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Abstract- A new theorem for the development and convergence analysis of supervised training 
algorithms with an adaptive learning rate for each weight is presented. Based on this theoretical 
result, a strategy is proposed to automatically adapt the search direction, as well as the stepsize 
length along the resultant search direction. This strategy is applied to some well known local 
learning algorithms to investigate its effectiveness. 
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1 Introduction 
Supervised learning is a classical method to  bring the weights of a neural network towards optimality. A finite set 
of arbitrarily ordered examples is presented at  the input of the network and associated to  appropriate references 
through an error correction process. Batch training, which is a special case of supervised learning, is consistent 
with the theory of unconstrained optimization. This can be viewed as the minimization of a batch error measure, 
which is usually defined as the sum-of-squared-differences error function E over the entire training set: 

W* = min E ( w ) ,  
wER" 

where w* = (w:, 1 4 , .  . . ,wz) E lR" is a minimizer of E.  The rapid computation of such a minimizer is a rather 
difficult task since, in general, the number of network weights is high and the corresponding nonconvex error 
function possesses multitudes of local minima and has broad flat regions adjoined with narrow steep ones. 

Let us consider the family of gradient-based supervised learning algorithms having the iterative form: 

(2) w k + l  - - w k + + ' d k ,  k = 0 , 1 , 2  ,... 

where w k  is the current weight vector, dk is a search direction, and vk is a global learning rate, i.e. the same 
learning rate is used to  update all the weights of the network. Various choices of the direction dk give rise to 
distinct algorithms. -4 broad class of methods uses the search direction dk = - V E ( w k ) ,  where the gradient VE(w) 
can be obtained by means of back-propagation of the error through the layers of the network [20]. The most 
popular training algorithm of this class, named batch Back-Propagation (BP),  minimizes the error function using 
the steepest descent method [6] with constant, heuristically chosen, learning rate +. In practice, a small value for 
the learning rate is chosen (0 < 17 < 1) in order to secure the convergence of the BP training algorithm and to 
avoid oscillations in a direction where the error function is steep. It is well known that this approach tends to 
be inefficient. This happens, for example, when the search space contains long ravines that are characterized by 
sharp curvature across them and a gently slopping floor [8, 201. Obtaining efficient convergence of BP training 
algorithms utilizing a constant learning rate is considered particularly difficult [9, 101. On the other hand, there 
are theoretical results that guarantee the convergence when the learning rate is constant. In this case the learning 
rate is proportional to  the inverse of the Lipschitz constant which, in practice, is not easily available [l, 121. 

Alternatively, several heuristic methods have been suggested to  dynamically adapt the global learning rate 
during training to  accelerate the convergence [a, 3, 221. A different approach is to exploit the local shape of the 
error surface as described by the direction cosines [7] or the local estimation of the Lipschitz constant 1121. 
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This paper focuses on a special class of adaptive training algorithms that employ local learning rates, i.e. a 
different learning rate for each weight. A general theoretical result is presented that underlies the development 
of globally convergent training algorithms of this class, i.e. algorithms with the property that starting from any 
initial weight vector the sequence of the weights will converge to  a local minimizer of the error function. The paper 
is organized as follows. In Section 2 local learning rate training algorithms are presented, and their advantages 
and disadvantages are discussed. The proposed approach and the corresponding theoretical convergence result are 
presented in Section 3. Experiments are presented in Section 4 in order to evaluate and compare the performance 
of two algorithms of this class with their globally convergent modifications. Section 5 presents the conclusions. 

2 Local learning rate adaptation strategies 
Studying the sensitivity of a minimizer to  small changes by approximating the error function quadratically, it is 
known that, in a sufficiently small neighborhood of w * ,  the directions of the principal axes of the corresponding 
elliptical contours (n-dimensional ellipsoids) will be given by the eigenvectors of V 2 E ( w * ) ,  while the lengths of the 
axes will be inversely proportional to  the square roots of the corresponding eigenvalues. Hence, a variation along 
the eigenvector corresponding to  the maximum eigenvalue will cause the largest change in E ,  while the eigenvector 
corresponding to  the minimum eigenvalue gives the least sensitive direction. Thus, in general, a learning rate 
appropriate in one weight direction is not necessarily appropriate for other directions. Moreover, it may not be 
appropriate for all the portions of a general error surface. 

Thus, the fundamental algorithmic issue is to  find the proper learning rate that compensates for the small 
magnitude of the gradient in the flat regions and dampens the large weight changes in highly deep regions. -4 
common approach to  avoid slow convergence in the flat directions and oscillations in the steep directions, as well 
as to  exploit the parallelism inherent in the evaluation of E ( w )  and V E ( w )  by the BP algorithm, consists of 
using a different learning rate for each direction in weight space. Various batch-type BP training algorithms with 
an adaptive learning rate for each weight have been suggested in the literature [5, 8, 16, 18, 211. Following this 
approach equation (2) is reformulated to  the following scheme: 

(3) w k + l  - - wk - diag{qf,. . . , v i }  V E ( w k ) .  

The algorithms that follow the above scheme try to  decrease the error by searching a local minimum with 
small weight steps. These steps are usually constraint by problem-dependent heuristic parameters in order to 
avoid oscillations and to  ensure subminimization of the error function in each weight direction. This fact usually 
results in a trade-off between the convergence speed and the stability of the training algorithm. For example, the 
delta-bar-delta method [B]  or the Quickprop method [5] introduce additional problem-dependent heuristic learning 
parameters to alleviate the stability problem. A common approach is to  use heuristically chosen learning rate lower 
and upper bounds that would help to avoid the usage of an extremely small or large learning rate component, which 
misguides the resultant search direction. The learning rate lower bound helps to  avoid unsatisfactory convergence 
rate while the learning rate upper bound limits the influence of a large learning rate component on the resultant 
search direction and depends on the shape of the error function. 

A well known difficulty of this approach is that the use of inappropriate heuristic values for a weight direction 
misguides the resultant search direction [13]. In these cases, the training algorithm cannot exploit the global 
information obtained by taking into consideration all the directions. This is the case of many well known training 
algorithms that employ additional heuristics for properly tuning the local learning rates [5, 8, 16, 18, 211 and no 
guarantee is provided that the weight updates will converge to  a minimizer of E. 

3 Global convergence by adapting the search direction 
A batch BP algorithm with a different learning rate for each weight, as defined in relation (3), evaluates the 
local learning rates by means of heuristic procedures that exploit information regarding the history of the partial 
derivative of E ( w )  with respect to the ith weight and/or the history of each learning rate, depending on the 
algorithm. For example, the Quickprop [5] performs independent secant steps in the direction of each weight [23], 
while the Rprop algorithm [18] updates the weights using the learning rate and the sign of the partial derivative of 
the error function with respect to  each weight. 

Clearly, the weight vector in equation (3) is not updated in the direction of the negative of the gradient; instead, 
an alternative adaptive search direction is obtained by taking into consideration the weight changes. These are 
evaluated by multiplying the length of the search step, i.e. the value of the learning rate along each weight direction 
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by the partial derivative of E(w)  with respect to  the corresponding weight, i.e. -q&E(w). This behavior results 
in decreasing the error in each direction by performing small steps in the weight space. These steps are usually 
constraint by problem-dependent heuristic parameters to ensure subminimization of the error function in each 
weight direction and hopefully obtain monotone error reduction. However, enforcing monotone error reduction 
using inappropriate values for the heuristic learning parameters can considerably slow the rate of training, or even 
lead to divergence and to  premature saturation [ll, 191. Moreover, it seems that using heuristics it is not possible 
to develop globally convergent training algorithms, i.e. algorithms with the property that starting from any initial 
weight vector the sequence of the weights will converge to  a local minimizer of the error function. 

To alleviate this situation, we propose that the search direction is obtained using any n - 1 out of the n learning 
rate values that are directly computed by means of an adaptive learning rate strategy and analytically calculate 
the remaining one, using the values of the other n - 1 learning rates. This approach has the effect that the search 
direction followed is, indeed, a descent one. The following theorem provides a global convergence result for local 
learning rate algorithms. 

Theorem 1. Suppose that: (a) the error function E : R" + R is continuously differentiable and (b) that V E  is 
Lipschitz continuous on Rn, i.e. for any two points w and v E R", V E  satisfies the Lipschitz condition 

IIVE(W) - VE(V)Il I Lllw - 41, 

wk+' = wk - rk  diag{qF,q:,.. . ,qk }  VE(wk),  

(4) 
where L > 0 denotes the Lipschitz constant. Then, for  any given point WO E R" and any sequence { w k } E 0 ,  
generated by the iterative scheme 

( 5 )  
where v i ,  m = 1,2 , .  . . , i - 1, i + 1 , .  . . , n are arbitrarily chosen positive real numbers, 

;+i 

and rk > 0 satisfies the Wolfe's conditions 
E(w"+') - E ( w k )  < O ~ T ~ V E ( U . J ~ ) ~ ~ ~ ,  

V E ( W ~ + ' ) ~ V E ( W ~ )  >a2VE(wk)Tdk,  0 < 01 < 02 < 1 

where dk denotes the search direction, holds that 
lim VE(wk)  = 0. 

k+cu 

Proof: Evidently, the error function E is bounded below on R". The sequence { w k } ~ ,  follows the direction 

d k ( w k )  = -diag{qf,q:,.. . , v i }  VE(wk)), 
which is a descent direction if qk, m = 1 , 2 , .  . . , i - 1, i + 1 , .  . . , n are arbitrarily chosen positive real numbers and 

V E ( W ~ ) ~ ~ ~ ( W ~ )  < 0. 
77: is given by relation ( 6 ) ,  since 

Now, since dk is a descent direction and E is continuously differentiable and bounded below along the radius 
{wk + Tdk I r > 0}, then there always exist rk  satisfying the Wolfe's conditions (7 )  and (8) [4, 141. 

Moreover, the Wolfe's Theorem [4, 141 suggests that if the cosine of the angle 8 k  between the descent direction 
dk and the -VE(wk) is positive then limk--f03 VE(wk) = 0. In our case 

Thus, the theorem is proved. 

Remark 1: The effect of assumptions (a) and (b) is to place an upper bound on the degree of the nonlinearity of 
the error function and to ensure that the first derivatives are continuous. 
Remark 2: Note that for neural networks with sigmoid activation functions the assumption of continuous differen- 
tiability of the error function is redundant. 
Remark 3: The use of rk = 1 is suggested. This has the effect that the minimization step along the resultant 
search direction is defined by the values of the local learning rates. The length of the minimization step can be 
regulated through rk tuning so that the Wolfe's conditions are satisfied and the weights are updated in a descent 
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direction. To this end, a simple backtracking strategy could be used to decrease rk by a reduction factor l / q ,  
where q > 1. This has the effect that rk is decreased by the largest number in the sequence {q-m}g=l [15]. We 
remark here that the selection of q is not critical for successful learning, however it has an influence on the number 
of error function evaluations required to satisfy the Wolfe's conditions. A value of q = 2 is generally suggested in 
the literature [l,  151 and, indeed, it has been found to  work without problems in our experiments. 

It is worth noticing that the inequality (7) ensures that the error is reduced sufficiently, while the inequality (8) 
prevents the minimization step from becoming too small. Consequently, when seeking to satisfy the condition (7) 
it is important to  ensure that rk is not reduced unnecessarily so that the condition (8) is not satisfied. In a training 
epoch the gradient vector is only known at the beginning of the iterative search for a new weight vector. Thus, 
the condition (8) cannot be checked directly, since this task would require additional gradient evaluations at  each 
epoch of the training algorithm. This problem can be easily tackled (see [4]) by replacing relation (8) with 

E(wk + 7"') - E ( w k )  2 a2TkVE(Wk)Tdk (10) 

and thus avoid the computatibnally expensive backward passes. 
Next, we visualize the behavior of the proposed strategy by means of a simple example, which concerns the 

case of a single neuron with two weights and logistic activation function [12]. This minimal architecture is trained 
using the classical Quickprop method and its globally convergent modification, which uses the absolute value of the 
learning rate 17: computed by the Quickprop method (in order to satisfy Theorem 1) and $ is given by relation ( 6 ) .  
The classical Quickprop formula (see Figure 1, left) generates a discretized path in the weight space that leads 
to  an undesired local minimum. On the other hand, the globally convergent modification (see Figure 1, right) 
successfully locates the desired minimum. 
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Figure 1: Illustration of the Quickprop method for training a network with two weights. The classical method 
converges to an undesired local minimum (left), while the modification to the desired minimum (right). 

4 Application examples 
The proposed strategy has been incorporated in various first-order training algorithms to develop new globally 
convergent modifications. These modified schemes have been implemented and tested on different training problems 
and have been compared in terms of gradient and error function evaluations and rate of success. Our experience is 
that the proposed strategy behaves predictably and reliably. In this section we exhibit results from 100 independent 
runs for the Silva-Almeida's method [21], the Quickprop algorithm [5] and their globally convergent modifications 
in two applications. 
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The heuristic learning parameter maximum growth factor of the Quickprop method has been set to the clas- 
sical value m = 1.75. The learning rate increment and decrement factors of Silva-Almeida's method have been 
appropriately tuned and received the values U = 1.02 and d = 0.5, respectively. 

In the first experiment, a network with 64 input, 6 hidden and 10 output nodes (444 weights, 16 biases) is 
trained t o  recognize 8 x 8 pixel machine printed numerals from 0 to  9 in helvetica italic [12]. The network is 
based on neurons of the logistic activation model. The termination condition for all algorithms tested is an error 
value E 5 lo-' within 2000 error function evaluations. Detailed results regarding the training performance of the 
algorithms are presented in Table 1, where p denotes the mean number of gradient or error function evaluations, D 
the corresponding standard deviation, M i n l M a x  the minimum and maximum number of gradient or error function 
evaluations, and % denotes the percentage of simulations that  converge to  a desired minimum. 

Table 1: Comparative Results for the Numeric Font Learning Problem 
Algorithm Gradient Evaluation Function Evaluation Success " 

P 0 M i n / M a x  p 0 M i n / M a x  % 
Silva- Almeida 127.16 15.847 103/200 127.16 15.847 103/200 56 
Global Silva-Almeida 410.14 129.432 1481862 736.25 317.644 14811996 99 

Global Quickprop 88.70 87.504 271550 176.21 249.913 2711550 99 
Quickprop 0 

In the second experiment, the continuous function f(x) = sin(x)cos(2x) is approximated by a 1-15-1 neural 
network (thirty weights, sixteen biases). 20 inputloutput pairs are taken, scattered in the interval [0,27r] and the 
termination condition is E 5 0.1 within 10000 error function evaluations. The network is based on hidden neurons 
with hyperbolic tangent activations and on a linear output neuron. Comparative results are exhibited in Table 2. 

Table 2: Comparative Results for the Function Approximation Problem 
Algorithm Gradient Evaluation Function Evaluation Success 

U D M i n I M a x  U U M i n l M a x  % 
Silva- Almeida 23.11 116.18 841150 23.11 116.18 841150 11 
Global Silva-Almeida 382.67 167.11 4711378 724.89 455.15 4714005 99 
Quickprop 362.81 268.55 581953 362.81 268.55 581953 27 
Global Quickprop 514.89 686.28 3912764 1477.10 2308.99 4918263 61 

5 Discussion 
A framework for the development of globally convergent batch training algorithms with local learning rates has 
been proposed. The proposed framework provides conditions under which global convergence is guaranteed and 
a strategy for adapting the search direction and tuning the length of the minimization step. The applicability of 
the proposed theorem has been illustrated in two test cases. From Tables 1 and 2 it is shown that the globally 
convergent modifications of the tested algorithms provide stable learning and therefore a greater possibility of good 
performance. They exhibit significantly better percentage of success than the original methods, but they generally 
require additional error function and gradient evaluations. 

As shown in Table 1 the Global Quickprop is faster and more reliable than the classical method, which fails 
to  converge within the function evaluations limit. In the same problem, the Silva-Almeida's method fails to 
converge in 44 out of the 100 runs, due to  convergence to undesired local extrema. For the same reason, this 
method converges only 11 times (see Table 2) in the function approximation problem. In this problem, the Global 
Quickprop outperforms the classical method in the number of successful runs. However, it fails to  converge within 
the error function evaluations limit in 39 runs. On the other hand, the classical Quickprop method succeeded only 
in 27 runs due to  local minima. 

Finally, it is worth mentioning that all the experiments have been performed employing relation (6) cyclically 
over the local learning rates, i.e. a t  the kth iteration i = IC mod n. This issue needs further investigation in order 
to  develop techniques that will properly choose 77: depending on the learning process. 
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