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Abstract

Among the most important components of many contem-
porary ciphers are the substitution boxes (S-boxes) and a
great amount of research is devoted to their study. In this
contribution, a new methodology for designing strong S-
boxes is proposed and two Evolutionary Computation meth-
ods, the Particle Swarm Optimization and the Differential
Evolution algorithm are employed to tackle the problem at
hand. The obtained results are promising and indicate that
this novel approach is effective.

1 Introduction

Substitution boxes (S-boxes) are basic components of
symmetric key cryptosystems. Essentially, they are non-
linear mappings that take as input a number of bits and
transform them into some number of output bits. S-boxes
are of major importance in cryptography as they are used
to provide the property of confusion to the corresponding
cryptosystems and, in some cases, they comprise their only
nonlinear part. As the security of the cryptosystems utiliz-
ing S-boxes mainly depends on their choice, a great amount
of research is devoted into the design of good S-boxes. Re-
cently, the performance of evolutionary heuristics, such as
hill climbing [8], Genetic Algorithms [9] and Simulated
Annealing [2], on the design of strong regular S-boxes was
studied with very promising results.

Evolutionary Computation (EC) methods are inspired
from evolutionary mechanisms such as natural selection
and social and adaptive behavior. Most commonly used
paradigms of EC methods are Genetic Algorithms, Ge-
netic Programming, Evolution Strategies, Differential Evo-
lution, Particle Swarm Optimization and Ant Colony Opti-
mization. A common characteristic of all these algorithms

is that they do not require objective functions with good
mathematical properties, such as continuity or differentia-
bility. Therefore, they are applicable to hard real-world
optimization problems that involve discontinuous objective
functions and/or disjoint search spaces [4]. Furthermore,
EC methods have tackled effectively and efficiently a num-
ber of hard and complex problems in numerous scientific
fields [5, 7, 10, 11].

In this contribution, a new methodology for the design of
strong regular bijective S-boxes is proposed, and two Evo-
lutionary Computation methods, namely the Particle Swarm
Optimization method (PSO) and the Differential Evolution
method (DE), are employed to address the problem at hand.
The results indicate that the proposed methodology is effec-
tive and directions for future work are derived.

2 Theory and Problem Formulation

In this section a review of the theoretical background re-
quired for the design of S-boxes is provided and the problem
formulation as an optimization task is described.

Theoretical Background: Let f : Bn 	→ Bm be an S-box
mapping n Boolean input values to m Boolean output val-
ues. In the case where m = 1, f is a single output Boolean
function, and if the number of inputs mapping to 0 is equal
to the number of inputs mapping to 1, the Boolean function
is called balanced. Balance is a property of major impor-
tance for Boolean functions used in cryptographic applica-
tions as it ensures that the function cannot be approximated
by any constant function. Generalizing the notion of bal-
ance for the multiple output functions, if each possible out-
put value of m binary components appears equally as output
of the function, i.e., 2n−m times, then the function is called
regular. In case of S-boxes with n = m, the S-boxes are
called bijective and all possible outputs appear exactly one
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time each. For simplicity reasons, in the rest of the paper we
will refer to single output Boolean functions just as Boolean
functions and to the multiple output case as S-boxes.

For the design of cryptographically strong Boolean func-
tions and S-boxes two traditional quality measures exist,
the nonlinearity and the autocorrelation. In order to de-
fine these two measures, the definitions of linear and affine
Boolean functions, the Walsh Hadamard Transform, the po-
larity truth table and the Parseval’s theorem are needed. A
linear Boolean function selected by ω ∈ Bn is denoted by
Lω(x) = ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ wnxn, where wixi, for
i = 1, . . . , n, denotes bitwise AND of the ith bits of ω and
x and ⊕ denotes bitwise XOR. The set of affine Boolean
functions consists of the set of linear Boolean functions and
their complements.

For a Boolean function f a useful representation is the
polarity truth table which is given by f̂(x) = (−1)f(x).
The Walsh Hadamard Transform (WHT) of a Boolean func-
tion f is defined as F̂f (ω) =

∑
x∈Bn f̂(x)L̂ω(x). The

WHT is a measure for the correlation among the Boolean
function f and the set of linear Boolean functions. In gen-
eral two Boolean functions f, h are considered to be un-
correlated when

∑
x f̂(x)ĥ(x) = 0. The maximum abso-

lute value taken by the WHT is denoted as WHmax(f) =
maxω∈Bn

∣∣F̂f (ω)
∣∣ and is related to the nonlinearity of f .

Specifically, the nonlinearity Nf of a Boolean function f
is defined as Nf = (2n −WHmax(f))/2. Regarding the
WHT, as proved by the Parseval’s theorem it holds that∑

ω∈Bn(F̂f (ω))2 = 22
n

, which results in WHmax(f) �
2n/2. The set of functions with nonlinearity equal to this
lower bound are called bent functions but they are never
balanced. The set of balanced functions with maximum
nonlinearity and the determination of bounds for balanced
functions are important open problems [8].

The autocorrelation of a Boolean function is a mea-
sure of its self-similarity and is defined by r̂f (s) =∑

x∈Bn f̂(x)f̂(x ⊕ s), where s ∈ Bn. The maximum
absolute value taken by the autocorrelation is denoted as
ACmax(f) = maxs∈Bn\{0n}

∣∣∑
x∈Bn f̂(x)f̂(x⊕ s)

∣∣.
The nonlinearity and autocorrelation measures for

Boolean functions can be extended to S-boxes by defining
a set of functions fβ , that are linear combinations of the
outputs of the corresponding S-box. Specifically, for an S-
box f : Bn 	→ Bm, a function fβ(x), for each β ∈ Bm,
that is linear combination of the m outputs of f , is defined,
as fβ(x) = β1f1(x) ⊕ · · · ⊕ βmfm(x), where fj(x), for
j = 1, . . . , m denotes the jth bit of the S-box’s output.
There are 2m−1 non trivial functions fβ , and for each such
function the WHT value, denoted as F̂β(ω), and the auto-
correlation value, denoted as r̂β(s), are obtained directly by
the former definitions. Thus, the nonlinearity of an S-box is
the lowest nonlinearity over all 2m−1 corresponding fβ(x)
functions, and the autocorrelation of the S-box is the highest

autocorrelation over the same fβ(x) functions.

Objective Functions: Research on the design of Boolean
functions and S-boxes addressing the problem as an opti-
mization task, aims at obtaining functions with high non-
linearity or/and low autocorrelation. The problem of find-
ing the Boolean function f∗ with the highest nonlinearity,
can be formulated as a maximization one, i.e., maximize
subject to f the function Nf = (2n − WHmax(f))/2,
or, equivalently, as a minimization task through the max-
imum absolute value of WHT, i.e., minimize subject to f
the function WHmax(f) = maxω∈Bn

∣∣F̂f (ω)
∣∣. For the

Boolean function f∗∗ with the lowest autocorrelation, the
problem is formulated as minimizing subject to f the func-
tion ACmax(f) = maxs∈Bn\{0n}

∣∣∑
x∈Bn f̂(x)f̂(x ⊕ s)

∣∣.
For the case of S-boxes, the aforementioned objective func-
tions are generalized as follows. Regarding the nonlinearity
of an S-box, the problem is to minimize subject to f the
function

max
β∈Bm,ω∈Bn

∣∣F̂β(ω)
∣∣, (1)

and, for the autocorrelation of an S-box, the problem is to
minimize subject to f the function

max
β∈Bm\{0m},s∈Bn\{0n}

∣∣r̂β(s)
∣∣. (2)

The previously described objective functions can be con-
sidered as traditional functions for designing Boolean func-
tions and S-boxes employing optimization methods, as they
are commonly used in the relevant literature. Recently,
in [1, 2] new spectrum based cost functions were also pro-
posed for the problem of S-boxes design. However, since
the proposed methodology of our contribution is new, its
performance is studied using the traditional objective func-
tions in order to ensure its effectiveness. We will extend
the study of its performance using the spectrum based cost
functions in a future correspondence.

3 The Proposed Methodology

To tackle the problem of S-boxes design as an optimiza-
tion task, we employ two Evolutionary Computation meth-
ods, namely the Particle Swarm Optimization method and
the Differential Evolution method. In the following para-
graphs the details of the proposed methodology are de-
scribed.

For the implementation of the optimization methods to
address the problem at hand, the representation of each pos-
sible solution needs to be considered. We are interested in
finding the S-box f : Bn 	→ Bm, with n Boolean inputs and
m Boolean outputs, which satisfies the property of highest
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possible nonlinearity or the property of lowest possible au-
tocorrelation or both. The representation that we use for
each possible solution is the truth table of the correspond-
ing S-box output in decimal form. That is a 2n-dimensional
vector of integer components, where each component rep-
resents the corresponding m-bit output of the S-box in dec-
imal form. In this way the optimization problem is trans-
formed into a discrete optimization task. For tackling this
problem, we have considered two well-known and widely
used Evolutionary Computation methods, namely the Parti-
cle Swarm Optimization method [3, 4] and the Differential
Evolution algorithm [13]. Both these methods were initially
designed for application to real optimization problems, but
their performance in handling discrete optimization tasks
through the technique of rounding off the real values of the
solution to the nearest integer [12] has also proved to be
efficient [5, 6, 7].

As we have already mentioned, balance is a very impor-
tant property for Boolean functions used in cryptographic
applications. This property is inherited to S-boxes through
regularity, since an S-box is regular if and only if all non
zero linear combinations of its output are balanced Boolean
functions. Thus, we are interested in finding regular S-
boxes with high nonlinearity or/and low autocorrelation.
The solution representation used implies that the search
space of the problem contains all S-boxes with f : Bn 	→
Bm, regular and not. In the relevant literature [2, 8, 9],
in order to obtain regular S-boxes as solutions, an initial-
ization with random regular candidate solutions takes place
and then the optimization method utilized, is responsible for
maintaining the regularity of the produced offsprings. Next,
for the construction of regular S-boxes, we propose an al-
ternative technique, named Regularity Construction Tech-
nique. Specifically, we allow the exploration by the em-
ployed method of all the search space, i.e., search among
feasible (regular) and unfeasible (non regular) solutions, but
for the evaluation of a possible solution, the proposed can-
didate is transformed to the closest (by means of Hamming
distance) regular one, for every wrong component. Thus,
the method is allowed to perform better exploration of the
search space and moreover its dynamic is retained.

For the initialization of each method’s population, the
same procedure used in the relevant literature is fol-
lowed [9], i.e., an array that contains 2n−m copies of each
of the 2m possible outputs is constructed and its compo-
nents are randomly swapped to generate the initial random
population.

4 Experimental Setup and Results

Both the PSO and DE methods were applied considering
each component of the possible solution as a real number in
the range [0, 2m − 1] and all populations were constrained

to lie within this region. For the evaluation of the suggested
solutions, the technique of rounding off the real values of
the solution to the nearest integer [12] was applied, followed
by the Regularity Construction Technique described in Sec-
tion 3. Regarding the PSO, we have considered the global
variant of the constriction factor version (PSOGC) and lo-
cal variants with neighborhood size one (PSOLC1) and two
(PSOLC2) [4, 6]. For the DE algorithm we have used five
variants of the mutation operation (DE1-DE5), described
in [6]. For all variants of methods considered here we have
used the same parameter setting as in [6].

The proposed approach was tested for bijective S-boxes
of size 5×5, 6×6, 7×7 and 8×8. For each setting, the size
of the population was set equal to 20 and the performance
of the methods was investigated over 100 independent runs.
A threshold of 1000 function evaluations was set for each
experiment allowing, thus, 50 iterations for each variant.

In Table 1 the best values for targeting the nonlinearity
and autocorrelation of the S-boxes, using the objective func-
tions of Eqs. (1),(2), respectively, are reported.

The proposed methodology obtained the same best non-
linearity values found by the Hill Climbing (HC) algo-
rithm [8] using the same objective function with sample
size 10000, with exception the case of n = 8, where HC
achieved nonlinearity value 100. This, may be due to the
small sample size or the small population size used here as
the problem dimension increases, and remains under inves-
tigation. However, these first results indicate that the new
approach can be considered effective in obtaining good reg-
ular bijective S-boxes. Furthermore, the proposed approach
is simple, it requires only the function values of the pro-
posed solutions and it can be easily combined with alterna-
tive regulation construction techniques.

In Table 2 the best joint values of nonlinearity and au-
tocorrelation achieved by all considered methods for both
cases of targeting are given. It is important to note that,
as indicated by the results, there is a trade-off between the
quantities of nonlinearity and autocorrelation. Since, in
some cases, we are interested in both high nonlinear and low
autocorrelated S-boxes, we intend to study the performance
of the proposed approach for tackling the multi-objective
problem in a future correspondence.

In Table 3 the frequency of nonlinearity values achieved
over 100 independent runs by all the considered methods
are reported. All the nonlinearity values obtained are exhib-
ited along with the corresponding times of their appearance
shown in parentheses.

Concerning the performance of the different variants of
the two methods, they all obtained the same best values,
except from DE3, DE4 and DE5, for n = 7, where the non-
linearity value 44 was achieved, and PSOLC1, DE1, DE2,
DE4 and DE5, for n = 8, where the autocorrelation value
88 was obtained.
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Table 1. Best values for S-boxes of size n tar-
geting nonlinearity and autocorrelation.

Nonlinearity
n PSOGC PSOLC1 PSOLC2 DE1 DE2 DE3 DE4 DE5
5 10 10 10 10 10 10 10 10
6 20 20 20 20 20 20 20 20
7 46 46 46 46 46 44 44 44
8 98 98 98 98 98 98 98 98

Autocorrelation
n PSOGC PSOLC1 PSOLC2 DE1 DE2 DE3 DE4 DE5
5 16 16 16 16 16 16 16 16
6 32 32 32 32 32 32 32 32
7 56 56 56 56 56 56 56 56
8 80 88 80 88 88 80 88 88

Table 2. Best joint values for S-boxes of size
n over all methods.

(Nf , ACmax)
n Targeting Nf Targeting ACmax

5 (10, 24) (8, 16)
6 (20, 32) (20, 32)
7 (46, 64) (44, 56)
8 (98, 88) (96, 80)

Table 3. Frequency of nonlinearity values
achieved by all methods over 100 runs.

n 5 6 7 8

PSOGC 8(99) 10(1) 20(100) 44(99) 46(1) 96(28) 98(72)
PSOLC1 8(99) 10(1) 20(100) 44(98) 46(2) 96(19) 98(81)
PSOLC2 8(99) 10(1) 20(100) 44(99) 46(1) 96(19) 98(81)
DE1 8(99) 10(1) 20(100) 44(99) 46(1) 96(28) 98(72)
DE2 8(99) 10(1) 20(100) 44(99) 46(1) 96(31) 98(69)
DE3 8(99) 10(1) 20(100) 44(100) 96(17) 98(83)
DE4 8(99) 10(1) 20(100) 44(100) 96(42) 98(58)
DE5 8(99) 10(1) 20(100) 44(100) 96(36) 98(64)

5 Conclusions

In this paper, a new methodology for the design of
strong regular S-boxes is presented, utilizing two Evolution-
ary Computation methods, the Particle Swarm Optimiza-
tion method and the Differential Evolution algorithm. This
new approach uses as search space the space of all S-boxes
(regular and non regular), allowing, thus, better exploration
among the S-boxes, and employs a simple regularity con-
struction technique to provide regular solutions.

The proposed approach has been tested using the tradi-
tional measures of nonlinearity and autocorrelation for reg-
ular bijective S-boxes and the obtained results are compara-

ble to those of other more complex heuristic methods us-
ing the same objective functions. Furthermore, the new
methodology required smaller sample size to obtain the
same values in almost all cases.

In this contribution the first attempt using the new ap-
proach is presented and many ideas for further research are
derived. In a future correspondence we intend to study the
performance of this methodology using the new spectrum
based objective functions for strong regular S-boxes derived
in [2], extended also for non bijective S-boxes. Moreover,
alternative regulation construction techniques will be con-
sidered. Finally, the formulation of the problem as a multi-
objective one could provide interesting results.
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