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Abstract— Periodic orbits of nonlinear mappings play a central of these methods can also be attributed to the nonexistence
role in the study of dynamical systems. Traditional root finding of derivatives or poorly behaved partial derivatives in the
algorithms, such as the Newton—family algorithms, have been neighborhood of the fixed points.

widely applied for the detection of periodic orbits. However, in the . . T
case of discontinuous/nondifferentiable mappings and mappings Sw_arm Intel_llgencemethod_s_ ar_e stochastic optlmlzatlon_,
with poorly behaved partial derivatives, this approach is not Machine learning and classification systems, that model in-
valid. In such cases, stochastic optimization algorithms have telligent behavior. They are intimately related to the field
proved to be a valuable tool. In this paper, a new approach for of Evolutionary Computation, which consists of algorithms
computing periodic orbits through Particle Swarm Optimization,  qtivated from biological genetics and natural selection. A

is introduced. The results indicate that the algorithm is robust L . . .
and efficient. Moreover the method can be combined with Common characteristic of all these algorithms, is the exploita-

established techniques, such as Deflection, to detect severafion of a population of search points to probe the search
periodic orbits of a mapping. Finally, the minor effort which space simultaneously. Particle Swarm Optimization (PSO)

is required to implement the proposed approach, renders it an pelongs to the category of Swarm Intelligence methods. The
efficient alternative for computing periodic orbits of nonlinear dynamic of the population resembles the collective behavior
mappings. S . - . .
and self—-organization of socially intelligent organisms [14].
I. INTRODUCTION The individuals of the population exchange information and

Nonlinear mappings can be used to model conservative Qﬁnefit from their discoveries as well as the discoveries of
dissipative dynamical systems [1]-[13]. Central role in thether companions, while exploring promising areas of the

analysis of such mappings is played by points, which apgarch space. In the minimization context, such areas possess
invariant under the mapping, calldiked pointsor periodic oW function values.

orbits [13]. A point In this paper, a new efficient numerical method for com-
. puting periodic orbits of nonlinear mappings is introduced.
X =(z1,...,7,) €R", This method is based on the minimization of a nonnegative

objective function through PSO. The objective function is
constructed so that its global minimizers constitute the periodic
(X)) = (<I>1(X), .. .7q>n(X))T :R” — R™, orbits of a specific periogh, of the original mapping. Thus,
detecting the global minimizers of the objective function
is equivalent to computing the periodic orbits of peripd
To detect several periodic orbits of the desired period, the
X =dP(X) = 0(d(...(9(X))...). (1) Deflection technique is applied.

The rest of the paper is organized as follows: the PSO
algorithm is briefly described in Section Il. In Sections Il and

Detecting periodic orbits of nonlinear mappings is one of th¥, the Deflection technique, for detecting several minimizers
most challenging problems of nonlinear science, since analytit a function, as well as the proposed approach for the
expressions for evaluating periodic orbits can be obtaineédtection of periodic orbits, are described, respectively. The
only if the mapping is a polynomial of low degree and thexperimental results are reported in Section V, and conclusions
period is low. Traditional methods, such as the Newton—familyre derived in Section VI.
methods and related classes of algorithms, often fail, as the
are affected by the mapping evaluations assuming large value
in the neighborhood ofsaddle—hyperbolicperiodic orbits, PSO is a stochastic machine learning, optimization algo-
which areunstablein the linear approximation. The failurerithm [14]-[17]. The ideas that underlie PSO are inspired not

is calledfixed pointof a mapping

if ®(X) = X, and it is called dixed point of orderp, or a
periodic orbit of periodp, if

p times

. THE PARTICLE SWARM OPTIMIZATION ALGORITHM



by the evolutionary mechanisms encountered in natural seledierew is a parameter callethertia weight Both the con-
tion, but rather by the social dynamics of flocking organismstriction factor and the inertia weight are used as mechanisms
such as swarms, which are governed by fundamental rutescontrol and adjust the magnitude of the velocities, to
like nearest—neighbor velocity matching and acceleration hileviate the problem of swarm explosion and divergence [22].
distance [15], [17]. Often, a threshold/,,,.,. on the absolute value of the velocity,

PSO is a population based algorithm, i.e., it exploits ia incorporated, in addition to the aforementioned parameters.
population of individuals to probe promising regions of the The inertia weightv, in Eq. (4), is employed to manipulate
search space simultaneously. In this context, the populatitie impact of the previous history of velocities on the current
is called swarmand the individuals (i.e., the search pointsyelocity. Therefore,w resolves the trade—off between the
are calledparticles Each particle moves with an adaptablglobal (wide—ranging) and local (nearby) exploration ability
velocity within the search space, and retains a memory of tbethe swarm. A large inertia weight encourages global ex-
best position it ever encountered, i.e., the position of the seapibration (moving to previously not encountered areas of the
space that possesses the lowest function value so far. In ¢e@rch space), while a small one promotes local exploration,
global variant of PSO, the best position ever attained by dlke., fine—tuning the current search area. A suitable value for
individuals of the swarm is communicated to all the particles: provides the desired balance between the global and local
In thelocal variant, each particle is assigned to a neighborhoestploration ability of the swarm, and consequently improves
consisting of a prespecified number of particles. In this cashe effectiveness of the algorithm. Experimental results suggest
the best position ever attained by the particles that compriget it is preferable to initialize the inertia weight to a large
the neighborhood is communicated among them [17]. Thealue, giving priority to global exploration of the search space,
present paper, considers the global variant of PSO only. and gradually decrease it, so as to obtain refined solutions [20],

Assume an—dimensional search spacg, C R”, and a [21]. This finding is intuitively appealing. In conclusion, an
swarm consisting ofV particles. Each particle is in effectinitial value of w around1 and a gradual decline towards
a n—dimensional vector, is considered a proper choice far. On the other hand, the

. value of the constriction factor is typically obtained through
XZ':((EihiEiQ,...,.’L'Z'n)TES, ’L:l,...,N. tthormula[ls]:

The velocities of the particles are alasedimensional vectors, 9
. X = : (5)
W:(Um,vm,u.,’vm)—r, i=1,...,N. |2_¢_ /¢2_4¢*‘
The best previous position encountered by #hth particle is for ¢ > 4, where¢ = ¢; + c3, andx = 1. Different configu-
a point in S, denoted by rations ofy, as well as a theoretical analysis of the derivation

P (p b \Teg of Eq. (5), can be found in [18], [23]. The constriction factor
i = (Piv,piz; - Pin) - €. version of PSO has proved to be considerably faster than the
Let ¢ be the index of the particle that attained the best previoiertia weight one.

position among all the individuals of the swarm, i.e. Proper fine-tuning of the parametets and c,, results
. in faster convergence and alleviation of local minima. An
f(Py) S f(P), i=1....N, extended study of the acceleration parametén the primary

where f is the objective function under consideration. Theryersion of PSO, is provided in [24]. As default values,=

the swarm is manipulated according to the equations [18]: ¢2 = 2 have been proposed, but experimental results indicate
that alternative configurations, depending on the problem at

Vi(t+1) =y (VZ'(t) +epry (pi(t) _ Xf“) + hand, can produce superior performance [16], [18], [23], [25].
The swarm and the velocities are randomly initialized,
R, (P_ét) B Xi(t)> ’ @) ﬁgsvvgl/lgr ?nourr;lf;)(;mh.d@tnbutm,. V\'Ilthlln the segrch space. _
: phisticated initialization techniques can en
XD — x® 4 D) A3) hance the overall performance of the algorithm [16], [26]. For

uniform random initialization in a multidimensional search
wherei = 1,2,...,N; x is a parameter calledonstriction space, a Sobol Sequence Generator can be used [27].
factor; ¢; and ¢ are two fixed, positive parameters called

cognitiveandsocial parameter respectively;, o, are random I1l. DETECTING FURTHER MINIMIZERS THROUGH
numbers uniformly distributed in the interv, 1]; and ¢, DEFLECTION

stands for the counter of iterations. Alternatively, the following

relation can be used for the update of velocities, instead off SO iS able to detect one, in general arbitrary, minimizer of

Eq. (2) [19]-[21]: the objective function, per run. However, in some applications,
several minimizers of the objective function are required.
v = v yen (Pi(t) — Xi(t)) + Restarting the algorithm does not guarantee the detection of

. ) a different minimizer. In such cases, tbeflectiontechnique
+ 272 (Pg( ) - X; )a (4)  can be used. This technique imposes a transformation of the



objective functionf, once a minimizetX;, i = 1,..., Nmnin,
has been detected [28]:
F(X) = Ti(X; X/, 0) (X)), (6)

with
(7)

where);, i = 1,...,nm,:n, are nonnegative relaxation param

Ti(X; X7, Ai) = tanh(A| X — X7),

eters, andn,,;, is the number of the detected minimizers.
The transformed function has exactly the same minimizers

with the original f, with the exception ofX;. Alternative
configurations of the parametarresult in different shapes of
the transformed function. For larger values)othe impact of
the Deflection technique on the objective function is relative
mild. On the other hand, using < A < 1 results in a

function £ with considerably larger function values in the

hk()ee a periodic orbit of periog of ®, and®,, = (0,...,0)" be

neighborhood of the deflected minimizer. The effect of t
Deflection procedure on the functigf(z) = cos?(x) + 0.1,
at the pointz* = 7, is illustrated in Fig. 1

— Original function
= =+ Deflection

since f will be equal to zero at such points. This problem
can be easily alleviated by taking = f + ¢, wherec >

0 is a constant, instead of. The function f possesses all
the information regarding the minimizers ¢f but the global
minimum is increased from zero ta The value ofc does
not affect the performance of the algorithm and, thus, if no
information regarding the global minimum ¢f is available,

it can be selected to be arbitrarily large.

IV. THE PROPOSEDAPPROACH

Let
O(X) = (B1(X),..., 0, (X)) :R® - R",
léfe a nonlinear mapping,
X =(21,...,2,)" €R,

the origin of R™. Then, by definition, the following relation
holds:
PP(X)=X='(X)-X =0, >

C |- =)=
oP(X) Ty 0
PV (X)—x1 =0,
: (8)
or(X) —x, =0.
We can define, now, an objective functigh
PO = (@P(X) — @), 9)

i=1
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Fig. 1.
cos?(x) + 0.1, at the pointz*
Note the change in the scaling

The effect of the Deflection procedure on the functjtix)
Z, for A = 1 (up), and\ = 0.5 (down).
o? the two figures.

which is nonnegative, and its global minimizers, for which
f(X) =0, are periodic orbits of periog of the mapping®.
Thus, globally minimizingf is equivalent to computing the
periodic orbits of periog of ®.

The shape of the objective functigh heavily depends on
the mapping®. If ® is continuous and differentiable, then the
minimization can be effectively performed through gradient—
based techniques. Many applications, however, involve discon-
tinuous/nondifferentiable mappings. In such cases, stochastic
optimization algorithms, that require function values solely,
can be applied.

The proposed approach involves the minimization of the
objective function f, through the PSO algorithm. Possible
discontinuities off do not affect its convergence. In Figs. 2
and 3 the phase plot as well as the contour plot of the obtained
function f for the 2—dimensional Ehon map, are exhibited,
for cosa = 0.24 and cos o = 0.8 respectively, while the 3—
dimensional plot of the obtainefl for the Standard Map, as
well as, its contour plot are displayed in Fig. 4 (the definitions

A point to notice is that the Deflection technique should natf the aforementioned mappings are given in Section V). In the

be used on its own on a functigh whose global minimum is
zero. The reason is that the transformed functionef Eq. (6),

latter case, the multitude of discontinuities, precludes the use
of a deterministic optimization algorithm for the minimization

will also have zero value at the deflected global minimizeof f.
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Fig. 2. Phase plot of the &hon map forcos a = 0.24 (up) and the contour Fig. 3. Phase plot of the &hon map forcos « = 0.8 (up) and the contour
plot of the corresponding objective function fpr= 5 (down). Darker lines plot of the corresponding objective function fpr= 1 (down). Darker lines
denote lower function values. denote lower function values.

Let X* be a global minimizer of and, thus, periodic orbit

of period p of ®. The stability of X* can be determined convergence rates that characterize it, as well as the promisin
through established techniques [29], [30]. The several types g ' P 9

of an unstable orbit are exhibited and discussed in [30]. TﬁeeSUItS attained through it. In previous work, ihertia weight

restp — 1 periodic orbits of the same period and type can persion was used, in some of the test problems presented here,

: - ) . . Wwith promising results, though the required computational
obtained througlp — 1 subsequent iterations of the mapplngiime was larger [31]. Default optimal values of the PSQO’s

® on X*. Periodic orbits of the same period, but differen . . : .

stability type, can be obtained by applying the Deflectioﬂarameters' which are used widely in the I|t_eratur_e, have been
technique on the already detected periodic orbits, and thusned'X - 0.729, 1 = ¢ — 2.05. As stopplng. c;ntenon of
apply the PSO algorithm on the deflected function. Tht e algorithm, the detection of the global minimum of the

; . . . . c?bjective function, with an accuracy @0—'°, has been used.
proposed algorithm is described in pseudocode in Table I. S .
A . ; . o . The swarm’s size is problem dependent, thus, it has been set
A periodic orbit of periodl is also periodic orbit of any

period p > 1. The problem of detecting periodic orbits oftO different valueg regarding the problem a_t ha_md. Mor_eover,
period 1, instead of periodic orbits of the desired period, ¢ whenever- Deflect|on“ha"s been used, the objective fgnct!on has
also be alleviated through the application of Deflection on s%en _s_ubjected to a "lift” by a para_mete;:_ 1, to aIIewgt(_a Its
a periodic orbit, as soon as it is detected. isability to work properly on functlpns Wlth glopal minimum
equal to zero, as it has been described in Section Ill. For each
V. EXPERIMENTAL RESULTS test problem, periodic orbits of different periods as well as the

In this section, the performance of PSO, is investigated §Rrresponding required number of iterations are reported.

different test problems. Theonstriction factorversion of PSO
has been used. This choice was based solely on the fadtesT PROBLEM 1. [1], [6], [7] (HEnon 2—dimensional map)



TABLE |
THE PROPOSED ALGORITHM

Input: Mapping®, periodp, desired number of deflectiorfs.
Step 1 Setthe stopping flagSF— 0, and the counters < 0.
Step 2 While (SF=0) Do
Apply PSO
Step 3 If (PSO detected a solutiak;) Then
Compute all points of the same type and period,
Xa,...,Xp, by iterating the map.
Step 4 If (k< K) Then
Apply Deflection onXy, ..., X}, and set
the counterk — k + 1.
Else
SetSF— 1
End If
Else
Write “No further solution was detected”
SetSF+— 1
End If
End While
Step 5 Report all detected solutions (if any).

TABLE Il
PERIODIC ORBITS OF THEHENON MAP.

cosa  Period Periodic Orbit Iterations
0.8 1 ( 0.6666755407, 0.2222243088) T 56
1 ( 0.0000147632, 0.0000051785) T 46
0.24 1 ( 0.0000064371, 0.0000043425)—r 55
5 ( 0.5696231776, 0.1622612843) T 54
5 ( 0.5672255008, —0.1223401431)7 47
11 (—0.4817107655, 0.6091676453) T 57
)T
)T
)T
)T

43 ( 0.2576802556, 0.0196850254 61
97 ( 0.2310634711, 0.3622185202 59
131 ( 0.4173023935, 0.0842137784 58
149 ( 0.2232720401, 0.2588270953 68

05

Fig. 4. 3-dimensional plot (up) and contour plot (down) of the objective
function f for the Standard Map and perigd= 5. Darker lines denote lower ) ) ) ) )
function values. two fixed points), Deflection is applied and a new run starts on

the deflected function. In all experiments the swarm size has
been set ta50. Periodic orbits of different periods, detected

This mapping is defined by the following equation: through the proposed technique, as well as the corresponding
required number of iterations, are reported in Table II.

B(X) = ( cosa —sina ) ( 1 )@
sin «v cos Ty — T3 TEST PROBLEM 2. [32] (Standard Map) This mapping is
. discontinuous and it is defined by the following equation:
& (X) =x1cosa— (z2 —2?)sina,
{ Oy (X) = zysina + (v9 — 22) cos a, { ®1(X) = (z1 + 22 — 2= sin(27z1)) mod 1,

. : _ y(X) = (w2 — £ sin(2 1
where a € [0,7] is the rotation angle. The corresponding 2(X) = (22 — 57 sin(2mz1)) mod 3,
phase plots forcosa = 0.24 and cosa = 0.8, as well as wherek = 0.9, and

the contour plot of the obtained objective function foe 5 (ymod1) —1, if (ymod1)> 1
in thg first case and fop = 1 in the Iatt(_ar case, in—1,1]?, y mod 5= (ymod1)+1, if (ymodl) < i%,
are displayed in Figs. 2 and 3, respectively. (y mod1), otherwise

The objective function forcosae = 0.8 andp = 1 has
two global minimizers, one at the origin, and another in a PSO has been applied on this mapping, using the same
narrow channel at the right part of the contour plot, whicRarameters as for theéion mapping, and results are reported
corresponds to a hyperbolic fixed point [1]. Due to the shape Table III.

of its basin of attraction, it is difficult to detect the latter flxedIEST PROBLEM 3. [33] (Gingerbreadman Map) This nondif-

point through a deterministic algorithm, unless an initial poi . C e ' ) N
is selected in its close vicinity. The proposed technique h%egenﬂable mapping is defined by the following equations:

been applied on this mapping for the detection of both fixed (X)) =1—a2+ |21],
points. After the detection of the first (which can be any of the Oy (X) =24,



TABLE Il

PERIODIC ORBITS OF THESTANDARD MAP.

Period Periodic Orbit Iterations
1 ( 0.0000045887, 0.0000096912) T 23
1 (—0.5000026466, 0.0000120344) T 59
1 ( 0.4999933014, 0.0000017242) T 58
3 (—0.4999915291, —0.2868650976) 53
3 (—0.2131328591, 0.2868633426) T 71
3 (—0.0000024632, —0.3684546911)T 116
5  (—0.2923354168, —0.2923810215) " 132
5 (—0.2924003042, 0.1541390546) T 140
5 ( 0.3283008215, 70.3434730122)T 62
5 (—0.4150743537, 0.3422455741) T 57

TABLE IV
PERIODIC ORBITS OF THEGINGERBREADMAN MAP. _64
Period Periodic Orbit Iterations s
1 ( 1.0000108347, 1.0000061677) " 73
5 (—1.0000047942, 3.0000114057)" 71 6
5 ( 3.0000036048, 0.9999987183) 82
6 ( 0.3844633827, 0.7140403542)T 1
al
ol
and its phase plot, as well as the contour plot of the corre-
sponding objective function, for = 5, are displayed in Fig. 5. o
Each point of the interior of the central hexagon, which
is displayed in the phase plot of Fig. 5, is a periodic orbit 2
of period 6. There is also a unique periodic orbit of period
p = 1. The proposed technique has been applied in the range 4, = 5 5 . . 8

[—4,8]? and results are reported in Table 1V. Note that periodic
orbits of period6 have been detected in a single iteratiorFig. 5. Phase plot of the Gingerbreadman map (up) and the contour plot of
since the population is uniformly initialized in the range undef'f‘e corresponding objective function fpr= 5 (down). Darker lines denote

consideration, and almost always there are points generated)m

the interior of the central hexagon.

TESTPROBLEM 4. [34] (Predator—Pray Map) This mapping i§3y

defined by the following equations:

{ B1(X) = az1 (1 — 1) — 2129,

Oy(X) = P22,

wer function values.

the following equations:

Dy (X) =0(x2 — 1),
Dy (X) = rzy — 29 — x123,
@3(X) = X1x9 — bﬁCg,

whereo, r, andb, are the system’s parameters. Lorenz took

oc=10,b= % For the parameter, the valuer = 28 has been

where a« = 3.6545 and § = 3.226 [35]. The proposed used [35]. There is a unique periodic orbit of peripd= 1,
technique has been applied in the rarige, 2]? and results in the range[—9,9]. Applying the proposed technique, the

are reported in Table V.

1
TESTPROBLEM 5. [36] (Lorenz Map) This mapping is defined X

TABLE V
PERIODIC ORBITS OF THEPREDATOR-PRAY MAP.

Period Periodic Orbit Iterations
1 (0.7263613548, 0.0000047179)T 69
1 (0.3099830255, 1.1’)2166‘)05764)T 51
1 (0.0000008620, 0.0000033184)T 56
2 (0.8756170073, —0.0000020728)T 61

periodic orbit

(0.0000000203,  —0.0000001703,  —0.0000026306) T,

is computed after 135 iterations.

TEST PROBLEM 6. [37] (Rossler Map) This mapping is
defined by the following equations:

(I)1<X) = —(3?1 + CL‘Q),

Dy (X) = 21 + axs,

D3(X) =b+ x3(x1 — ©),
where a, b, and ¢, are the system’s parameters. The values
a =0b=0.2andc = 5.7 have been used [35]. Unlike the



Lorenz map, the fixed point is not at the origin, but at the Preliminary results on well-known and widely used nonlin-

point ear mappings indicate that PSO is efficient. Periodic orbits
of different periods have been obtained rapidly. Moreover,
the algorithm is easily implemented in a few lines and can
be combined with the Deflection technique, to avoid the
computation of already detected periodic orbits.

TEST PROBLEM 7. [1], [12], [38] (Hénon 4-dimensional |n the experiments reported in the previous section, the
symplectic map) This 4-dimensional map is an extension gfobal variant of the constriction factor version of PSO

the Henon 2D map to the complex case: has been applied. The inertia weight variant may also be

(—0.0132365558,  —0.0165516360,  0.0297928545) T,

Xi

and it has been computed after 115 iterations.

o1 (X) 1 successfully used, although experience indicates that for the

Dy (X) Rla) O 2wy — 22 + 22 speci_fic task this variant exhibits worse convergence rgye;. The
= ) algorithm may become even faster if a particle is initialized

®3(X) O  R(a) x3 ) . .

D4(X) T4 — 22123 close to an orbit. As previously mentioned, the method does

not require derivatives and, thus, it can be applied even in
wherea is the rotation angle, anf(«), O, are defined as [1]: pathological cases characterized by discontinuities or lack
0 0 of derivative information. Using the absolute value instead

R(a) = ( >, 0= ( 0 0 ) of the squares in Eq. (9) results in a function, for which
other methods (such as the Newton—family methods) fail. The
This map can also be generalized to a symplectic map wigriodic orbits and the computational load reported, are rather
two frequenciesq; andaz, as follows: indicative, and they are reported to support the claim that the

—sina
cos «

cos o
sin o

@ (X) method is efficient. PSO is a stochastic algorithm and this
: i implies that slightly different perf be achieved
Oy(X) | [ Rlan) o o+ 22 — 2 implies that slightly different performance may be achieved,
oy(x) |~ o) R(as) 23 even if the algorithm is initialized with the same initial swarm
_ ) and velocities. The swarms used in the experiments have been
Dy(X) x4 — 22173

large, but this is inevitable since high accuradp (%) is
The proposed technique has been applied for = desired.

cos™1(0.24), with a swarm of sizel00. Results are reported  Fyrther research will consider techniques to improve the

in Table VI. convergence properties of the algorithm in high—dimensional

TEST PROBLEM 8. [10], [39] This 6-dimensional map is theCases where high accuracy is desired, as well as hybrid

n = 3 case of the standard maps studied by Kantz al%gorithms from combinations .Of PS.O Wi.th other powe”%"
Grassberger, and it is defined by tf?e following e}(;uationS' methods, such as the generalized Bisection [1], [40], which
' " possess highly desirable theoretical properties.

8 .'E/ — T /
1 = T+
zh, = a2+ % sin(27z1) — %{sin[%r(xg, —xz1)]+
sin[27(z3 — z1)]} REFERENCES
= x3+a) 5
’ _ K o) — L L — -
i —g o Sn(2m2) — 5o {sinf2m(z1 — z3)]+ (mod 1). [1] M. Vrahatis, “An efficient method for locating and computing periodic
, sin ”(/“ —a3)]} orbits of nonlinear mappings,J. Comp. Phys.vol. 119, pp. 105-119,
Ty = T5+xg 5 1995
_ K o : :
= 5 = 6 + 5 sin(2ms) — o {sinf2m(z3 — x5)]+ [2] G. Birkhoff, “Dynamical systems with two degrees of freedoifrans.
sin[27(z1 — @5)]} Amer. Math. Sog.vol. 18, pp. 199-300, 1917.
All variables are given(mod 1), S0 ; € [0’ 1), for i = [3] T.Bountis and R. Helleman, “On the stability of periodic orbits of two—

dimensional mappings,J. Math. Physicsvol. 22, no. 9, p. 1867, 1981.

1,...,6. For 8 = 0, the map gives three uncoupled standarqy;
maps, while for3 £ 0 the maps are coupled and influence each
other. In our experiments; = K = 1. Results are reported (5]
in Table VII.

(6]
VI. CONCLUSIONS

The Particle Swarm Optimization method has been applieﬁl
to detect periodic orbits of nonlinear mappings. The technique
is based on the consideration of the problem of detectinl
periodic orbits, as a global minimization problem, through a
proper nonnegative objective function. The global minimizergg
of this function coincide with the periodic orbits of a specific
period. In contrast to traditional approaches, Newton—famil
methods, the method is capable of computing periodic orbﬁ(sg]
of nondifferentiable/discontinuous mappings.

J. Greene, “A method for determining a stochastic transitidnMath.
Physics vol. 20, pp. 1183-1201, 1979.

R. Helleman, “On the iterative solution of a stochastic mappingStar
tistical Mechanics and Statistical Methods in Theory and Applications
U. Landman, Ed. Plenum, 1977, p. 343.

M. Hénon, “Numerical study of quadratic area—preserving mappings,”
Quart. Appl. Math, vol. 27, pp. 291-311, 1969.

C. Polymilis, G. Servizi, and C. Skokos, “A quantitative bifurcation
analysis ofHenon-like D maps,’Cel. Mech. Dyn. Astronvol. 66, pp.
365-385, 1997.

C. Polymilis, C. Skokos, G. Kollias, G. Servizi, and G. Turchetti,
“Bifurcations of beam-beam like mapsJ. Phys. Avol. 33, pp. 1055—
1064, 2000.

C. Skokos, G. Contopoulos, and C. Polymilis, “Structures in the phase
space of a four dimensional symplectic ma@gl. Mech. Dyn. Astronp.
vol. 65, pp. 223-251, 1997.

C. Skokos, “Alignment indices: A new, simple method for determining
the ordered or chaotic nature of orbitd,”Phys. Avol. 34, pp. 10029—
10043, 2001.



[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

TABLE VI

PERIODIC ORBITS OF THEHENON 4D MAP.

Period Periodic Orbit Iterations
2 (—1.2773358779, —0.9999949932, 1.9056707507, —2.4341853173)T 199
3 (—0.2472260058, —0.1935538651, 1.2285533059, 0.9618081010) T 179

TABLE VI

PERIODIC ORBITS OF THE6D MAP.

Period Periodic Orbit Iterations
1 (0.1313051555, 1.0000000000, 0.4999895159  0.9999864919, 0.6313117223, 0.0000000000)—r 129
1 (0.6341350463,  1.0000000000,  0.4999967282  1.0000000000,  0.1341290822,  0.0000000000) " 82
3 (0.2561905777,  0.6666625518,  0.4999941396  1.0000000000, 0.7561962951,  0.6666708609) " 132
3 (0.4999920770,  0.3858763098,  0.8858848568  0.3858968564, 0.1141105098, 0.2282217818) T 439

M. Vrahatis and T. Bountis, “An efficient method for computing peri-
odic orbits of conservative dynamical systems,”Hroceedings of the
International Conference on Hamiltonian Mechanics, Integrability andi29]
Chaotic BehaviorJ. Seimenis, Ed., 1994, pp. 261-274.

M. Vrahatis, T. Bountis, and M. Kollmann, “Periodic orbits and invarian{30]
surfaces of 4—-d nonlinear mappingbjter. J. Bifurc. Chaosvol. 6, pp.
1425-1437, 1996.

F. Verhulst,Nonlinear Differential Equations and Dynamical Systems[31]
Berlin: Springer—Verlag, 1990.

J. Kennedy and R. Eberha@warm Intelligence Morgan Kaufmann
Publishers, 2001.

——, “Particle swarm optimization,” iffroceedings |IEEE International (32]
Conference on Neural Networksol. IV. Piscataway, NJ: IEEE Service
Center, 1995, pp. 1942-1948.

K. Parsopoulos and M. Vrahatis, “Recent approaches to global optimiza-
tion problems through particle swarm optimizatioNAtural Computing
vol. 1, no. 2-3, pp. 235-306, 2002.

R. Eberhart, P. Simpson, and R. Dobbi@ymputational Intelligenc
PC Tools Academic Press, 1996.

M. Clerc and J. Kennedy, “The particle swarm—explosion, stability, arB6]
convergence in a multidimensional complex spatéFE Trans. Evol.
Comput, vol. 6, no. 1, pp. 58-73, 2001. 37]
R. Eberhart and Y. Shi, “Comparison between genetic algorithms ahd
particle swarm optimization,” ifEvolutionary ProgrammingV. Porto, 8]
N. Saravanan, D. Waagen, and A. Eiben, Eds. Springer, 1998, vol. \/ﬁ?
pp. 611-616.

Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimiz&vg]
tion,” in Evolutionary ProgrammingV. Porto, N. Saravanan, D. Waagen,
and A. Eiben, Eds. Springer, 1998, vol. VII, pp. 591-600.

——, “A modified particle swarm optimizer,” irProceedings |IEEE [40]
Conference on Evolutionary Computation Anchorage, AK: IEEE
Service Center, 1998.

P. Angeline, “Evolutionary optimization versus particle swarm opti-
mization: Philosophy and performance differences,” Bxaolutionary
Programming V. Porto, N. Saravanan, D. Waagen, and A. Eiben, Eds.
Springer, 1998, vol. VII, pp. 601-610.

I. Trelea, “The particle swarm optimization algorithm: Convergence
analysis and parameter selectiorlfiformation Processing Letters

vol. 85, pp. 317-325, 2003.

J. Kennedy, “The behavior of particles,” Evolutionary Programming

V. Porto, N. Saravanan, D. Waagen, and A. Eiben, Eds. Springer, 1998,
vol. VII, pp. 581-590.

K. Parsopoulos, V. Plagianakos, G. Magoulas, and M. Vrahatis, “Stretch-
ing technique for obtaining global minimizers through particle swarm
optimization,” inProceedings of the Particle Swarm Optimization Work-
shop Indianapolis (IN), USA, 2001, pp. 22-29.

K. Parsopoulos and M. Vrahatis, “Initializing the particle swarm opti-
mizer using the nonlinear simplex method,” Advances in Intelligent
Systems, Fuzzy Systems, Evolutionary CompufaionGrmela and

N. Mastorakis, Eds. WSEAS Press, 2002, pp. 216-221.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannedymerical
Recipes in Fortran 77 Cambridge University Press, 1992.

G. Magoulas, M. Vrahatis, and G. Androulakis, “On the alleviation of

o (351

local minima in backpropagationNonlinear Analysis, Theory, Methods
& Applications vol. 30, no. 7, pp. 4545-4550, 1997.

J. Howard and R. Mackay, “Linear stability of symplectic maps,”
Math. Phys,. vol. 28, no. 5, pp. 1036-1051, 1987.

C. Skokos, “On the stability of periodic orbits of high dimensional
autonomous hamiltonian system&hysica D vol. 159, no. 3-4, pp.
155-179, 2001.

K. Parsopoulos and M. Vrahatis, “Computing periodic orbits of nonlin-
ear mappings through particle swarm optimization,”Aroceedings of
the 4th GRACM Congress on Computational Mechariedras, Greece,
2002.

S. RasbandChaotic Dynamics of Nonlinear Systemiew York: Wiley,
1990.

] R. Devaney, “A piecewise linear model for the zones of instability of

an area preserving magPhysica O vol. 10, pp. 387-393, 1984.

] J. Maynard SmithMathematical Ideas in Biology London: Cambridge

University Press, 1968.

B. Henry, S. Watt, and S. Wearne, “A lattice refinement scheme for
finding periodic orbits,"”ANZIAM J, vol. 42, no. E, pp. C735-C751,
2000.

E. Lorenz, “Deterministic nonperiodic flowJ. Atmos. Scj.vol. 20, pp.
130-141, 1963.

0. Rossler, “An equation for continuous chaoBhys. Lett. A.vol. 57,

pp. 397-398, 1976.

M. Vrahatis, H. Isliker, and T. Bountis, “Structure and breakdown of
invariant tori in a 4—d mapping model of accelerator dynamitrsgr.

J. Bifurc. Chaosvol. 7, pp. 2707-2722, 1997.

H. Kantz and P. Grassberger, “Internalrnold diffusion and chaos
thresholds in coupled symplectic map3,’Phys. Avol. 21, pp. L127—
133, 1988.

M. Vrahatis, “Solving systems of nonlinear equations using the nonzero
value of the topological degreeACM Trans. Math. Softwarevol. 14,

pp. 312-329, 1988.



