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Abstract. A recently proposed swarm intelligence technique for Fuzzy Cognitive Map learning is described. The 
technique employs the Particle Swarm Optimization algorithm to minimize a proper objective function, whose 
global minimizers correspond to suboptimal weight matrices of the Fuzzy Cognitive Map. New instances of an 
industrial test problem are studied, justifying the usefulness of the technique as an efficient and effective 
algorithm for Fuzzy Cognitive Map learning. 
 
 
1 INTRODUCTION 

Fuzzy Cognitive Maps (FCMs) are used for modeling, simulating and controlling systems in engineering 
applications. Kosko introduced FCMs for the representation of causal relationships among concepts, as well as 
for the analysis of inference patterns[1,2]. The flexibility of FCMs renders them a promising methodology with 
applications in many scientific fields, such as bioinformatics, manufacturing, organization behavior, political 
science, and decision-making. However, there are also several deficiencies of FCMs, which are mainly related to 
their heavy dependence on human knowledge, as well as to the lack of enhanced and robust learning algorithms. 
Therefore, the development of new learning techniques is a field of increasing interest. 

A recently proposed approach for FCMs learning, which is based on a swarm intelligence algorithm, is 
presented. The technique is based on the minimization of a properly defined objective function through the 
Particle Swarm Optimization (PSO) algorithm[3,4], to determine suboptimal weight matrices of the FCM. 
Preliminary results of this technique on different problems from industry and bioinformatics are very 
promising[3,4,5]. We extend these studies, providing results on new instances of an industrial control problem, to 
justify the usefulness of the new learning technique in a wide range of different scenarios. 

The paper is organized as follows: the PSO algorithm is briefly presented in Section 2, while Section 3 is 
devoted to the description of both the basic principles of FCMs and the learning procedure. In Section 4, the 
process control problem is described, and experimental results are reported and discussed in Section 5. The paper 
closes with a synopsis in Section 6. 

2 PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm that belongs to the class of swarm 
intelligence algorithms. Although it is closely related to the Evolutionary Computation field, the inspiration 
behind the development of PSO lies rather in social dynamics and emergent behavior that arise in organized 
groups of individuals[6,7,8]. 

PSO is a population-based algorithm, i.e., it exploits a population of search points that probe the search space 
concurrently. The population is called a swarm and the individuals (i.e., the search points) are called particles. 
Each particle moves with an adaptable velocity within the search space, retaining a memory of the best position it 
ever visited. Also, it exchanges information with the rest of the particles, regarding the most promising regions of 
the search space. There are two main variants of PSO with respect to the information that is communicated 
among the particles. In the global variant, the best position ever attained by all individuals of the swarm is 
communicated to all the particles, while, in the local variant, each particle is assigned to a neighborhood that 
consists of a prespecified number of particles. In this case, the best position ever attained by the particles that 
comprise the neighborhood is communicated among them[7,8,9]. 
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Figure 1. A Fuzzy Cognitive Map. 

 
Assume an n-dimensional search space, S ⊂ Rn, and a swarm consisting of N particles, X1,…,XN. Each 

particle is an n-dimensional vector, Xi = (xi1, xi2,…,xin)T, in S, and it moves with an adaptable velocity, Vi = (vi1, 
vi2,…,vin)T. The best previous position encountered by Xi is a point in S, denoted by Pi = (pi1, pi2,…, pin)T. Let gi 
denote the index of the particle that attained the best previous position among all the particles in the 
neighborhood of Xi, and t to represent the iteration counter. Then, the swarm is manipulated by the 
equations[7,9,10,11], 
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where i = 1,…,N; c1 and c2 are two parameters called cognitive and social parameters, respectively; and r1, r2, are 
random numbers uniformly distributed within [0,1]. The parameter χ is called the constriction factor and it is 
used as a mechanism for controlling the magnitude of the velocity.  

The value of the constriction factor depends on the values c1 and c2, and it is derived analytically by the 
formula[10], 
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with κ = 1, φ = c1 + c2, following the stability analysis of PSO[10,11]. Usually, the default values c1 = c2 = 2.05 are 
used, resulting in χ = 0.729. The initialization of the swarm and velocities is usually performed randomly and 
uniformly in the search space, although more sophisticated initialization techniques can enhance the overall 
performance of the algorithm[12]. 

3 BASIC CONCEPTS OF FUZZY COGNITIVE MAPS 

Kosko has introduced FCMs in 1986 as signed directed graphs for representing causal reasoning and 
computational inference processing[1]. FCMs comprise a soft computing modeling methodology that follows a 
method similar to human reasoning. They exploit a symbolic representation for the description and modeling of 
the system, and concepts are utilized to represent different aspects of the system as well as their behavior. The 
dynamic of the system is simulated by the interaction of concepts, which is expressed using weighted arcs that 
interconnect them.  

Let M be the total number of concepts of an FCM. The concepts are denoted by Ci, i = 1,…,M, and they 
represent the key-factors of the system. Each concept is characterized by a value Ai in [0,1], i = 1,…,M. The 
concepts are interconnected through weighted arcs, which imply the relations among them. A simple FCM with 
five nodes and ten weighted arcs is illustrated in Fig. 1. Each arc between two concepts, Ci and Cj, has a weight 
Wij, which is analogous to the strength of the causal link between Ci and Cj. The sign of Wij indicates whether the 
relation between the two concepts is direct or inverse. The direction of causality indicates whether the concept Ci 
causes the concept Cj or vice versa. Thus, a positive weight expresses positive causality, a negative weight 
expresses negative causality, and a zero weight expresses the lack of any relation between the interconnected 
concepts. 

FCMs are designed and configured by a group of human experts, thus, integrating their experience and 
knowledge on the characteristics and components of the simulated system. The experts determine the type and 
the number of concepts, as well as the initial weights of the FCM. The values determined by the experts are 
fuzzy, in order to avoid deficiencies caused by the direct assignment of numerical values. At the beginning, the 
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experts determine the relevant factors that will be represented as concepts. Then, they individually describe the 
causal relationships among the concepts, using a linguistic notion. The influence of a concept on another is 
characterized as “negative”, “positive” or “no influence”, and the linguistic weights on each arc are characterized 
as “strong”, “weak”, etc[13]. The linguistic variables are aggregated in a single linguistic variable, which is 
transformed to a single linguistic weight, through the SUM technique[14]. Finally, the Center of Area (CoA) 
defuzzification method[2,14] is used for the transformation of the linguistic to a numerical weight within [-1,1]. 
Thus, an initial weight matrix, 
 



















=

MMMM

M

M

initial

WWW

WWW
WWW

W

L

MOMM

L

L

21

22221

11211

, 

 
 
(4) 

 
with Wii = 0, i = 1,…,M, is obtained.  

The value, Ai, of a concept, Ci, expresses the quantity of its corresponding physical value and it is determined 
by transforming the fuzzy values to numerical values. Having assigned values to concepts and weights, the FCM 
is let to converge to a steady state, through the iterative scheme[2], 
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where k stands for the iteration counter; and Wji is the weight of the arc connecting concepts Cj and Ci. The 
function f is the well-known sigmoid function, 
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with λ > 0. In this work, we used λ = 1, since the values Ai must lie, by definition, within [0, 1]. The interaction of 
the FCM results after a few iterations in a steady state, where the values of the concepts are not modified further 
by the application of Eq. (5). If the steady state values of the output concepts of the FCM lie within desired 
ranges, then the proper operation of the simulated system is guaranteed. 

The critical dependence on the opinions of the experts, as well as the potential convergence to undesired 
steady states, are the two most significant weaknesses of FCMs. Learning procedures constitute means to increase 
the efficiency and robustness of FCMs by updating the weight matrix such that convergence to undesired steady 
states is alleviated. There are just a few established FCM learning algorithms and they are mostly based on ideas 
coming from the field of artificial neural networks training[15,16,17]. These algorithms start from an initial state and 
an initial weight matrix of the FCM, and adapt the weights in order to compute a weight matrix that leads the 
FCM to a desired steady state. The desired steady state is characterized by values of the FCM's output concepts 
that are accepted by the experts. The main drawback of this approach is the heavy dependence of the final 
weights' configuration on the initial weight matrix. Wrong initial estimation of the weights or large deviation 
among the suggestions of the experts may lead in reduced efficiency of the algorithms, as well as undesired 
steady states of the system. 

A different learning procedure that alleviates the problem of the potential convergence to an undesired steady 
state was proposed in[3,4,5]. This approach is based on PSO. The main goal is to determine the values of the cause-
effect relationships among the concepts, i.e., the values of the weights of the FCM that produce a desired 
behavior of the system. The desired behavior is characterized by output concept values that lie within desired, 
problem dependent bounds that are prespecified by the experts. The learning procedure is, to some extent, similar 
to that of neural networks training. More specifically, let C1,…,CM, be the concepts of an FCM, and let 
Cout1,…,Coutm, be the output concepts. The remaining concepts are considered input or interior concepts. The user 
is interested in restricting the values of these output concepts in strict bounds, 
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Figure 2. Flowchart of the proposed learning methodology. 

 
which are predetermined by the experts, and they are crucial for the proper operation of the modeled system. 
Thus, the main goal is to detect a weight matrix, W = [Wij], i,j=1,…,M, that leads the FCM to a steady state at 
which, the output concepts lie in their corresponding bounds, while the weights retain their physical meaning. 
Imposing constraints on the potential values assumed by weights attains the latter. To do this, we consider the 
objective function[3,4,5], 
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where H is the well-known Heaviside function, 
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and Aouti, i = 1,…,m, are the steady state values of the output concepts that are obtained through the application of 
the iterative scheme of Eq. (5), using the weight matrix W. Obviously, the global minimizers of the objective 
function F are weight matrices that lead the FCM to a desired steady state, i.e., all output concepts lie within the 
desired regions. The objective function F is non-differentiable and, thus, gradient-based methods are not 
applicable for its minimization. For this purpose, PSO is used for the minimization of F. The non-differentiability 
of F poses no problems in our approach since PSO, like all evolutionary algorithms, requires function values 
solely, and it can be applied even on discontinuous functions. An FCM with M, fully interconnected concepts 
corresponds to an M(M-1)-dimensional minimization problem. If some interconnections are missing, then their 
corresponding weights are zero and they can be omitted, reducing the dimensionality of the problem. This is most 
often the case, since the FCMs provided by experts are rarely fully connected. A flowchart of the learning 
procedure is depicted in Fig.2. 

The physical meaning of each interconnection is retained through constraints posed by the experts on the 
FCM’s weights. Constraints are provided in the form of negative or positive relations between two concepts. For 
example, if two concepts, Ci and Cj, are positively related, then the corresponding weight, Wij, takes values in 
[0,1], while, if they are negatively related, it takes values within [-1,0]. More strict constraints may be 
additionally posed on some weights, either by the experts or by taking into consideration the convergence regions 
obtained through the application of the learning algorithm, enhancing the overall performance of the algorithm. 

There is, in general, a plethora of weight matrices that lead the FCM to convergence to desired regions of the 
output concepts. PSO is a stochastic algorithm, and, therefore, different suboptimal matrices can be obtained in 
subsequent experiments. All these matrices are proper for the design of the FCM and follow the constraints of the 
problem, though each matrix may have different physical meaning for the system. Statistical  
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Figure 3. The industrial process control problem. 

 
analysis of the obtained weight matrices may help in the better understanding of the system's dynamic, as it is 
implied by the weights, as well as in the selection of the most appropriate suboptimal matrix. Further information 
on the problem at hand may be incorporated to enhance the procedure, either by modifying the objective function 
or by imposing further constraints on the weights. The proposed approach has proved to be very efficient in 
practice[3,4,5]. In the following section, its operation on an industrial process control problem is illustrated. 

 
4 AN INDUSTRIAL PROCESS CONTROL PROBLEM 

 
A process control problem from the field of chemical industry has been used to illustrate the workings of the 

proposed learning algorithm[3,4]. The system consists of two tanks, three valves, one heating element and two 
thermometers, one in each tank, as depicted in Fig. 3. Each tank has an inlet valve and an outlet valve. The outlet 
valve of the first tank is the inlet valve of the second tank. The main goal is, on the one hand, to keep the height 
of the liquid in both tanks within some limits, Hmin and Hmax, and, on the other hand, to keep the temperature of 
the liquid in both tanks within limits, Tmin and Tmax. The temperature of the liquid in Tank 1 is regulated through 
the heating element. The temperature of the liquid in Tank 2 is measured through a sensor thermometer. When 
the temperature of the liquid in Tank 2 decreases, valve V2 must open, in order to have hot liquid poured from 
Tank 1 into Tank 2. Thus, the control objective is to ensure that the following relations hold: 
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An FCM model has been constructed for this process control problem. The height and temperature of the liquid 
in each tank as well as the state of the valves have been represented as concepts of the FCM. More specifically, 
the following eight concepts have been used: 
  
Concept 1: Height of liquid in Tank 1. It is dependent on the state of valves V1 and V2. 
Concept 2: Height of liquid in Tank 2. It is dependent on the state of valves V2 and V3. 
Concept 3: State of the valve V1 (open, closed or partially open). 
Concept 4: State of the valve V2 (open, closed or partially open). 
Concept 5: State of the valve V3 (open, closed or partially open). 
Concept 6: Temperature of the liquid in Tank 1.  
Concept 7: Temperature of the liquid in Tank 2. 
Concept 8: Heating element, which is used to increase the temperature of the liquid in Tank 1. 
 
These concepts are interconnected with each other. The signs and the weight of each connection have been 
determined in[18,19]. Three experts were pooled to construct the FCM, following the methodology described in[19]. 
The resulted FCM is depicted in Fig. 4. The values of the concepts correspond to real measurements of the actual 
physical process. The output concepts of the problem, as proposed by the experts, are C1, C2, C6 and C7. All 
experts agreed regarding the direction of the interconnections between the concepts, and they determined the 
overall linguistic variable as well as the corresponding fuzzy set for each weight. The final ranges for the weights, 
as implied by the fuzzy regions, are 
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Figure 4: The FCM model for the process control problem. 

 
0.0  ≤ w13 ≤  0.5, 0.0  ≤ w14 ≤   0.5, 0.5  ≤ w24 ≤ 0.75, 0.25  ≤ w25 ≤ 0.75, 0.5 ≤ w31 ≤ 1.0,  

-1.0  ≤ w41 ≤ -0.5, 0.5  ≤ w42 ≤ 0.75, 0.0  ≤ w47 ≤ 0.25, -0.75  ≤ w52 ≤  0.0, 0.0 ≤ w63 ≤ 0.5, (11) 
0.25  ≤ w68 ≤  0.7, 0.0  ≤ w74 ≤   0.5, 0.25  ≤ w86 ≤  0.7.    

 
The initial weights of the FCM (in the order of appearance in Eq. (11)) are 
 

initialW = [0.21, 0.38, 0.70, 0.60, 0.76, -0.8, 0.8, 0.09, -0.42, 0.4, 0.53, 0.3, 0.6]. (12) 

 
The experts determined that the values of the concepts must change asynchronously. They also specified the 
desired regions for the output concepts, which reflect the proper operation of the modeled system.  

Preliminary results on the process control problem described above are reported in[4]. The learning procedure 
described in Section 3 succeeded in determining proper weight matrices of the FCM that result in desired output 
concept values. In the next section, two different cases for the output concept values are investigated. The most 
important component in developing the FCM is the determination of the concepts that best describe the system 
and the direction and grade of causality between concepts. 

 
5 EXPERIMENTAL RESULTS 
 

Two scenarios for the weight ranges and two different sets of constraints for the output concepts were 
considered. For each scenario, 100 independent experiments have been performed using the global variant of a 
constriction factor PSO. The swarm size was set to 5. The constriction factor, as well as the cognitive and the 
social parameter have been set to their default values, χ = 0.729, c1 = c2 = 2.05 [10]. The first set of output 
concepts values was 

 
0.5 ≤ C1 ≤ 0.7,    0.75 ≤ C2 ≤ 0.8,    0.6 ≤ C6 ≤ 0.7,    0.6 ≤ C7 ≤ 0.8, (13) 

 
while the second set was 
 

0.5 ≤ C1 ≤ 0.7,    0.75 ≤ C2 ≤ 0.8,    0.73 ≤ C6 ≤ 0.81,    0.65 ≤ C7 ≤ 0.75. (14) 
 
In previous work[4], it was derived that the weights w47, w52 and w86 take values in smaller regions than the 
regions proposed by the experts. More specifically they lied within the bounds[4] 
 

-0.25 ≤ w47 ≤ 0.25,    -0.5 ≤ w52 ≤ 0.2,    0 ≤ w86 ≤ 0.4. (15) 
 
The first scenario considered the constraints of Eq. (15), while the rest weights take values in the ranges given in 
Eq. (11). Experiments were performed for the two different cases of the output concept values, (Eqs. (13) and 
(14)), using the proposed learning technique. The obtained convergence regions for the weights are depicted in 
boxplots in Fig. 5. 

A suboptimal weight vector for the first set of output concept values was  
 

W = [0.406, 0.29, 0.717, 0.965, 0.841, -0.765, 0.681, 0.151, -0.453, 0.227, 0.356, 0.126, 0.18], 
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Figure 5. Weight ranges for the first scenario, and for the two sets of output concept values. 

 
and the corresponding values of the output concepts were C1 = 0.66, C2 = 0.713, C6 = 0.696, C7 = 0.694. A 
suboptimal weight vector for the second set of output concept values was  
 

W = [0.20, 0.612, 0.162, 0.316, 0.686, -0.807, 0.7, 0.215, -0.22, 0.657, 0.75, 0.48, 0.4], 
 
and the corresponding values for the output concepts were C1 = 0.62, C2 = 0.768, C6 = 0.742, C7 = 0.709. 
Comparing the derived convergence regions of the weights with the corresponding bounds provided by the 
experts, it is observed that weights w42 and w86 take values within even smaller regions. Also, the weight w86 has 
almost a constant value, approximately equal to 0.4, in the second set of the output concept values. 

In the second scenario, we took into consideration the results of the first scenario and considered the weights 
w14, w24 and w25, to lie in the ranges 

 
0.25 ≤ w14 ≤ 0.5,    0.25 ≤ w24 ≤ 0.6,    0.25 ≤ w25 ≤ 0.7. (16) 

 
The results obtained by keeping the rest weights within the ranges provided in Eqs. (11) and (15), and using the 
proposed learning technique, are depicted in Fig. 6. A suboptimal weight vector for the first set of output concept 
values was  
 

W = [0.275, 0.5, 0.6, 0.57, 0.95, -0.78, 0.596, 0.105, -0.134, 0.442, 0.685, 0.104, 0.171], 
 
and the corresponding values of the output concepts were C1 = 0.682, C2 = 0.762, C6 = 0.696, C7 = 0.684. A 
suboptimal weight vector for the second set of output concept values was  
 

W = [0.29, 0.389, 0.441, 0.616, 0.855, -0.64, 0.522, -0.022, 0.17, 0.502, 0.601, 0.285, 0.352], 
 
and the corresponding values for the output concepts are C1 = 0.699, C2 = 0.797, C6 = 0.731, C7 = 0.653.  

It is clear that the learning algorithm provides proper weight matrices and weight ranges for the FCM model, 
efficiently. The boxplots in Figs. 5 and 6 provide indications regarding the quality of the weights’ bounds 
determined by the experts, and it can be used in the future as a mechanism of the evaluation of the experts’ 
suggestions. In all cases, the mean number of PSO iterations was 5.  
  
6 SYNOPSIS 
 
An FCM learning technique using the PSO algorithm was described. This learning technique determines the 
appropriate cause-effect relationships (weights) among the concepts of FCMs, based on the minimization of a 
properly defined objective function through PSO. New instances of an industrial process control problem were 
studied, and the effectiveness of the methodology was investigated using two different scenarios for two different 
sets of desired output concepts values. The proposed learning procedure proved to be a promising approach, 
improving the effectiveness of the FCM operation mode. 
 
 



K.E. Parsopoulos, E.I. Papageorgiou, P.P. Groumpos, and M.N. Vrahatis 

  
Figure 6. Weight ranges for the second scenario, and for the two sets of output concept values. 
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