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Abstract: Substitution boxes (S-boxes) are of major importance in cryptography as they
are used to provide the property of confusion to the corresponding cryptosystem. Thus, a
great amount of research is devoted to their study. In this contribution, a new methodology
for designing strong S-boxes is studied and two Evolutionary Computation methods, the
Particle Swarm Optimization and the Differential Evolution algorithm are employed to
tackle the problem at hand.
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1 Introduction

Substitution boxes (S-boxes) are basic components of many contemporary cryptosystems. They
are nonlinear mappings in the sense of Boolean structure that take as input a number of bits and
transform them into some number of output bits. S-boxes are of major importance in cryptography
as they are used to provide the property of confusion to the corresponding cryptosystems and, in
some cases, they comprise their only nonlinear part. As the security of the cryptosystems utilizing
S-boxes mainly depends on their choice, a great amount of research is devoted into the design
of good S-boxes. The effectiveness of evolutionary heuristics, such as hill climbing [7], Genetic
Algorithms [8] and Simulated Annealing [1], on the design of strong regular S-boxes was recently
studied with promising results.

Evolutionary Computation (EC) methods are inspired from evolutionary mechanisms such as
natural selection and social and adaptive behavior. Genetic Algorithms, Genetic Programming,
Evolution Strategies, Differential Evolution, Particle Swarm Optimization and Ant Colony Opti-
mization are the most commonly used paradigms of EC. An advantage of all EC methods is that
they do not require objective functions with good mathematical properties, such as continuity
or differentiability. Therefore, they are applicable to hard real-world optimization problems that
involve discontinuous objective functions and/or disjoint search spaces [2, 3, 12]. Furthermore,
EC methods have tackled effectively and efficiently a number of hard and complex problems in
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numerous scientific fields [4, 6, 9, 10]. Thus, in this contribution, a new methodology for the de-
sign of strong regular S-boxes is presented, and two Evolutionary Computation methods, namely
the Particle Swarm Optimization method (PSO) and the Differential Evolution method (DE), are
employed to address the problem at hand.

The first results using the traditional quality measures for S-boxes indicate that the proposed
methodology is effective. Moreover, we will extend the study of the proposed methodology to
spectrum based cost functions.

2 Theoretical Background and Problem Formulation

Before presenting the problem formulation, let us provide the necessary theoretical notions of S-
boxes. Let f : Bn 7→ Bm denote an S-box mapping n Boolean input values to m Boolean output
values. In the case where m = 1, f is a single output Boolean function, and if the number of inputs
mapping to 0 is equal to the number of inputs mapping to 1, the Boolean function is called balanced.
Balance is an important property for Boolean functions used in cryptographic applications as it
ensures that the function cannot be approximated by any constant function. Generalizing the
notion of balance for the multiple output functions, if each possible output value of m binary
components appears equally as output of the function, i.e., 2n−m times, then the function is called
regular. In case of S-boxes with n = m, the S-boxes are called bijective and all possible outputs
appear exactly one time each. For simplicity reasons, in the rest of this contribution we will refer
to single output Boolean functions just as Boolean functions and to the multiple output case as
S-boxes.

For the design of cryptographically strong Boolean functions and S-boxes two traditional quality
measures exist, the nonlinearity and the autocorrelation. In order to define these two measures, the
definitions of linear and affine Boolean functions, the Walsh Hadamard Transform, the polarity
truth table and the Parseval’s theorem are needed. A linear Boolean function selected by ω ∈ Bn

is denoted by Lω(x) = ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ wnxn, where wixi, for i = 1, . . . , n, denotes bitwise
AND of the ith bits of ω and x and ⊕ denotes bitwise XOR. The set of affine Boolean functions
consists of the set of linear Boolean functions and their complements, i.e., all functions of the form
Aω,c = Lω(x)⊕ c, where c ∈ B.

For a Boolean function f a useful representation is the polarity truth table which is given by
f̂(x) = (−1)f(x). The Walsh Hadamard Transform (WHT) of a Boolean function f is defined as
F̂f (ω) =

∑
x∈Bn f̂(x)L̂ω(x). The WHT is a measure for the correlation among the Boolean function

f and the set of linear Boolean functions. In general two Boolean functions f, h are considered
to be uncorrelated when

∑
x f̂(x)ĥ(x) = 0. The maximum absolute value taken by the WHT is

denoted as WHmax(f) = maxω∈Bn

∣∣F̂f (ω)
∣∣ and is related to the nonlinearity of f . Specifically, the

nonlinearity Nf of a Boolean function f is defined as Nf = 1
2 (2n −WHmax(f)). Regarding the

WHT, as proved by the Parseval’s theorem it holds that
∑

ω∈Bn(F̂f (ω))2 = 22n

, which results in
WHmax(f) > 2n/2. The set of functions with nonlinearity equal to this lower bound are called bent
functions but they are never balanced. The set of balanced functions with maximum nonlinearity
and the determination of bounds for balanced functions are important open problems [7].

The autocorrelation of a Boolean function is a measure of its self-similarity and is defined
by r̂f (s) =

∑
x∈Bn f̂(x)f̂(x ⊕ s), where s ∈ Bn. The maximum absolute value taken by the

autocorrelation is denoted as ACmax(f) = maxs∈Bn\{0n}
∣∣ ∑

x∈Bn f̂(x)f̂(x⊕ s)
∣∣.

The nonlinearity and autocorrelation measures for Boolean functions can be extended to S-boxes
by defining a set of functions fβ , that are linear combinations of the outputs of the corresponding
S-box. Specifically, for an S-box f : Bn 7→ Bm, a function fβ(x), for each β ∈ Bm, that is linear
combination of the m outputs of f , is defined, as fβ(x) = β1f1(x) ⊕ · · · ⊕ βmfm(x), where fj(x),
for j = 1, . . . ,m denotes the jth bit of the S-box’s output. There are 2m − 1 non trivial functions
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fβ , and for each such function the WHT value, denoted as F̂β(ω), and the autocorrelation value,
denoted as r̂β(s) are obtained directly by the former definitions. Thus, the nonlinearity of an S-box
is the lowest nonlinearity over all 2m − 1 corresponding fβ(x) functions, and the autocorrelation
of the S-box is the highest autocorrelation over the same fβ(x) functions.

Research on the design of Boolean functions and S-boxes addressing the problem as an op-
timization task, aims at obtaining functions with high nonlinearity or/and low autocorrelation.
Regarding the nonlinearity of an S-box, the corresponding optimization problem is minimizing
subject to f the function

max
β∈Bm,ω∈Bn

∣∣F̂β(ω)
∣∣, (1)

and, for the autocorrelation the problem is formulated as minimizing subject to f the following
function

max
β∈Bm\{0m},s∈Bn\{0n}

∣∣r̂β(s)
∣∣. (2)

3 The Proposed Methodology and Discussion

To address the problem of designing regular S-boxes as an optimization task, we employ two
Evolutionary Computation methods, the Particle Swarm Optimization method (PSO) and the
Differential Evolution (DE) method. As all Evolutionary Computation optimization methods,
both PSO and DE methods utilize a population of possible solutions (of the problem at hand),
which is randomly initialized within the search space. Sequentially, an objective function is used
to evaluate each population member, and evolutionary operators are employed to evolve the pop-
ulation members in order to produce offsprings with better values of the objective function. This
procedure is repeated until the population converges into one solution or until a predefined value
of the objective function is obtained.

For the present case problem, a population of regular S-boxes is randomly initialized by ran-
domly swapping the components of an array containing 2n−m copies of each of the 2m possible
outputs [8]. For the representation of each possible solution various techniques can be used. One
of them is the usage of the truth table of the corresponding S-box output in decimal form. In this
way the optimization problem is transformed into a discrete optimization task. Both, the Particle
Swarm Optimization method and the Differential Evolution method, have proved to be efficient in
handling discrete optimization tasks [4, 5, 6] through the technique of rounding off the real values
of the solution to the nearest integer [11].

For the evaluation of the proposed solutions the traditional measures of nonlinearity and au-
tocorrelation, given by Eqs. (1) and (2), are initially used. Furthermore, the effectiveness of the
presented methodology using the new spectrum based cost functions proposed in [1] is studied.

An important point in the proposed methodology is the evolving of different S-boxes to pro-
duce offsprings. These offsprings can either be regular S-boxes or not. In previously published
research [1, 7, 8], in order to obtain regular S-boxes as solutions, an initialization with random
regular candidate solutions takes place and then the optimization method utilized, is responsible
for maintaining the regularity of the produced offsprings. In this contribution, a new technique
for the construction of regular S-boxes is proposed. Specifically, we allow the exploration by the
employed method of all the search space, i.e., search among feasible (regular) and unfeasible (non
regular) solutions, but for the evaluation of a possible solution, the proposed candidate is trans-
formed to the closest (by means of Hamming distance) regular one, for every wrong component.
Thus, the method is allowed to perform better exploration of the search space and moreover its
dynamic is retained.
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The first results of the proposed approach, using the traditional measures of nonlinearity and
autocorrelation for regular bijective S-boxes, are comparable to the corresponding of other more
complex heuristic methods using the same objective functions. Furthermore, the new methodology
required less computational cost to obtain the same results in almost all cases. Thus, the proposed
methodology can be considered effective in tackling the problem of designing strong S-boxes. Of
course, more experiments utilizing also the new spectrum based cost functions are required to
conclude on the efficiency of the new approach and will be presented.
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