words, PSO estimates the prior probability of each class. Furthermore, an Epanechnikov
kernel function is used in the EBPNN for faster performance. The proposed model has been applied to two
biomedical applications with promising results. EBPNN achieved an equivalent performance compared with the
FNN, but it seems that EBPNN is faster and more robust.
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