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Abstract—Algorithmic music synthesis with intelligent method-
ologies is a subject of research under both unsupervised and
supervised forms, with the production of rhythm being an
important aspect of the compositional process. Unsupervised
algorithms tend to produce rhythms that are described either as
simplistic and repetitive, or very complex and unstable. This work
examines a modification of the legacy L-systems that are hereby
termed as Finite L-systems (FL-systems). With this modification,
the produced symbolic sequences are more controllable, offering
a rhythm production alternative that is more flexible than the
L-systems. In particular, when used for unsupervised rhythm
production, FL-systems construct rhythmic sequences with great
variability in terms of complexity and repetitiveness. This trend
indicates that their combination with learning algorithms may
provide a flexible supervised rhythm production system.

I. INTRODUCTION

Algorithms that simulate natural phenomena have been
extensively used to compose music [1], [2]. These algo-
rithms present rich geometric and dynamical properties, which
produce music that abounds in structural diversity, exposing
their endogenous complexity. Nevertheless, when this diversity
exceeds a threshold, it is arguably considered undesirable,
imposing a complex and rather displeasing musical output.
Several works have introduced interesting methodologies that
translate the raw output of unsupervised intelligent algorithms
to musical entities, but to the best of our knowledge, the
complexity of the music output per se has never been a field
of thorough study.

This work examines complexity aspects of rhythmic se-
quences produced by a modified version of the L-systems
that we call Finite L-systems (FL-systems). It is well-known
that L-systems incorporate an alphabet and some rewriting
rules that are applied recursively on an axiom and on the
resulting strings, creating a symbolic sequence that exhibits
rich structural properties. The L-systems have been used to
generate music and musical scores. In [3], the curves produced
by L-systems were translated into music score, while an
interpretation of L-systems directly to music entities and vice
versa has been presented in [4]. Several other works focused
on various representational approaches from L-systems to
music. A thorough review of them can be found in [5]. Some
works have also explored the potential to evolve musical L-
systems [6], [7].

The FL-systems produce words of fixed length, in contrast
to the L-systems that theoretically create a word of infinite
length. By utilizing a recursive scheme, a set of initial ax-
ioms is evolved, generating orbits of string sequences that
are directly interpreted to rhythmic patterns. The produced
rhythmic sequences are demonstrated to cover a wider range of
complexity compared to the ones created by L-systems. Thus,
the FL-systems are found to be a promising technique for the
generation of rhythmic sequences with controllable complexity
for an unsupervised music composition scheme. Furthermore,
they could also be combined with intelligent learning algo-
rithms to form a flexible supervised music composition system.

The paper at hand is organized as follows: In Section II
we provide a brief description of the Deterministic Context–
free L-systems, by which our methodology was motivated.
Section III presents the interpretation of symbolic sequences
to rhythmic patterns and further introduces the FL-systems
concept. In Section IV, the realized experimental setup is thor-
oughly described and an overview of the results is presented.
Finally, Section V concludes the work.

II. DETERMINISTIC CONTEXT–FREE L-SYSTEMS

The L-systems are parallel generative grammars [8] with
some variations that allow the production of interesting pat-
terns that resemble plant–like forms and fractals. The L-
systems belonging to the simplest form are called Determin-
istic Context–free and have been given the acronym DOL-
systems. In these systems, a set of symbols called alphabet
is defined, denoted by V . Each symbol is associated with a
rewriting rule, with the set of rules being denoted as P . The
rules P are then applied to a nonempty word in the above
mentioned alphabet, ω ∈ V +, creating a new word. Thus, a
DOL-system can be described as a triplet G =< V, ω, P >.
This procedure is applied recursively, until the length of the
resulting word meets the specifications of the problem at hand
(i.e. when the desired length of the music piece is met). An
example of an L-system with the above form is demonstrated
in Table I.

Several other L-systems variations that produce interesting
graphical shapes have been studied in the context of music
composition [5]. Moreover, various methods have been used
for the transition from symbols to music, providing several



TABLE I
EXAMPLE SIMULATION OF A DOL-SYSTEM FOR 3 ITERATIONS.

V : {A,B}
ω : AB
P : A → AB

B → A
0) AB
1) ABA
2) ABAAB
3) ABAABABA

rhythmic interpretations. The rich structure that emerges from
L-systems provides interesting tonal variability but unstable
rhythm. For example, the L-system examined in [9] was
reported to produce notes that “do not fit well into 4/4 score
notation, because many of the notes are offbeat”. To overcome
this problem, some works have examined the utilization a
constrained set of rhythmic values [10], but the resulting
rhythm was repetitive and uninteresting.

III. THE PROPOSED METHODOLOGY

The proposed methodology is based on the DOL-systems
rewriting rules and focuses on their rhythm production po-
tential. Firstly, we describe the interpretation of symbols to
rhythmic entities and then we introduce the Finite L-systems
(FL-systems).

A. Modeling rhythmic sequences

In the following text, we will employ two denotations of
rhythmic sequences. The first one is the binary form (or quasi–
binary form, if we consider intensity, polyphony or pauses).
The second is the interval vector form [11]. In the binary
form, a series of digits represents the events that occur during
equally spaced time intervals. For example, we may consider
the division of a 4/4 measure of a music piece in sixteenths,
representing this measure with 16 digits. Digit 1 represents an
onset event and digit 0 represents a “no action” event. More
musical information can be included within the quasi–binary
representation, where more digits than 0 and 1 are used. For
example, we may represent a pause with -1, or an onset with
3 notes using digit 3.

The interval vector form of a rhythmic sequence describes
the cumulative duration of groups of onset or pause events. The
arithmetic value of an instance in the interval vector represen-
tation describes the number of consecutive time subdivisions
that correspond to a single musical event. If we consider the
division of a 4/4 measure in sixteenths, the sum of all the
arithmetic values that describe this measure is 16. An example
of a quasi–binary string and its interval vector representation
is demonstrated in Table II.

The DOL-systems (and consequently the FL-systems intro-
duced here) produce a series of symbols, or a word in an
alphabet. Suppose that we have an alphabet with n letters,
V = {x1, x2, . . . , xn} and a nonempty word in this alphabet
λ ∈ V +. We denote a series of k consecutive instances of a
letter xi as xk

i and rewrite the word λ using this denotation,
e.g. if λ = AAABBA, then we have λ = A3B2A1. We call

this word representation cumulative representation. With the
cumulative representation we proceed to the rhythmic interval
vector representation by simply concatenating the exponents,
i.e. the word {xk1

i1
, xk2

i2
, . . . , xkm

im
} is the rhythm k1k2 . . . km.

Table II also shows the transformation of a string into rhythm,
with each symbol of the string describing different events.

TABLE II
EXAMPLE TRANSFORMATION OF A STRING SEQUENCE TO ITS INTERVAL

VECTOR AND QUASI–BINARY REPRESENTATION.

V : {A,B, P}
A,B : onset event

P : pause
ω : AAAABBAAPPBBBBPP

cumulative: A4B2A2P 2B4P 2

interval vector: 422242
quasi–binary: 10001010(-1)01000(-1)0

B. Finite L-systems

We define an FL-system as a triplet G =< V,Ω, P >,
where V is an alphabet, Ω is a set of continuously updating
axioms ωi, i ∈ {1, 2, . . . , n}, which are nonempty words of
V +, and P is a set of rules. In the FL-systems there is no
fixed axiom, but instead, the axioms are being updated when
some conditions that we discuss later are met. The number
of updates (n), depends on the length of the piece. The L-
systems theoretically produce a word of infinite symbols, a
part of which is translated into music. The FL-systems on the
other hand, produce sequences of words with fixed length. The
length of the words produced depends on the time analysis of
the applied measure. For example, if we consider measure
analysis in sixteenths, then the initial axiom ωi and the words
produced by the FL-system will constitute of 16 symbols. The
length of the word required to fill a measure is denoted by α.
Each word produced by an FL-system represents the rhythm
in a measure.

Consider an FL-system G =< V,Ω, P >. We begin with
the axiom ω1 ∈ Ω and apply to it the set of rules P , denoting
the resulting word with λ1(ω1). Depending on the above set
of rules, the length of the word |λ1(ω1)| may vary. If this
length is different than the length α needed for the desired
time analysis, we perform the following two actions in the
respective cases:

1) if this length is smaller than α, i.e. |λ1(ω1)| < α, then
we substitute λ1(ω1) with concatenation of λ1(ω1) with
itself (λ1(ω1) = [λ1(ω1)λ1(ω1)]) until |λ1(ω1)| ≥ α
and then apply the next step, or

2) if |λ1(ω1)| > α, then we substitute λ1(ω1) with the
string that includes its first α symbols.

We call the above tasks the trimming procedure, because it
trims each word to the required size. Clearly, the first case
may happen only if P contains a sufficient number of empty
rules, i.e. rules that substitute a symbol with an empty word.
We then obtain the next word of the sequence, λn+1(ω1) by
applying the rules P on λn(ω1) and then trimming λn+1(ω1).

By following this procedure, we find a pair of integers ρ and
τ , so that for each index i > ρ we have λi(ω1) = λi+τ (ω1).



By recursively applying the rules P on each λ i(ω1) for i >
ρ, we obtain a sequence of repeating words with period τ .
We call the first occurrence of repeating words the orbit of
axiom ω1 within the rules P . This orbit of τ words creates
the rhythmic sequence obtained by the axiom ω 1. We continue
by updating axiom ω1 and obtaining the orbits and rhythms
of the axiom ω2, ω3, . . . , ωm, until the necessary number of
measures is covered.

TABLE III
EXAMPLE SIMULATION OF THE FIRST AXIOM ω1 OF A FL-SYSTEM.

V : {A,B}
A,B : onset event

P : A → BAA
B → AAB

ω1 : AAAABBBABAAABBAA
iterations: λ1(ω1): AAAABBBABAAABBAA

λ2(ω1): BAABAABAABAAAABA
ρ = 3 λ3(ω1): AABBAABAAAABBAAB

λ4(ω1): BAABAAAABAABBAAB
τ = 2 λ5(ω1): AABBAABAAAABBAAB

λ6(ω1): BAABAAAABAABBAAB
orbit: AABBAABAAAABBAAB

BAABAAAABAABBAAB
rhythm: 1010101100010101

0101100011010101

Table III shows the procedure described above to create
a rhythm from the first axiom ω1 of an FL-system. In this
case, both words that constitute the orbit which provides
the rhythmic binary (or quasi–binary) string, are considered
adjusted, i.e. the beginning B symbol of the second word is the
extension of the concluding B symbol of the first word. More
implementation issues may emerge by different interpretations
of symbols and rhythmic entities. For example, the orbit string
may be considered cyclic, i.e. the first symbol of the first word
may be considered as the extension of the last symbol of the
last word.

IV. RESULTS

The presented results aim to provide insights about the
amount of information complexity of rhythms created by L
and FL-systems. To this end, we have used random L and FL-
systems with different properties to create and examine several
rhythms. Specifically, we have used two time analyses, with 16
and 32 beats per measure (with 16 and 32 symbols describing
each measure respectively). For each time analysis, we have
created L and FL-systems with alphabets of different sizes,
with 3, 6 and 9 symbols. Thus, we have 6 different setups,
s3, s6, s9, t3, t6 and t9, where the letter denotes the time
analysis (s for 16 and t for 32) and the number refers to the
number of symbols in the alphabet.

For each of the above six setups we have created 100
different random sets of rules with the available alphabets,
under the constraint that the maximum length of each rule
should not exceed 5 symbols. Each set of rules was used
for the creation of L and FL-systems with random axioms
and random axiom updates in the case of the FL-systems.
These systems are used to compose a rhythmic sequence

of 50 measures, using the symbol–to–rhythm interpretation
described in Section III. Summarizing, we have a total of 1200
rhythmic sequences by 1200 “paired” L and FL-systems with
600 sets of rules.

Two features have been used to examine the information
complexity of the aforementioned 1200 rhythmic sequences,
the Shannon Information Entropy (SIE) [12] and the Com-
pression Rate (CR) using the Ziv–Lembel compression algo-
rithm [13]. The SIE of a rhythmic sequence corresponds to
the SIE of the rhythm Probability Density Function (rPDF).
This is computed from the binary representation form as the
probability that a certain beat has an onset event. An example
rhythmic sequence and its respective rPDF is shown in Ta-
ble IV. CR represents the ratio of the size of the compressed
rhythmic sequence with the Ziv–Lembel algorithm to the size
of the uncompressed sequence.

TABLE IV
COMPUTATION OF THE RPDF OF A RHYTHMIC SEQUENCE WITH ANALYSIS

TO FOURTHS.

1 0 1 1
1 0 1 0
1 1 1 1
1 0 1 0

rPDF 0.36 0.09 0.36 0.18

Table V demonstrates the mean values and the standard
deviations among the 100 pieces of all considered setups.
SIE is computed on the rPDF over all 50 measures of
each rhythmic sequence and CR is applied on the binary
representation of each rhythm. A greater value for SIE, pro-
vided a specific time analysis value, indicates an rPDF closer
to the uniform distribution. Greater CR values indicate the
lack of repeating rhythmic patterns, since the Ziv–Lembel
compression algorithm is based on locating repetitions of a
substring within the string under compression. A combination
of great SIE and CR values of a rhythmic sequence indicate
that this sequence is more random and complex.

Among two sets of rhythmic sequences, the one which com-
bines larger SIE and CR mean values is indicated to contain
more complex rhythmic sequences. The set that presents larger
standard deviations includes a greater variety of rhythms, from
more complex to more simple. In the results presented in
Table V, the mean values of the sets that include rhythmic
sequences constructed by the FL-systems have smaller mean
values than the ones created by L-systems. The standard
deviations of SIE and CR among these rhythm sets is larger
for the FL-systems’ rhythms.

Figure 1 shows the box plots produced by the rhythms
created with the L and FL-systems in the s6 set. The box
plots for the rest of the rhythm sets are similar to the presented
one. This Figure illustrates the ability of the FL-systems to
construct a richer variety of rhythmic sequences, from more
complex to more simple. The SIE variability of the rhythms
created by FL-systems indicates that they are able to create
rhythms that follow certain motifs (smaller SIE value), which
are projected on a less uniform rPDF. The L-systems on the



TABLE V
MEAN VALUE AND STANDARD DEVIATION (IN PARENTHESES) OF

INFORMATION ENTROPY AND COMPLEXITY AMONG 100 RHYTHMS

PRODUCED BY SIX SETUPS BY L AND FL-SYSTEMS. LOWER MEAN
VALUES AND HIGHER STANDARD DEVIATIONS ARE SHOWN AS BOLD

NUMBERS.

SIE CR
L FL L FL

s3 2.747(0.097) 2.444(0.341) 0.276(0.023) 0.225(0.041)
s6 2.768(0.003) 2.596(0.189) 0.276(0.017) 0.246(0.044)
s9 2.770(0.002) 2.665(0.119) 0.273(0.017) 0.256(0.037)
t3 3.425(0.119) 3.083(0.507) 0.188(0.021) 0.136(0.031)
t6 3.460(0.006) 3.262(0.161) 0.195(0.009) 0.163(0.032)
t9 3.463(0.001) 3.375(0.086) 0.191(0.009) 0.162(0.032)

other hand, seem unable to create rhythms that are above
or below a certain SIE value, creating almost exclusively
rhythms with rPDFs approaching the uniform distribution 1.

In the context of unsupervised music composition, where
the system is free to compose music with no constraints, the
imposed complexity of rhythms created by the L-systems may
controversially be considered a desirable effect. Nevertheless,
in the case of a combined, intelligent-learning supervised
music composition scheme, the FL-systems seem to have an
advantage over L-systems. This remark is amplified by the
fact that the FL-systems are able to create motif–like rhythmic
patterns, while L-systems are more prone to creating rhythms
that follow no certain motif.
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Fig. 1. Box plots of the SIE and CR values for the rhythms in s6 set.

The results that we presented and their analysis is dependent
on the string–to–rhythm interpretation described in Section III.
One may argue that the interpretation is in the heart of the
examined problem and that these results are case–dependent.
Unfortunately, previous works that examine the generation of
music by L-systems do not provide results on complexity
features of the rhythmic sequences constructed with their
interpretations. Nevertheless, the results presented in this work
can at least be considered indicative about the ability of the
FL-systems to construct more “controllable” sequences than
the L-systems.

V. CONCLUSIONS

This work presents the Finite L-systems (FL-systems), a
modification of the well-known L-systems, for the construction
of rhythmic sequences. The FL-systems are described with

1The SIE of the rhythms produced by the L-systems in the s6 set has a
mean value of 2.768 while the uniform distribution among 16 elements has
a SIE value of 2.772.

an alphabet, a set of rewriting rules and a set of axioms
with fixed length in accordance to the time resolution of
the music measure. The axioms are “triggered” by the rules,
creating new string with the same length as the axioms.
The rules are applied to the new strings recursively, until
an orbit, i.e. a sequence of repeating strings, emerges. Each
axiom is represented by an orbit, which is translated into
rhythm. An interpretation of strings to rhythmic patterns is
discussed which is utilized to compare the characteristics
of rhythms created by L and FL-systems. Specifically, we
examine the information entropy and complexity of several
rhythmic patterns of different setups of L and FL-systems, with
different alphabet lengths and different sets of common rules
in pairs of L and FL-systems. The obtained results show that
the FL-systems generally produce rhythms with a wider range
of complexity in compare to the rhythms created by the L-
systems. This indicates that the FL-systems are not “dedicated”
to creating rhythms with great complexity, unlike L-systems.

The fact that the FL-systems are more flexible than the L-
systems, make them a promising technique to be combined
with intelligent learning algorithms and consequently lead to
a supervised rhythm production scheme. The controllability
that they offer should be further explored by examining their
ability to produce target rhythms or rhythms with certain
characteristics. In fact, some initial results that combine the
FL-systems with genetic algorithms show that their flexibility
can be used for the generation of rhythmic sequences with
predefined characteristics.
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