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Abstract—Several data analysis problems require 
investigations of relationships between attributes in related 
heterogeneous databases, where different prediction models can 
be more appropriate for different regions. A new technique of 
integrating global and local boosting is proposed. A comparison 
with other well known and widely used combining methods on 
standard benchmark datasets has shown that the proposed 
technique leads to more accurate results. 
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I.  INTRODUCTION  
Various multiple learner systems (an ensemble of classifiers) 

try to exploit the local different behavior of the base classifiers 
in order to improve the accuracy and reliability of the overall 
inductive learning system [23]. A useful and informal 
reasoning, from computational, statistical and representational 
viewpoints, of why ensembles can lead to better results can be 
found in [7].   

A learning algorithm works as a global method if all training 
examples are considered when classifying a new test case. A 
learning algorithm works as a local method if only data local 
to the area around the testing instance contribute to the class 
probabilities [2]. Local methods have significant advantages 
when the probability measure defined on the space of objects 
for each class is complex, but can still be described by using a 
collection of less complex local approximations [1]. 

In the article at hand, an ensemble integrating global and 
local boosting algorithm is proposed. A comparison with other 
known ensembles has been performed on standard benchmark 
datasets and in most the cases the proposed technique has 
achieved better accuracy. For the experiments, representative 
learning algorithms, such as decision trees and Bayesian 
classifiers have been used. In section II, well known 
algorithms for building ensembles that are based on a single 
learning algorithm are presented, while in section III the 
proposed ensemble method is discussed. Experimental results 
using a number data sets and comparisons of the proposed 
method with other ensembles are presented in section IV. 
Finally, additional research topics and future research work 
are given in Section V. 

II. ENSEMBLES OF CLASSIFIERS 
Empirical studies have been showed that classification 

problem ensembles are often more accurate than the individual 
base learner that make them up [3], and recently different 
theoretical explanations have been proposed to justify the 
effectiveness of some commonly used ensemble methods [21]. 
In this research work a generative combining method is 
proposed and for this reason the most well-known generative 
methods for building ensembles of classifiers in the literature 
are presented.  

The bagging method [6] samples the training set, generating 
random independent bootstrap replicates, constructs the 
classifier on each of these, and aggregates them by a simple 
majority vote in the final decision rule. Another related 
method that uses a different subset of training data with a 
single learning method is the boosting algorithmic approach 
[11]. This method assigns weights to the training instances, 
and these weight values are changed depending upon how well 
the associated training instance is learned by the classifier with 
the weights for misclassified instances being increased. After 
several iteration cycles, the prediction is performed by taking 
a weighted vote of the predictions of each classifier, with the 
weights being proportional to each classifier’s accuracy on its 
training set. AdaBoost is considered to be a practical version 
of the boosting approach [11]. From the perspectives of 
additive regression model and exponential loss function, some 
other boosting algorithms including ‘‘GentleBoost” and 
‘‘LogitBoost” have been proposed [12]. Boosting with 
bagging has been compared by Shirai et al.[22] using different 
base algorithms. MultiBoosting is another method that can be 
considered as wagging committees formed by AdaBoost [24]. 
Wagging is a variant of bagging; bagging uses resampling to 
get the datasets for training and producing a weak hypothesis, 
whereas wagging uses reweighting for each training example.  

Another approach is the Random Subspace Method [14], 
which consists of training several classifiers from input data 
sets constructed with a given proportion around 50% of 
features picked randomly from the original set of features. 
Feature subset by the regularized version of Boosting [19], 
i.e., AdaboostReg has been introduced by Redpath and Lebart. 
Based on Principal Component Analysis (PCA), Rodríguez et 
al. in [20] proposed a new ensemble classifier generation 
technique Rotation Forest. Diversity is promoted by using 
PCA to do feature extraction for each base classifier. 
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Another meta-learner (DECORATE, Diverse Ensemble 
Creation by Oppositional Relabeling of Artificial Training 
Examples) that uses a learner (one that provides high accuracy 
on the training data) to build a diverse committee has been 
presented in [17]. This is accomplished by adding different 
randomly constructed examples to the training set when 
building new committee members.  

III. THE PROPOSED  ALGORITHM  
It is known that boosting is an effective technique for 

improving prediction accuracy in many real life datasets [11]. 
However, several researches indicated that in heterogeneous 
databases, where several homogeneous regions exist, boosting 
does not enhance the prediction capabilities as well as for 
homogeneous databases [16].  

Local learning typically depends on the notion of 
“neighborhood”. The neighborhood can be based on some a-
priori measure of locality such as the Euclidean distance in 
input space. Local learning [1] can be understood as a general 
principle that allows extending learning techniques, to the case 
of complex data for which the model’s assumptions would not 
necessarily hold globally, but can be thought as valid locally. 
A simple example is the assumption of the linear separability, 
which, in general, is not satisfied globally in classification 
problems with rich data. Moreover, when the size of the 
training set is small enough compared to the complexity of the 
classifier, the learning machine usually overfits the noise in 
the training data. Thus effective control of complexity of a 
classifier plays a key role in achieving good generalization. 
Some related theoretical results and experimental results [24] 
indicate that a local learning algorithm (that is learning 
machine trained on the training subset) provides a feasible 
solution to this problem. A theoretical model of a local 
learning algorithm has been proposed in [5] and obtained 
bounds for the local risk minimization estimator. 

The proposed model simple trains a boosting ensemble 
during the train process. For this reason, the training time of 
the model is that of simple boosting. During the classification 
of a test instance the model calculates the probabilities for 
each class and if the probability of the most possible class is at 
least two times the probability of the next possible class then 
the decision is that of global boosting model. However, if the 
global boosting is not appropriate e.g. the probability of the 
most possible class is less than two times the probability of the 
next possible class; the model finds the k nearest neighbors 
using the selected distance metric and train a local boosting 
model using these k instances. Finally, in this case the model 
averages the probabilities of global boosting with local 
boosting model for the classification of the testing instance. It 
must be mentioned that local boosting model is only used for a 
small number of test instances and for this reason 
classification time is not considered to be substantial 
deficiency for our model. In general, the proposed ensemble is 
described by pseudo-code in Fig 1. The proposed algorithm 
requires choosing the value of K. Note that there are several 
ways to do this. Firstly, a simple solution is to fix K a priori 
before the beginning of the learning process. Secondly, a more 
time-consuming solution is to determine the best K 
automatically through the minimization of a cost criterion. In 

the current implementation a fixed value for K (=50) has been 
used in order to i) keep the training time low and ii) since 
about this size of instances is appropriate for a simple 
algorithm, to build a precise model according to approach 
proposed by Frank et al. [9]. 

Build Global boosting model in all the 
training set Classification: 
1.   Obtain the test instance 
2. Calculate the probabilities of 
belonging the instance in each class of 
the dataset. 
3.  If the probability of the most 
possible class is at least two times the 
probability of the next possible class 
then the decision is that of global 
boosting model else 
a. Find the k(=50) nearest neighbors using 
the selected distance metric  
b. Using as training instances the k 
instances train the local boosting model 
c. Aggregate the decisions of global 
boosting with local boosting model by 
averaging of the probabilities for the 
classification of the testing instance. 

Fig. 1. Integrating Global and Local Application of Boosting (IGLB) 
 

The proposed ensemble uses another free parameter such as 
the distance metric. In the numerical experiments, the most 
well known “Euclidean similarity” has been used as a distance 
metric. The performance of ADABoost.M1 has been shown to 
exceed or meet that of various other boosting algorithms [11], 
thus making it a good choice for this research work. Ten 
iterations for the boosting process have been used in order to 
reduce the time need for classification of a new instance. 

IV. NUMERICAL EXPERIMENTS  
In our numerical experiments several datasets from the UCI 

repository were used [10]. In order to calculate the classifiers’ 
accuracy, the whole training set (27 datasets) was divided into 
ten mutually exclusive and equal-sized subsets, while for each 
subset the classifier was trained on the union of all of the other 
subsets. Then, cross validation was run 10 times for each 
algorithm and the median value of the 10-cross validations 
was calculated. It must be mentioned that for our numerical 
experiments the free available source code was used for most 
of the algorithms [26]. 

In the following subsection, the experimental results for 
different base classifiers are presented. For the experiments, 
representative algorithms of decision trees and Bayesian 
classifiers were used. We tried to minimize the effect of any 
expert bias by not attempting to tune any of the algorithms to 
the specific data set. Default values of learning parameters 
were used. This approach results in lower estimates of the true 
error rate, but it is a bias that affects all the learning algorithms 
uniformly. 



A. Using Decision Stump (DS) as a base classifier 

Decision stump (DS) are one level decision trees that 
classify instances by sorting them based on feature values 
[15]. Firstly, we compare the proposed ensemble methodology 

with Boosting DS [11], Logitboost DS [12], MultiBoost DS 
[24], Rotation Forest DS [20], Random Subspace DS [14] and 
Decorate DS [17] (using 10 sub-classifiers). The classification 
accuracy of each tested algorithm is presented in Table I. 

 

Table Ι. COMPARING THE PROPOSED ENSEMBLE WITH OTHER ENSEMBLES THAT USE DS AS BASE LEARNER 

Dataset 

IGLB  

DS 

Boosting  

DS  

Logitboost  

DS 

Multiboost  

DS 

Rotation  

Forest DS 

RS  

DS 

Decorate 

DS 

 

audiology 61.57 46.46  83.73  46.46  47.08  46.46  46.46  

Autos 68.67 44.90  79.12  44.90  44.56  47.24  49.35  

Badges 100.00 100.00  100.00  100.00  96.63  85.17  100.00  

breast-cancer 74.95 71.62  71.42  71.19  73.28  72.67  75.26  

wisconsin-breast-cancer 95.87 95.14  95.61  94.52  93.19  96.78  95.04  

horse-colic 81.93 82.53  82.75  81.52  80.57  82.30  82.71  

german_credit 73.85 71.27  71.68  70.11  70.00  70.00  70.00  

credit-rating 86.46 84.80  85.72  85.51  84.75  85.49  84.42  

pima_diabetes 74.61 74.92  74.54  73.38  71.94  74.47  75.65  

Glass 70.28 44.89  70.99  44.89  49.41  50.23  53.00  

cleveland-14-heart-diseas 82.84 83.47  81.59  82.61  75.97  79.60  72.43  

hungarian-14-heart-diseas 81.31 81.41  81.47  81.31  81.51  80.96  81.78  

heart-statlog 81.59 81.59  82.22  81.89  75.48  81.04  80.00  

hepatitis 85.14 81.37  81.58  80.34  78.80  80.61  79.97  

ionosphere 91.00 90.89  90.83  84.88  84.65  86.05  89.46  

Iris 94.33 95.40  94.93  93.20  70.53  66.73  93.27  

Labor 91.73 88.37  92.33  83.20  84.40  87.17  88.20  

lymphography 82.85 75.44  82.36  73.73  73.81  76.25  74.68  

monk1 84.23 70.29  71.63  73.41  71.78  73.88  72.26  

monk2 56.56 53.95  55.60  57.61  61.96  61.83  61.13  

monk3 92.87 92.06  93.37  90.90  85.24  89.33  93.45  

Sonar 84.85 75.65  77.17  74.45  72.21  75.12  73.57  

Relation 78.33 77.67  77.83  77.60  76.51  78.12  77.60  

Vehicle 76.65 39.81  70.73  39.81  39.63  55.28  44.45  

Vote 96.09 95.43  95.49  95.61  94.32  95.54  95.63  

Wine 96.86 89.37  97.86  85.56  81.67  92.81  91.75  

Zoo 83.55 60.43  95.06  60.43  60.33  61.44  60.71  

 

In Table II the results of Friedman test are presented [13]. 
According to Holm/Hochberg Table [13] presented in Table 
III, the proposed ensemble is statistically significant more 
accurate than Boosting DS, Rotation Forest DS, DECORATE  
DS, Random-Subspace DS and Multiboost DS. On the other 
hand, the proposed method is more accurate but not 
statistically better than Logitboost DS according to our 
experiments. 

 
Table II. Average Rankings of the algorithms (Friedman test) 

Algorithm      Ranking 
IGLB DS 2.185185185185184 
Logitboost DS 2.592592592592593 
Decorate DS 3.962962962962963 
Boosting DS 4.111111111111111 
RS DS 4.240740740740739 
Multiboost DS 5.018518518518516 
Rotation Forest DS 5.888888888888891 

 



 
Table III. Holm/Hochberg Table for a = 0.05 

Algorithm z=(R0-Ri)/SE p Holm/Hochberg
/Hommel 

Rotation Forest DS 6.29940788 2.98784E-10 0.0083333 
Multiboost DS 4.81904703 1.44245E-6 0.01 
RS DS 3.49617137 4.719854E-4 0.0125 
Boosting DS 3.27569209 0.0010540 0.0166666 
Decorate DS 3.02371578 0.0024969 0.025 
Logitboost DS 0.69293486 0.4883504 0.05 

B. Using C4.5 algorithm as base classifier 

The most commonly used C4.5 algorithm [18] was the 
representative of the decision trees in our study. Subsequently, 
we compare the proposed ensemble methodology with 
Bagging C4.5 [6], Boosting C4.5 [11], MultiBoost C4.5 [24],  
Rotation Forest C4.5 [20], Random Subspace C4.5 [14] and 
Decorate C4.5 [17] algorithms (using 10 sub-classifiers). The 
classification accuracy of each tested algorithm is presented in 
Table IV. In Table V the results of Friedman test are 
presented.  

Table IV. COMPARING THE PROPOSED ENSEMBLE WITH OTHER ENSEMBLE THAT USE C4.5 AS BASE LEARNER 

Dataset 

IGLB 

C4.5 

Boosting  

C4.5  

Bagging  

C4.5  

Multiboost  

C4.5  

Rotation  

Forest C4.5  

RS 

C4.5   

Decorate 

C4.5  

Audiology 85.14 84.75  80.57  83.99  79.95  76.36  80.90  

Autos 85.75 85.46  83.09  84.15  82.33  84.05  83.13  

Badges 100.00 100.00  100.00  100.00  86.19  96.46  100.00  

breast-cancer 70.49 66.89  72.45  69.73  72.19  73.23  70.13  

wisconsin-breast-cancer 97.28 96.08  95.95  96.08  97.12  96.32  95.79  

horse-colic 82.82 81.63  85.15  83.85  84.29  83.90  84.26  

german_credit 74.49 70.75  73.36  73.75  74.45  73.91  72.21  

credit-rating 86.19 84.01  85.78  86.17  86.01  85.36  85.49  

pima_diabetes 75.36 71.69  75.72  75.14  76.21  73.96  74.88  

Glass 76.50 75.15  72.89  75.67  74.62  74.89  71.34  

cleveland-14-heart-diseas 80.07 78.79  78.98  79.74  82.61  81.26  77.95  

hungarian-14-heart-diseas 79.14 78.68  79.94  80.34  81.74  81.20  78.75  

heart-statlog 80.67 78.59  80.67  80.33  82.70  82.19  78.59  

Hepatitis 84.31 82.38  81.64  82.24  84.28  82.36  81.48  

Ionosphere 92.99 93.05  91.63  92.60  93.68  92.97  91.91  

Iris 94.97 94.33  94.93  94.67  95.33  94.20  95.13  

Labor 87.67 87.17  84.30  84.97  91.70  78.67  88.37  

lymphography 84.08 80.87  77.80  81.84  82.57  79.03  78.21  

monk1 93.01 94.10  81.56  84.65  94.93  83.16  89.35  

monk2 60.42 60.82  60.66  58.57  75.87  62.19  57.15  

monk3 90.16 90.01  91.56  91.91  92.14  90.69  87.54  

Sonar 83.75 79.13  79.41  80.06  81.88  80.69  81.22  

Relation 78.98 78.86  78.09  78.61  78.91  77.96  78.87  

Vehicle 75.68 75.59  74.17  75.65  78.34  75.21  75.14  

Vote 96.44 95.51  96.46  95.81  96.34  95.08  94.55  

Wine 97.89 96.45  95.21  96.35  97.79  96.07  96.46  

Zoo 94.38 95.18  93.51  94.19  92.72  94.95  93.11  

According to Holm/Hochberg Table [13] presented in Table 
VI, the proposed ensemble is statistically significant more 
accurate than Boosting C4.5, DECORATE C4.5, Random-

Subspace C4.5 and Multiboost C4.5. It must be mentioned that 
according to our experiments the proposed method is more 
accurate but not statistically better than Rotation Forest C4.5. 



Table V. Average Rankings of the algorithms (Friedman test) 
Algorithm       Ranking 
IGLB C4.5 2.499999999999999 
Rotation Forest C4.5 2.518518518518517 
Multiboost C4.5 4.092592592592593 
Boosting C4.5 4.592592592592593 
Bagging C4.5 4.759259259259259 
RS C4.5 4.407407407407406 
Decorate C4.5 5.129629629629629 

 
 

Table VI. Holm/Hochberg Table for a = 0.05 
Algorithm z=(R0-Ri)/SE p Holm/Hochberg

/Hommel 
Decorate C4.5 4.47257959 7.728161E-6 0.0083333 
Bagging C4.5 3.84263880 1.217185E-4 0.01 
Boosting C4.5 3.55916545 3.720351E-4 0.0166666 
RS C4.5 3.24419505 0.00117783 0.0125 
Multiboost C4.5 2.7087453898 0.00675381 0.05 
Rotation Forest C4.5 0.0314970394 0.97487315 0.0083333 

 
 

Table VII. COMPARING THE PROPOSED ENSEMBLE WITH OTHER ENSEMBLES THAT USE NB AS BASE LEARNER 

Dataset 

IGLB 

NB 

Bagging  

NB  

Boosting  

NB  

Decorate 

NB  

Rotation  

Forest NB  

RS 

NB  

Multiboost 

NB  

audiology 79.21 72.46  79.26  72.69  71.34  67.14  74.36  

Autos 78.14 57.63  57.12  57.76  62.76  58.83  58.49  

Badges 98.78 99.66  99.66  96.87  84.80  96.99  99.66  

breast-cancer 69.77 72.80  68.68  73.22  69.64  71.58  72.22  

wisconsin-breast-cancer 96.15 96.12  95.55  96.02  95.82  95.95  96.05  

horse-colic 78.65 78.92  77.62  78.21  71.53  79.87  80.20  

german_credit 73.00 74.89  75.14  74.84  66.42  73.91  75.39  

credit-rating 81.43 77.87  81.04  78.51  80.20  77.80  78.94  

pima_diabetes 73.56 75.73  75.86  75.48  75.03  74.68  76.44  

Glass 71.52 50.00  49.63  49.45  54.03  51.15  49.91  

cleveland-14-heart-diseas 80.17 83.38  82.97  83.37  81.95  83.10  83.90  

hungarian-14-heart-diseas 81.48 84.09  84.81  83.88  83.82  83.52  84.13  

heart-statlog 79.15 83.74  82.59  83.81  84.07  83.59  84.19  

Hepatitis 84.95 83.88  84.62  83.16  83.93  84.62  85.56  

ionosphere 88.52 82.25  91.06  82.48  88.29  82.99  90.66  

Iris 95.97 95.53  94.80  94.67  96.47  94.80  95.80  

Labor 91.77 93.70  89.60  91.53  91.43  94.10  92.87  

lymphography 86.44 83.56  81.27  82.92  82.89  82.33  83.86  

monk1 83.98 73.55  72.68  75.51  75.10  71.60  71.97  

monk2 58.04 55.59  56.83  56.98  55.25  60.06  56.59  

monk3 91.29 93.45  90.90  92.72  90.76  89.04  92.75  

Sonar 87.62 68.25  80.77  67.60  70.41  68.25  76.07  

Relation 78.27 77.87  77.86  78.31  74.38  77.14  77.70  

Vehicle 75.73 45.56  44.68  46.31  67.28  45.64  44.68  

Vote 95.01 90.07  95.01  89.70  93.33  89.93  91.31  

Wine 97.69 97.40  96.18  96.78  98.25  97.19  97.08  

Zoo 97.03 94.77  97.23  94.97  92.16  94.47  96.63  

 
C. Using the Naive Bayes algorithm as a base classifier 

 

   In this sub-section, a Bayesian method as a base classifier in 
the ensemble has been used. Naive Bayes algorithm was the 
representative of the Bayesian networks [8]. Subsequently, we 

compare the proposed ensemble methodology with Bagging 
NB [6], Boosting NB [11], MultiBoost NB [24], Rotation 
Forest NB [20], Random Subspace NB [14] and Decorate NB 
[17] algorithms (using 10 sub-classifiers). The classification 
accuracy of each tested algorithm is presented in Table VII. In 
Table VIII the results of Friedman test are presented. 



Table VIII. Average Rankings of the algorithms (Friedman 
test) 

Algorithm    Ranking 
IGLB NB 2.907407407407408 
Multiboost NB 3.018518518518518 
Bagging NB 3.870370370370370 
Boosting NB 4.222222222222222 
Decorate NB 4.481481481481481 
Rotation Forest NB 4.666666666666667 
RS NB 4.833333333333333 

 

According to Holm/Hochberg Table [13] presented in Table 
IX, the proposed ensemble is statistically significant more 
accurate than Boosting NB, DECORATE NB, Rotation Forest 
NB and Random-Subspace NB. On the other hand, according 
to our experiments the proposed method is more accurate but 
not statistically better than Multiboost NB and Bagging NB. 
  
Table IX. Holm/Hochberg Table for a = 0.05 

Algorithm z=(R0-Ri)/SE p Holm/Hochberg
/Hommel 

RS NB 3.2756920994 0.00105403 0.0083333 
Rotation Forest NB 2.9922187446 0.00276957 0.01 
Decorate NB 2.6772483504 0.00742295 0.0166666 
Boosting NB 2.2362897986 0.02533279 0.0125 
Bagging NB 1.6378460497 0.10145381 0.05 
Multiboost NB 0.1889822365 0.85010673 0.0083333 

 

V. SYNOPSIS AND CONCLUDING REMARKS 
In the research work at hand, an ensemble integrating global 

and local boosting is presented and our experiment for some 
real datasets shows that the proposed combining method 
outperforms other well known and widely used combining 
methods.  

It must be mentioned that local boosting model is only used 
for a small number of test instances and for this reason 
classification time is not an important problem for our model. 
However, local weighted learning algorithms must often 
decide what examples to be stored for use during 
generalization in order to avoid extreme storage and time 
complexity [2]. By removing a set of examples from a dataset 
the response time for some classification decisions will 
decrease, as fewer examples are examined when a query 
example is presented. This objective is primary when we are 
working with a large dataset and the storage is limited.  

In a subsequent future research work we will focus on the 
problem of reducing the size of the stored set of instances 
while trying to maintain or even improve generalization 
accuracy by avoiding noise and over-fitting.  

Numerous instance selection methods that can be combined 
with the proposed techniques can be found in [4], [25]. 
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