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Absfract-A parallel, multi-population Differential Evolution 
algorithm for multiobjective optimization is introduced. The 

enhance its performance by favoring uon-dominated individuals 
in the populations. he iMnary  on widely 
used test problem are comparisons with the VEGA 
apprnacb are provided and discussed. 

The rest of the paper is organized as follows; in Section I1 
the basic concepts of MO and the ~ i f f ~ ~ ~ ~ t i ~ l  ~ ~ ~ l ~ t i ~ ~  

the description of the proposed algorithm, as well as, to the 
presentation of the experimental results. A short discussion of 
the parallel implementation is also included in this sectbm 
Finally, the paper ends with a synopsis in Section IV. 

algorithm is equipped with a domination selection operator to algorithm, are briefly presented. Section ID, is devoted to 

I .  INTRODUCTION 
11. BACKGROUND MATERIAL 

Multiobjective Optimization (MO) problems consist of sev- 
eral competing and incommensurable objective functions. 
Such problems are frequently encountered in numerous sci- 
entific and engineering applications. The need for the con- 
current minimization of more than one objective functions, 
renders the use of Evolutionary Algorithms @As) particularly 
attractive. In contrast to traditional gradient-based techniques, 
evolutionary algorithms operate on a set of potential solutions 
of the problem. Thus, EAs are capable of detecting several 
solutions of an MO problem in a single run [l l ,  [21, [31, [41, 
[SI, [61. These solutions are called Pareto optimal, and each 
corresponds to a different trade-off among the objective func- 
tions. mical ly ,  a large number of Pareto optimal solutions 
exist. 

Differential Evolution (DE) is an efficient evolutionary 
optimization algorithm. It has been successfully applied on a 
plethora of applications [71, [SI, [91, [IO], [I 11, [12]. Like other 
EAs, DE can be easily parallelized 181. Besides a reduction 
in execution time, the parallel computation of solutions of 
an MO problem can also yield a better representation of the 
possible outcomes, thereby enhancing the performance of the 
algorithm [4]. 

This paper introduces a multi-population variant of DE, 
named Vector Evaluated Diflerential Evolution (VEDE), which 
is inspired by the Vector Evaluated Genetic Algorithm (VEGA) 
approach [31, [13], [14], [15]. In VEDE, each population is 
evaluated using one of the objective functions of the problem 
under consideration. Information sharing among the popula- 
tions takes place through the migration of the best individu- 
als. The performance of a parallel version of VEDE, which 
incorporates a domination selection scheme, is investigated 
on widely used test problems and compared to the VEGA 
approach. 

A. Basic Concepts of Multiobjective Optimization 

objective functions, 
Let S c W" be an n-dimensional search space, and let k 

(1) A(.) : s + P, i = 1,. . . , k ,  

he defined over S. Further assume, 

gj(2) < 0, j = 1 ,... ,m, 

to be m inequality constraints. Then the MO problem can be 
stated as finding a vector, 

Z* = (z;,.;, . . . ,sL)T E s, 

f(.) = VI(.), M.), . . . , f k ( Z ) l  : wn 
that satisfies the constraints and minimizes the function, 

Wk. (2) 

The goal of MO is to compute a set of Pareto optimal solutions 
to the aforementioned problem. 

Let U = ( ~ 1 , .  . . ,u t ) ,  and U = ( u l , .  . . ,vk). be two vectors. 
Then, U dominates U if and only if, 

u ; < u ; ,  i =  1, . . . ,  k ,  

and 
U, < U,, for at least one i. 

This property is known as Pareto dominance and it is used 
to define the Pareto optimal points. A solution, x, of the MO 
problem is said to be Pareto optimal if and only if, there does 
not exist another solution y. such that f (y )  dominates f(s). 
The set of all Pareto optimal solutions of an MO problem is 
called Pareto optimal set and is denoted as P*. The set, 

P ~ * = { ( f l ( z ) , . . . , f k ( 5 ) ) T  I z t P * } ,  
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is called Pareto front. A Pareto front PF' is convex if and 
only if, there exists w E P P ,  such that, 

X)lU)l + (1 - x)ll.ll 2 Il41, v u,u E P+'> v f (0>1). 

Respectively, it is concave if and only if, there exists w E 
'PF , such that, 

XJlUIJ + (1 - X ) l l W l l  < IlWlI, v u ,u  E Pp', v E (0,l). 

A Pareto front can be convex, concave or partially convex 
andor concave andor discontinuous. 

E. The Differential Evolution Algorithm 

Let S c R" be the search space of the problem under 
consideration. Then, the Differential Evolution (DE) algorithm 
utilizes NP, n-dimensional vectors, 

E S, Xi = (xi', . . . i = 1,.  . . , Nf, 
as a population for each iteration, called a generation, of the 
algorithm. The initial population is usually taken to be uni- 
formly distributed in the search space. At each generation, two 
operators, namely mutation and crossover (recombination), are 
applied on each individual, thus producing the new population. 
Then, a selection phase takes place, where each individual 
of the new population is compared to the corresponding 
individual of the old population, and the best between them is 
selected as a member of the population in the next generation. 

According to the mutation operator, for each individual, 
x!'), i = I,. . . , N P ,  at 'generation G, a muranr veeror, 

is determined using one of the following equations [161, [17]: 

where, Xk:? is the best individual of the population at 
generation G F > 0 is a real parameter, called mutation 
constant, which controls the amplification of the difference 
between two individuals so as to avoid search stagnation: 
and T I ,  T ~ ,  ~ g ,  ~ 4 ,  T S ,  are mutually different integers, randomly 
selected from the set {l, 2 , .  . . , i - 1, i + 1,. . . ,Pip}. 

Following the mutation phase, the crossover (recombina- 
tion) operator is applied on the population. For each mutant 
vector, V,ic+l), an index mbr(i) E {I, 2, . . . , n} is randomly 
chosen, and a trial vector, 

Fig. I .  The ring topology. 

is generated, with 

uij 
('+I) (c+I) = wt. , if (randb(j) < CR) or ( j  = mbr(i)), { z@, if (randb(j) > CR) and ( j  mbr(i)), 

where, j = 1,2,. . . , n; randb(j) is the j-th evaluation of a 
uniform random number generator within [ O , l ] ;  and CR is 
a userdefined crossover constant in the range [0,1] [161, 
[17]. In other, words, the trial vector consists of some of 
the components of the mutant V ~ C ~ M ,  and at lesst one of 
the components of a randomly selected individual of the 
population (i.e. the individual with index.mbr(i)). 

To decide whether the vector U,(G") should be a member of 
the population comprising the next generation, it is compared 
to the .corresponding vector XjG'. Thus, if f denotes the 
objective function under consideration, then, 

111. PROPOSED ALGORITHM A N D  EXPERIMENTAL 
', RESULTS 

A. The Proposed Algorithm ' 
Vector Evaluated Differential Evolution (VEDE) is a multi- 

population DE approach, inspired by VEGA [3], N31, [141, 
1151. Specifically, a number,.hf, of populations are considered 
in a prespecified ring topology, as depicted in Fig. 1 .  Each 
population' is evaluated using as fitness function, one of 
the objective functions of the problem at hand. If k is the 
number of the objective functions, and k < M ,  then the 
i-th population is evaluated according to the j-th objective 
function, where, 

. 

i m o d b ,  if i # ~ b ,  r = 1 , 2  , ._ . ,  
k, otherwise, js { 

a n d i = l ,  ..., M .  
In every generation, the best individual, Xi,$, of the 

i-th population, migrates to the (i + 1)-tb populatlon of the 
ring. Then, the (i + 1)-th population uses X j z s ,  as the best 
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individual to produce its mutant vectors at generation (G+ 1). 
Obviously, only the DE operators'that use the best individual 
in the mutations, i.e. the variants described in Eqs. (4). (5). 
and (6). can take full advantage of this information exchange 
procedure. 

Moreover, a domination selection procedure, similar to that 
of Abbass [MI, is applied, i.e. instead of using the plain DE 
selection operator of Eq. (8), we use the following one: 

U!""), if f (U!"")) dominates f (Xi"'), 
Xi"), otherwise, 

x , ( G + ~ )  = 

where, f is the vector function defined in Eq. (2). This 
selection scheme favors nondominated individuals in the 
population and it has proved to perform better in practice. 

VEDE can be easily parallelized. The populations can be 
distributed in several machines, with migrations taking place 
from node to node. For this purpose, the Parallel Virtual 
Machine (PVM) was used [8], [19]. 

A high level description of the parallel algorithmic scheme 
follows: 

At the master node 
1. Spawn M populations, 

2. For each generation 
3. 
4. 

At each population 
1. For each generation 
2. 
3. 
4. Receive a migrated individual 

each one on a different processor. 

Receive an individual from each population. 
Send the individual that will migrate to the 
next population of the ring topology. 

Perform a complete DE generation. 
Send the best individual to the master node. 

and assign it to the best individual. ' 

E. Presentation of Experimental Results 

Four well-known MO benchmark problems were used as 
a first step in the investigation of VEDEs performance. Each 
test problem consists of two objective functions of the form 

f I ( 4  = 21, (9) 
fz(z1,. . . ,zn) = g(z2,. . . ,zn) x h(f1,g). (10) 

Specifically, we considered the following problems [6]: 

TEST PROBLEM 1. This test problem is defined as: 

with n = 30 and z; E (0, 11. The Pareto front for this problem 
is convex. 

TABLE I 
THE CHARACTERISTICS OF THE SYSTEM USED 

CPU Type Intel Celeron 9 W M H z  
Memory 256-MB per machine 
Operating System Red Hat Linux 8.0 

TEST PROBLEM 2. This test problem is the non-convex 
counterpart to Test Problem 1. It is defined as: 

flbl) = 21, ( 14) 

with n = 30 and z, E [ O , l ] .  

TEST PROBLEM 3. This test problem is defined as: 

fl(.1) = 21, 

g n  
g(z2, ..., z,) = l+--Cz;, 

n-1 i=2 

h(f1,g) = 1 - fi- +sin(lO?rfl), (19) 

with n = 30 and z; E [0, 11. The Pareto front consists of 
several convex parts. 

TEST PROBLEM 4. This test problem is defined as: 

f I ( 4  = sl, (20) 
g(z2,. . . , z,) = 1 + 10(n - 1) + 

n 

+ (zf - lOco~(4i~z;)) , (21) 
i=2 

h(fi,g) = 1 -  @, (22) 

and it has 219 local Pareto fronts. 
All experiments were performed in parallel, using the PVM 

communication library. The key characteristics of the system 
used, are reported in Table I. In addition to the reported 
hardware, a Pentium 111 machine with 512-MB of memory, 
running under Red Hat Linux 8.0, was used as a server. 

For the maintenance of the Pareto optimal set, the archiving 
technique described in [201, which uses an external arczhive, 
was employed. 

The obtained results were compared to that of VEGA, 
reported in http:/hww.tik. ee. ethz.cW-zitzler/restdata.html. For 
this purpose, two established measures, namely the C mea- 
sure [6], [21], and the V measure [21], [22] were employed. 
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Fig. 2. Results OF VEDEI For the Test Problem 1 

Fig. 3. Results of VEDEI for the Test Problem 2 

Fig. 4. Results of VEDEl for the Test Problem 3: 

Fig. 5. Results of VEDEl for the Test Problem 4. 
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Fig. 6. Results of VEDE2 for the Test Problem 1 

Y 04 

Fig. I .  Re~ults of VEDEZ for the Test Problem 2. 

/? 

Fig. 8. Results of VEDB2 for the Tat h b l e m  3. 

Fig. 9. Results of VEDE2 for the Test Problem 4. 
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Fig. 10. Resulm of VEDE3 for h e  Test Problem 1. 

Fig. 11. ResulU of VEDE3 for the Test Problem 2 

Fig. 12. Resub of VEDE3 for the Test Problem 3. 

Fig. 13. Results of VEDE3 for the Test Problem 4. 
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Metric C(il,B) measures the fraction of members of the 
Pareto front B that are dominated by members of the Pareto 
front A, while V ( A , B )  is the fraction of the volume of 
the minimal hypercube containing both fronts, that is strictly 
dominated by members of A but is not dominated by members 
of B [21]. Following the analysis presented in 161, a total 
number of 100 individuals divided in several populations, 
as well as a maximum of 250 iterations per population per 
run, were used. We performed 30 experiments for each test 
problem, using the DE variants described in Eqs. (4), (5). 
and (6). respectively, because they suit better the migration 
scheme described in the previous section. The three variants 
are denoted as VEDEI, VEDE2, and VEDE3, respectively. All 
results are reported in the boxplots of Figs. 2-13. Each boxplot 
depicts the obtained values of the corresponding measure, 
in 30 experiments. The box has lines at the lower quartile, 
median, and upper quartile values. The lines extending from 
each end of the box (whiskers) show the extent of the rest of 
the data. The outliers, i.e. the values that lie beyond the ends 
of the whiskers, are denoted with crosses. 

DE is quite sensitive to population size, especially when 
the number of individuals becomes small. This was verified 
in our preliminary experiments with VEDE. Dividing the 
100 individuals into more than 5 populations (less than 20 
individuals per population) resulted in substantial performance 
decline. Thus, our experiments were performed using 2 up to 
5 populations. In Test Problems I to 3, standard values for 
the F and CR parameters, equal to 0.7 and 0.9, respectively, 
were used. These values have proved to be good default 
values for the DE algorithm in many applications 181. In Test 
Problem 4, the aforementioned values proved inappropriate. 
Good parameter values proved to be F = 0.5 and CR = 0.6, 
for VEDEl and VEDE3, while for VEDEZ, F was set to 0.1 
and CR was set to 0.7. 

The speedup gained from the parallel implementation using 
up to 5 nodes is depicted in Fig. 14. As illustrated, there is a 
linearly increasing speedup rate using up to 4 nodes. Beyond 
4 nodes, the speedup rate increases marginally. This effect can 
be attributed to the small number of individuals per population, 
which falls under 20. 

In all cases, VEDE outperformed the VEGA with respect to 
the two metrics, C and V .  As seen in the first two boxplots of 
Figs. 2, 6, and IO, all three VEDE variants performed similarly 
in Test Problem 1. However, VEDE2 seems more robust, since 
the boxes are shorter and they lie closer to the upper bound, 
1.0. The same can be noticed in the results for Test Problem 4. 
In the other two problems, the algorithms performed similarly, 
with VEDE3 having a slightly better performance, with respect 
to the V measure, in Test Problem 2. In all cases, increasing 
the number of populations resulted in a decrease of the overall 
performance of the algorithm with respect to the metric C. An 
exception is Test Problem 2, where increasing the number of 
populations improved the V metric. The results support the 
claim that VEDE, like DE, is sensitive to population size. 

2 3 4 5 
NUMBER OF NODES 

0.9 

Fig. 14. Speedup gained using up to 5 nodes 

Iv. SYNOPSIS 

This paper introduces a parallel, multi-population Differ- 
ential Evolution algorithm, called Vector Evaluated Differen- 
tial Evolution (VEDE), for multiobjective optimization. The 
algorithm uses a domination selection operator to enh,ince 
its performance by favoring non-dominated individuals in 
the populations. Preliminary experimental results on widely 
used test problems, as well as comparisons with the VEGA 
approach, are promising. The algorithm’s sensitivity posed by 
the inherent sensitivity of the DE algorithm to its parameters 
(most notably population size) requires further investigation. 
This issue, along with altematives to ‘the ring topology, will 
be addressed in a future work. 
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