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ABSTRACT 
This paper constitutes a first study of the Particle Swarm 
Optimization (PSO) method in Mu|tiobjective Optimi~.a- 
tion (MO) problems. The ability of PSO to detect Pareto 
Optimal points and capture the shape of the Pareto Front 
is studied through experiments on well-known non-trivial 
test functions. The Weighted Aggregation technique with 
fixed or adaptive weights is considered. Furthermore, criti- 
cal aspects of the VEGA approach for Multiobjective Opti- 
mization using Genetic Algorithms are adapted to the PSO 
framework in order to develop a multi--swarm PSO that can 
cope effectively with MO problems. Conclusions are derived 
and ideas for further research are proposed. 
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1. INTRODUCTION 
Multiobjective Optimization (MO) problems are very com- 

mon, especially in engineering applications, due to the mul- 
ticriteria nature of most real-world problems. Design of 
complex hardware/software systems [20], atomic structure 
determination of proteins [2], potential function parameter 
optimization [18], x-ray diffraction pattern recognition [14], 
curve fitting [1] and production scheduling [19] are such ap- 
plications, where two or more, sometimes competing and/or 
incommensurable objective functions have to be minimized 
simultaneously. In contrast to the single-objective optimiza- 
tion case, where the optimal solution is clearly defined, in 
MO problems there is a whole set of trade-offs giving rise to 
numerous Pareto Optimal solutions. These points are opti- 
mal solutions for the MO problem when all objectives are 
simultaneously considered. 

Although t.he traditional Gradient-based optimization te- 
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chniquee can be used to detect Pareto Optimal solutions, 
this approach suffers from two critical drawbacks; (I) the ob- 
jectives have to be aggregated in one single objective func- 
tion and (II) only one solution can be detected per opti- 
mization run. The inherent difficulty to foreknow which 
aggregation of the objectives is appropriate in addition to 
the heavy computational cost of Gradient-based techniques, 
necessitates the development of more efficient and rigorous 
methods. Evolutionary Algorithms (EA) seem to be eepe- 
dally suited to MO problems due to their abilities, to search 
simultaneously for multiple Pareto Optimal solutions and, 
perform better global search of the search space [20]. 

The Particle Swarm Optimization (PSO) is a Swarm Intel- 
ligence method that models social behavior to guide swarms 
of particles towards the most promising regions of the search 
space [3]. PSO has proved to be efficient at solving Uncon- 
strained Global Optimization and engineering problems [4, 
10, 11, 12, 13, 17]. It is easily implemented, using either 
binary or floating point encoding, and it usually results in 
faster convergence rates than the Genetic Algorithms [7]. 
Although PSO's performance, in single-objective optimiza- 
tion tasks, has been extensively studied, there are insulB- 
cient results for MO problems thus far. In this paper a first 
study of the PSO's performance in MO problems is pre- 
sented through experiments on well-known test functions. 

In the next section the basic concepts and terminology of 
MO are briefly presented. In Section 3 the PSO method is 
described and briefly analyzed. In Section 4 the performance 
of PSO in terms of finding the Pareto Front in Weighted 
Aggregation cases is exhibited, while in Section 5 a modified 
PSO is used to perform MO similar to the VEGA system. In 
the last section conclusions are derived and farther research 
directions are proposed. 

2. BASIC CONCEPTS 
Let X be an n-dlmensional search space and ]~(z), i = 

1, . . .  , k, be k objective functions defined over X. Assuming, 

g~Cz) ~< 0, i---- 1, . . .  ,m, 

be m inequality co~traints, the MO problem can be stated 
as finding a vector z* = (z~,z~, . . .  ,z*) E X that saris- 
flee the constraints and optimizes (without loss of generality 
we consider only the minimization case) the vector func- 
tion f(z) ~- i l l(z),  f3(z) , . . .  , ]k(z)]. The objective func- 
tions may be in conflict, thus, in most cases it is impossible 
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to  o b t a i n  for all ob jec t ives  t h e  g lobal  m i n i m u m  at  t h e  s a m e  
poin t .  T h e  goal  of M O  is to  p rov ide  a se t  of P a r e t o  O p t i m a l  
so lu t ions  to  t h e  a fo remen t ioned  p rob l em.  

Le t  u = ( u l , . . -  , uk) a n d  v --  ( v l , . . .  , vk) be  two vectors .  
Then ,  ~t dominateJ v if a n d  only if ul ~< vl, i = 1 , - - .  , k, and 

< vi for a t  leas t  one c o m p o n e n t .  Th i s  p r o p e r t y  is  known 
as Pare~o Dominance and  i t  is used  to  def ine t h e  P a r e t o  
O p t i m a l  points .  Thus ,  a so lu t ion  z of  t he  M O  p r o b l e m  
is sa id  to  b e  Pareto Optimal if a n d  only  if  the~re does no t  
exis t  ano the r  so lu t ion  y such t h a t  f ( y )  d o m i n a t e s  f ( z ) .  T h e  
set  of all P a r e t o  O p t i m a l  so lu t ions  of  an  M O  p r o b l e m  is 
ca l led  Pareto Optimal Set a n d  we deno te  i t  w i th  7 ~*. T h e  
set ~* = {(/~(-.),... ,Ik(z)) l z e r*} is c~ed Par~to 
]W'ont. A Pareto Front 73£ =* is called cortvez if and only if 
V u, v E 73~ r*, V A ~ (0, 1), B u7 e 7~£ =" : AI[u][+(1--A)IIvl[ >t 
I1~11- Respec t ive ly ,  i t  is ca l led  concaue i f  a n d  on ly  i fV u, v 
73.~ *, V A E (0, 1), ~ w E 7~3 c~ : ~ l lu l l  + (1 - A) l lu l l  ~< I1~11. 
A P a r e t o  F r o n t  can  be convex ,  concave or  p a r t i a l l y  c o n v e x  
a n d / o r  concave  a n d / o r  d i scont inuous .  T h e  las t  t h r e e  cases 
p re sen t  t he  g rea tes t  d i ~ c u l t y  for mos t  M O  techniques .  

In  t h e  nex t  sect ion,  t he  P S O  techn ique  is br ief ly  p resen ted .  

3. PARTICLE SWARM OPTIMIZATION 
T h e  P S O  is a S w a r m  In te l l igence  m e t h o d  t h a t  differs f rom 

w e l l - k n o w n  E v o l u t i o n a r y  C o m p u t a t i o n  a lgor i thms ,  such as 
t h e  Gene t i c  A l g o r i t h m s  [5, 6, 7], in  t h a t  t h e  p o p u l a t i o n  is 
n o t  m a n i p u l a t e d  t h r o u g h  o p e r a t o r s  i n sp i r ed  b y  t h e  h u m a n  
D N A  procedt t res .  I n s t e a d ,  in  P S O ,  t h e  p o p u l a t i o n  d y n a m i c s  
s i m u l a t e  the  b e h a v i o r  of a Kbixds' f lock",  where  social  shar -  
ing of i n f o r m a t i o n  t akes  p lace  a n d  i nd iv idua l s  prof i t  f rom t h e  
discoveries  a n d  p rev ious  exper i ence  of all  o the r  c o m p a n i o n s  
du r ing  t h e  sea rch  for food.  Thus ,  each compan ion ,  ca l led  
particle, in t h e  p o p u l a t i o n ,  which  is ca l led  stuarm, is a s s u m e d  
to  ~fly" over  t h e  sea rch  space  looking  for p romis ing  regions  
on t h e  l andscape .  For  e x a m p l e ,  in t h e  s i n g l e - o b j e c t i v e  min-  
i m i z a t i o n  case,  such  regions  possess  lower func t ion  values  
t h e e  o the r s  p rev ious ly  v is i ted .  In  th is  con tex t ,  each pa r t i c l e  
is t r e a t e d  as a p o i n t  in to  t h e  search space ,  which  ad jus t s  i ts  
own "flying" accord ing  to  i t s  f lying exper i ence  as well as t h e  
f lying expe r i ence  of o the r  par t ic les .  

F i r s t ,  l e t  us  define t h e  n o t a t i o n  a d o p t e d  in  th i s  pape r :  
a s suming  t h a t  t h e  sea rch  space  is D - d i m e n s i o n a l ,  t h e  i - t h  
p a r t i c l e  of t h e  s w a r m  is r e p r e s e n t e d  b y  t h e  D - d i m e n s i o n a l  
vec to r  Xi  ---- ( z lx , z~2 , . . .  ,zCD) a n d  the  be s t  pa r t i c l e  in t h e  
swarm,  i.e. t h e  pa r t i c l e  wi th  t h e  smal l e s t  func t ion  value,  is 
d e n o t e d  b y  t h e  index  g. T h e  bes t  p rev ious  pos i t i on  (i.e. the  
pos i t i on  g iv ing  t h e  b e s t  func t ion  value)  of  t h e  / - t h  pa r t i -  
cle is r eco rded  a n d  r e p r e s e n t e d  as P~ ---- (p~t,p~2,... ,p~D), 
while  t he  pos i t i on  change  (veloci ty)  of t h e  i - t h  pa r t i c l e  is 
r e p r e s e n t e d  as Vi ~ (v~x, v~2,.. .  , V~D). Fol lowing th is  no t a -  
t ion ,  t h e  pa r t i c l es  are  m a n i p u l a t e d  accord ing  to  t he  follow- 
ing  equa t ions  

Uid = WJIJid "4- CXrl~id -- ~id) -4- c2r2~sd -- ~id), (1) 

z ~  = z , d + X v ~ ,  (2 )  

where  d = 1 , 2 , . . .  , D ;  N is t h e  size of  t h e  p o p u l a t i o n ;  
i ---- 1, 2 , . . .  , N ;  X is a cons t r i c t i on  fac tor  which  cont ro l s  a n d  
cons t r i c t s  t h e  ve loc i ty ' s  m a g n i t u d e ;  ~ is t h e  i n e r t i a  weight ;  
cl a n d  c2 are  two pos i t ive  cons t an t s ;  rx a n d  r2 are  two r an -  
d o m  n u m b e r s  w i t h i n  t h e  r ange  [0, 1]. 

E q u a t i o n  (1) d e t e r m i n e s  t he  i - t h  pa r t i c l e ' s  new veloc i ty  
as a func t ion  of  t h r e e  t e rms :  t h e  pa r t i c l e ' s  p rev ious  veloc-  

i ty;  t h e  d i s t ance  b e t w e e n  the  b e s t  p rev ious  p o s i t i o n  of t h e  
pa r t i c l e  a n d  i ts  c u r r e n t  pos i t ion ,  and  f inal ly;  t h e  d i s t ance  
be tw e e n  t h e  s w a r m ' s  be s t  exper i ence  ( the  pos i t i on  of t h e  
b e s t  pa r t i c l e  in t h e  swarm)  a n d  t h e  4-th pa r t i c l e ' s  c u r r e n t  
pos i t ion .  Then ,  accord ing  to  E q u a t i o n  (2), t h e  i - t h  p a r t i c l e  
'qiies " t owards  a new pos i t ion .  I n  genera l ,  t h e  p e r f o r m a n c e  
of each pa r t i c l e  is m e a s u r e d  accord ing  to a f i tness  funct ion ,  
which  is p r o b l e m - d e p e n d e n t .  In  o p t i m i z a t i o n  p r o b l e m s ,  t h e  
f i tness  func t ion  is usua l ly  t he  ob j ec t i ve  func t ion  u n d e r  con-  
s idera t ion .  

T h e  role of  t h e  i ne r t i a  weight  w is cons ide red  to  b e  c ruc ia l  
for t he  P S O ' s  convergence.  T h e  i n e r t i a  weight  is e m p l o y e d  
to  cont ro l  t h e  i m p a c t  of  t h e  p rev ious  h i s t o r y  of  ve loci t ies  on 
t h e  cu r ren t  ve loc i ty  of  each par t ic le .  Thus ,  t h e  p a r a m e t e r  
w regu la t e s  t h e  t r a d e - o f f  be tween  g lobal  a n d  loca l  explo-  
r a t i o n  ab i l i ty  of t h e  swarm.  A large  i n e r t i a  weight  fac i l i t a tes  
g lobal  e x p l o r a t i o n  ( search ing  new areas) ,  whi le  a sma l l  one 
t e n d s  to  fac i l i t a te  local  exp lo ra t i on ,  i.e. f i n e - t u n i n g  t h e  cur-  
r en t  search  area.  A su i t ab l e  va lue  for t h e  i ne r t i a  weight  w 
ba l ances  t h e  g lobal  mad local  e x p l o r a t i o n  a b i l i t y  and,  conse-  
quent ly ,  r educes  t h e  n u m b e r  of  i t e r a t i ons  r e q u i r e d  to  loca te  
t h e  o p t i m u m  solut ion .  A genera l  ru le  of  t h u m b  sugges t s  t h a t  
i t  is b e t t e r  to  in i t i a l ly  set  t h e  i n e r t i a  to  a l a rge  value,  in  o r d e r  
to  m a k e  b e t t e r  g lobal  e x p l o r a t i o n  of  t h e  search  space ,  a n d  
g r a d u a l l y  decrease  i t  to  ge t  m o r e  ref ined solut ions .  Thus ,  
a t i m e - d e c r e a s i n g  i ne r t i a  weight  value  is used.  T h e  in i t ia l  
s w a r m  can  b e  g e n e r a t e d  e i the r  r a n d o m l y  or  us ing  a Sobol  
sequence  gene ra to r  [15], which  ensures  t h a t  t h e  pa r t i c l e s  will 
be  un i fo rmly  d i s t r i b u t e d  w i th in  t h e  search  space .  

F r o m  t h e  above  discuss ion,  i t  is obvious  t h a t  P S O  resem-  
bles,  to  some  ex ten t ,  t h e  " m u t a t i o n "  o p e r a t o r  of Gene t i c  
Algor i thm~ t h r o u g h  t h e  p o s i t i o n  u p d a t e  E q u a t i o n s  (1) mad 
(2). Note ,  however ,  t h a t  in P S O  t h e  ~muta t ion"  o p e r a t o r  is 
gu ided  b y  t h e  pa r t i c l e ' s  own ~flying" expe r i ence  a n d  benef i t s  
f rom the  s w a r m ' s  "flying" exper ience .  In  o t h e r  words ,  P S O  
is cons ide red  as p e r f o r m i n g  m u t a t i o n  w i t h  a "conscience", 
as p o i n t e d  ou t  b y  E b e r h a r t  a n d  Shi  [4]. 

In  t h e  n e x t  sect ion,  some  w e l l - k n o w n  b e n c h m a r k  M O  
p r o b l e m s  a re  de sc r ibed  a n d  resu l t s  f rom t h e  a p p l i c a t i o n  of 
P S O  us ing  W e i g h t e d  A g g r e g a t i o n  a p p r o a c h e s  a r e  exh ib i t ed .  

4. THE WEIGHTED AGGREGATION AP- 
PROACH 

T h e  Weighted Aggregation is t h e  mos t  c o m m o n  a p p r o a c h  
for coping  w i th  M O  prob lems .  A c c o r d i n g  to th i s  a p p r o a c h ,  
all  t h e  ob jec t ives  a re  s u m m e d  to  a we igh t ed  c o m b i n a t i o n  
F = ~-]~=1 w J i ( z ) ,  whe re  w~, i = 1 , . . .  , k, a re  n o n - n e g a t i v e  
weights .  I t  is u sua l ly  a s s u m e d  t h a t  ~ - - x  wi = 1. T h e s e  
weights  can  be  e i the r  f ixed  or d y n a m i c a l l y  a d a p t e d  d u r i n g  
t h e  o p t i m i z a t i o n .  

I f  t h e  weights  a re  f ixed  t h e n  we a re  in  t h e  case  of  t h e  
Conuentional Weighted Aggregation ( C W A ) .  Us ing  t h i s  ap-  
p roach  only  a single P a r e t o  O p t i m a l  p o i n t  can  b e  o b t a i n e d  
pe r  o p t i m i z a t i o n  r u n  a n d  a p r io r i  knowledge  of  t h e  search  
space  is r e q u i r e d  in  o rde r  to  choose  t h e  a p p r o p r i a t e  weights  
[9]. Thus ,  t h e  search  has  t o  be  r e p e a t e d  severa l  t i m e s  t o  ob-  
t a i n  a des i r ed  n u m b e r  of  Paxe to  O p t i m a l  po in ts .  Yet ,  t h i s  is 
no t  su i t ab l e  in  mos t  p r o b l e m s  d u e  to  t i m e  l i m i t a t i o n s  a n d  
h e a v y  c o m p u t a t i o n a l  costs.  Moreover ,  C W A  is u n a b l e  to  
d e t e c t  so lu t ions  in  concave  reg ions  of  t h e  P a r e t o  F r o n t  [9]. 

O t h e r  W e i g h t e d  A g g r e g a t i o n  approar2aes have  b e e n  pro-  
p o s e d  to  a l l ev ia te  the  l i m i t a t i o n s  of  t h e  C W A .  For  a two- 

6 0 4  



object ive  MO problem, the  weights can be modified during 
the  opt imizat ion,  according to  the  following equations,  

~/)l(t) = sign ( s in (2~r t /F) ) ,  Io2 (t) = 1 -- wl (t), 

where t is the  i te ra t ion ' s  index and F is the weights '  change 
frequency. This is the  wel l -known Bang-Bang Weighted Ap- 
grepation (BWA) approach,  according to which, the  weights 
are changed ab rup t ly  due to  the  usage of the  sign(-) func- 
tion. Al ternat ively,  the weights can be  gradual ly  modified 
according to the  equations,  

w~(t) -- I s i n ( ~ t / F ) l ,  ~2(t )  -- ] - wx(t). 

This is called Dynamic Weighted Aggregation (DWA). The  
slow change of the  weights forces the  opt imizer  to  keep mov- 
ing on the  Pare to  Front ,  if  it  is convex, performing be t t e r  
t han  in the  BWA case. I f  the  Pare to  Front  is concave then 
the  performance using DWA and BWA is almost identical  
when Genet ic  Algor i thms are used [9]. 

The  three  different approaches t ha t  are ment ioned above 
have been appl ied  in exper iments  using the PSO technique,  
wi th  F ---- 100 for the BWA and F ---- 200 for the  DWA case 
respectively.  The  benchmark  problems tha t  were used are 
d ~ m e d  in [8, 21]: 

* Funct ion  F1 (convex, uniform Pare to  Front):  
Y~ = 1-. E~=~ ~-L f~ = ~ E~_-I(~, - 2) 2. 

* Funct ion F2 (convex, non-uni form Pare to  Front) :  

I,  

. Funct ion  Fs (concave Pare to  Front) :  
f l  = z l ,  9 ---- 1 -]- ~ E~'--2 z , ,  f2 ----- 9 (1 - ( ] 1 / 9 ) 2 ) .  

• F u n c t i o n  F4 (ne i the r  pu re l y  convex no r  p u r e l y  concave 
Pareto Front): Yl = "-1, g = 1 + ~ E~=2 =', 

• Funct ion Fs (Pare to  Front  tha t  consists of separa ted  
convex par ts ) :  f l  = z l ,  g = I + ~ - I  ~-~-~=2 z, ,  

= - 

Although simple and consisting of only two objectives, 
these problems are considered difficult (especially Fs,  F4 and 
F~) due to the  shape of the  Pare to  Front  (purely or par t ia l ly  
concave, discontinuous e tc . ) .  In  order to have comparable  
results  in finding the Pare to  Front  of the  benchmark  prob- 
lems with  the  results  provided in [9] for the  Evolut ionary  
Algor i thms case, we used the pseudocode provided in [9] 
to bui ld  and mainta in  the  archive of Pare to  solutions and 
we performed all s imulat ions using the  same paramete r  val- 
ues. Thus,  we performed 150 i terat ions of PSO for each 
problem,  wi th  z G [0, 1] 2. The  PSO parameters  were fixed 
c~ ---- c2 = 0.5 and the iner t ia  w was gradual ly  decreased 
from 1 towards  0.4. The  size of the  swarm depended  on the 
problem bu t  never exceeded 40. 

The  first exper iments  were done using the CWA approach 
with a small  swarm of 10 particles.  The desired number  of 
Pare to  Op t ima l  points  was 20 for the functions F1, F2, F.~ 
and 40 for F4. Thus we had  to run the a lgor i thm 20 t imes 
for the  first three  functions and 40 for the  fourth. The  ob- 
t a ined  Ps re to  Fronts  are exhibi ted  in Figures 1 and 2 and 
they  are s imilar  to those obta ined  from the  Evolut ionary  
Algor i thm in [9] bu t  with very low computa t iona l  cost and 

fast convergence ra te  (less than  2 minutes  were needed for 
each function).  

~ m A m q  m ~  

m 
g 

g 

O q b P ~ O O O D ~  

' F i g u r e  1: C W A  a p p r o a c h  r e s u l t s  fo r  F I  a n d  F2. 

| 

t . . . . . . . . . .  

F i g u r e  2: C W A  a p p r o a c h  r e s u l t s  fo r  F3 a n d  F4. 

As it was expected,  the  CWA approach was able to detect  
the  Pare to  Front  in F1, where it is convex and uniform, 
in F2, where it is convex and non-uniform,  and in F4 i t  
detected only the  convex par ts .  In Fs (concave case) it  was 
unable to  detect  Pare to  Opt ima l  points  o ther  than  the two 
ends of the  Pare to  Front.  The  ob ta ined  Pare to  Fronts for 
the exper iments  using the BWA s a d  DWA approaches are 
exhibi ted  in Figures 3--6. 

~ r ~ l  mm~ Ps~o~ 

l l . l g , m 

l U l  ~ I 

i .  

u i IJ | i i ( l u  • u 

F i g u r e  3: B W A  ( le f t )  a n d  D W A  ( r i g h t )  a p p r o a c h e s '  
r e s u l t s  fo r  t h e  f u n c t i o n  F I .  

I t  is clear tha t  PSO succeed in cap tur ing  the  shape of 
Pare to  Front  in each case. The  results  are be t t e r  using the  
DWA approach,  with the  exception of the  case of the  con- 
cave Pare to  Front  of the  function F3, at  which the BWA 
approach  performed bet~.er. Swarm size was equal to  20 for 
all s imulations,  except  for the  function F~, for which i t  was 
set to 40. 

The  MO problems can be a l ternat ive ly  solved using popu  
la t ion-based  non -Pa re to  approaches ins tead  of Weights Ag- 
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F i g u r e  4: B W A  (left)  a n d  D W A  ( r igh t )  a p p r o a c h e s '  
r e s u l t s  for  t h e  f u n c t i o n  Fs. 

i 

F i g u r e  6: B W A  (left)  a n d  DWA,  ( r i gh t )  a p p r o a c h e s '  
r e s u l t s  fo r  t h e  f u n c t i o n  Fs. 

F i g u r e  5: B W A  (left)  a n d  D W A  ( r igh t )  a p p r o a c h e s '  
r e s u l t s  for  t h e  f u n c t i o n  F4. 

gregating approaches. One such approach is V E G A  (Vector 
Evaluated Genetic Algorithm), developed by Scha~er [16]. 
In the next section, a modification of the PSO algorithm 
borrowing ideas from V E G A  is used in MO problems. 

5. A P O P U L A T I O N - B A S E D  N O N - P A R E T O  
A P P R O A C H  

According to the VEGA approach, fractions of the next 
generation, or subpopulations, are selected from the old gen- 
eration according to each of the objectives, separately. After 
shuffling all these sub-populat ions together, crossover and 
mutat ion are applied to generate the new population [16]. 

The main ideas of V E G A  were adopted and modified to 
fit the PSO framework, developing the VEPSO algorithm. 
We used two swarms to solve the five benchmark problems 
F1-F5. Each swarm was evaluated according to one of the 
objectives but,  information coming from the other swarm 
was used to determine the change of the velocities. Specif- 
ically, the best particle of the second swarm was used for 
the determination of the new velocities of the first swarm's 
particles, using Equat ion (1), and vice versa. Alternatively, 
the best positions of the second swarm can be used, in con- 
junct ion with the best particle of the second swarm, for the 
evaluation of the velocities of the first swarm, and vice versa. 
The obtained Pareto Fronts for all benchmark problems are 
exhibited in Figures 7 -  11. The left part  of each figure is 
the Pareto Front obtained using only the best particle of the 
other swarm, while the right par t  is obtained using bo th  the 
best particle and the best previous positions of the other 
swarm. Wi th  the exception of Function Fa, no significant 
difference between the two approaches was observed. For 
each experiment, two swarms of size 20 were used and the 
algorithm ran for 200 iterations. 

% 
t . ,  

%l 

i 

F i g u r e  7: V E P S O  r e s u l t s  fo r  t h e  f u n c t i o n  Ft .  

6. C O N C L U S I O N S  
A first s tudy of the performance of the PSO technique in 

MO problems has been presented. The PSO method  solved 
efficiently well known test problems, including difficult cases 
for MO techniques, such as concavity and /or  discontinuity 
of the Pareto Front. We used low dimensional objectives 
in order to investigate the simplest cases first. Besides, it 
is a general feeling tha t  two objectives are sufficient to re- 
flect essential aspects of MO [21]. Promising results were 
obtained even when the size of the swarm was very small. 
In addition to the Weighted Aggregation cases, a modified 
version of PSG (VEPSO) tha t  resembles the V E G A  ideas 
was also developed and applied on the  same problems, with 
promising results. 

Further  research will include investigation of the perfor- 
mance of PSO in higher-dimensional problems with more 
than  two objectives. Especially in the case of the Popula t ion-  
Based Non-Pare to  Approach, a random selection of the ob- 
jective, in problems with more than two objectives, seems 
very interesting. Theoretical work is also required to fully 
unders tand the swarm's dynamics and behavior during the 
optimization. 
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