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ABSTRACT
We investigate the performance of the recently proposed
Unified Particle Swarm Optimization algorithm on two cat-
egories of operations research problems, namely minimax
and integer programming problems. Different variants of
the algorithm are employed and compared with established
variants of the Particle Swarm Optimization algorithm. Sta-
tistical hypothesis testing is performed to justify the signif-
icance of the results. Conclusions regarding the ability of
the Unified Particle Swarm Optimization method to tackle
operations research problems as well as on the performance
of each variant are derived and discussed.

1. INTRODUCTION

Two of the most interesting categories of problems in opera-
tions research are minimax and integer programming prob-
lems [1]. Such problems are encountered in numerous engi-
neering and scientific applications, including optimal con-
trol, engineering design, game theory, molecular biology,
high energy physics, capital budgeting and portfolio analy-
sis [2, 3].

In general, the minimax problem can be defined as������	��
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for / �	@N�4353436�87 . It has been proved that for sufficiently
large J � , the optimum point of the minimax problem coin-
cides with the optimum point of the nonlinear programming
problem [4]. Minimax problems have proved to be difficult
to be tackled through traditional gradient–based algorithms,
since, at points where !PO 
������Q��

��� for two or more values
of RCSUT 02�5343536�B7WV , the first partial derivatives of ��
���� are
discontinuous, even if all the functions ! � 

��� , / �-02�4353436�87 ,
have continuous first partial derivatives.

The unconstrained integer programming problem is de-
fined as ������ ! 
����6�M� S $YX[Z * � (5)

where Z is the set of integers, and $ is a not necessarily
bounded set, which is considered as the feasible region. In
this first investigation we focus to all–integer programming
problems, where all variables are integers. Mixed–integer
programming problems, where some of the variables are
real, will be considered in future works.

Particle Swarm Optimization (PSO) has proved to be
very efficient algorithm for addressing minimax and integer
programming problems [5, 6]. The performance of popu-
lation–based algorithms is heavily dependent on the trade–
off between their exploration and exploitation capabilities.
To this end, Unified Particle Swarm Optimization (UPSO)
was recently introduced as a unified PSO scheme that com-
bines the exploration and exploitation properties of differ-
ent PSO variants [7]. Preliminary results on static as well as
dynamic optimization problems indicate the superiority of
UPSO against the standard PSO variants [7, 8].

We investigate the performance of UPSO on minimax
and integer programming problems and compare it with the



performance of the local and global PSO variant on well–
known benchmark functions. Statistical hypothesis testing
is conducted to justify the significance of the results. The
rest of the paper is organized as follows. PSO and UPSO
are briefly described in Section 2 and experimental results
are reported and discussed in Section 3. The paper closes
with conclusions in Section 4.

2. UNIFIED PARTICLE SWARM OPTIMIZATION

PSO is the most common swarm intelligence algorithm for
numerical optimization tasks. It was introduced in 1995 by
Eberhart and Kennedy [9, 10], drawing inspiration from the
emergent behavior in socially organized colonies [11]. PSO
is a population–based algorithm, i.e., it employs a popula-
tion, called a swarm, of search points,
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called particles, to probe the search space, $ . Each particle
moves in $ with an adaptable velocity,b � �_
 b �c� � b �9] �4343536� b � * � ^ �
and stores the best position,d � �e
 d �c� � d ��] �4343534� d � * � ^ S $+�
it has ever visited in the search space. Also, each particle is
considered to have a neighborhood that consists of a number
of other particles and its movement is influenced by their
experience (i.e., best positions).

The neighborhoods can be defined in different ways.
Different topologies have been proposed and applied with
promising results [12, 13]. The most common neighbor-
hood topology is the ring topology, where the immediate
neighbors of the particle � � are the particles � �
fg� , � �9h�� , and� � is considered to be the particle that follows immediately
after �ji . Thus, a neighborhood of radius k of � � consists
of the particles � ��fgl �4353434�8� � �4353436�8� �9hml . The established
ring topology is the scheme that we adopted in the current
study. There are two main variants of PSO with respect to
the number of particles that comprise the neighborhood of
a particle. In the global variant, the whole swarm is con-
sidered as the neighborhood of each particle, while, in the
local variant, smaller neighborhoods are used.

Let : � be the index of the best particle in the neighbor-
hood of � � , i.e., the index of the particle that attained the
best position among all the particles of the neighborhood.
Then, the swarm is updated according to the equations [14],nEoqpFr�sutv wyx{z nEoqpFtv}|�~ s��
� o�pFtv���� oqpFtv��<|�~?� �u� oqpFt��� ��� oqpFtvQ��� (6)� oqpFr�sutv wy� oqpFtv	| n�o�pFrgsutv � (7)

where / ��0��4343536�8` ; � is the iteration counter; � is a pa-
rameter called constriction coefficient that controls the ve-
locity’s magnitude; � � ��� �6��� and � ] ��� ]4�P] , where � �

and � ] are positive acceleration parameters, called cognitive
and social parameter, respectively, and �2� , �5] are random
vectors that consist of random values uniformly distributed
in � =?�506� . All vector operations in Eqs. (6) and (7) are per-
formed componentwise. A stability analysis of PSO, as well
as recommendations regarding the selection of its parame-
ters are provided in [14, 15].

The dependence of an algorithm’s performance on the
balance between its exploration and exploitation ability, i.e.,
its ability to perform global search of the search space and
converge faster to the most promising regions, respectively,
triggered the development of UPSO. More specifically, in
the global variant of PSO, all particles are attracted by the
same best position, converging faster towards specific po-
ints. Thus, it has better exploitation abilities in contrast to
the local variant, where the information of the best position
of each neighborhood is communicated slowly to the other
particles of the swarm through their neighbors in the ring
topology, thereby promoting exploration.

UPSO harnesses the two PSO variants in a unified sche-
me that combines their exploration and exploitation capabil-
ities [7]. Let ���9� h��B�� denote the velocity update of the par-
ticle � � in the global PSO variant and let � �9� h��B�� denote the
corresponding velocity update for the local variant. Then,
according to Eq. (6),  oqpFr�sutv wyxDz n oqpFtv |�~ s �¡� oqp¢tv ��� oqpFtv �<|£~ � �u� oqpFt����� oqpFtv ���g� (8)¤ oqpFr�sutv wyx z n oqpFtv}|�~¦¥ s � � oqp¢tv}��� oqpFtv � |£~¦¥� � � oqpFt���§��� oqpFtv ��� � (9)

where � denotes the iteration number; : is the index of the
best particle of the whole swarm (global variant); and : �
is the index of the best particle in the neighborhood of � �
(local variant). These two search directions are combined in
a single equation, resulting in the main UPSO scheme [7],¨ �9� h����� � © � �9� hª���� « 
B0¬HC©�� � �9� h��B�� � (10)� �9� h����� � � �9� ��­« ¨ �9� hª���� � (11)

where © SC� =?�506� is called the unification factor and it deter-
mines the influence of the global and local search direction
in Eq. (10). The standard local and global PSO variant is
obtained for ©U�®= and ©U�¯0 , respectively, while, for all
intermediate values © S 

=°�40�� , we obtain composite vari-
ants of PSO that combine the exploration and exploitation
characteristics of the global and local variant.

UPSO can be further enhanced by incorporating a sto-
chastic parameter in Eq. (10). This parameter imitates mu-
tation in evolutionary algorithms, although, it is directed to-
wards a direction that is consistent with the PSO dynamic.
Thus, Eq. (10) can be written either as¨ �9� h��B�� � �P± © � �9� h����� « 
�0<HC©�� � �9� hª���� � (12)

which is mostly based on the local variant or, alternatively,¨ �9� h��B�� �U© �²�c� h��B�� « �5± 
�0<HC©�� �¬�9� hª���� � (13)



which is mostly based on the global variant, where �E±´³µ 
 k ��¶·� is a normally distributed parameter with mean
vector k and variance matrix ¶ . Based on the analysis of
Matyas [16] for stochastic optimization algorithms, conver-
gence in probability was proved for the schemes of Eqs. (12)
and (13) [7].

3. RESULTS

UPSO was applied on 05= minimax and ¸ integer program-
ming benchmark problems on which PSO was recently tes-
ted [5, 6]. These problems are defined as follows [17, 18,
19, 20, 21, 22].

MINIMAX PROBLEMS

Test Problem 1 [17]. This is a @ –dimensional problem and
it consists of ¹ functions,���9��	� � 
������� � 
����º� ���E� T ! � 
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Test Problem 2 [17]. This is a @ –dimensional problem and
it consists of ¹ functions,���9��	� ] 
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Test Problem 3 [17]. This is a À –dimensional nonlinear
programming problem and it is transformed to an equivalent
minimax problem according to Eq. (4),ÁNÂPÃ �2Ä½wy� � s |D� �� |�ÅF� �Â |�� �Æ ��ÇF� s ��ÇF� � �{ÅPÈ�� Â |�É¢� Æ �Ê � Ã �2Ä½wË�Ì� � s ��� �� ��� ÂÂ ��� �Æ ��� s |D�2���{� Â |�� Æ |�Í (16)Ê Â Ã �2Ä½wË�Ì� � s ��ÅF� �� ��� �Â �{ÅF� �Æ |D� s |�� Æ |"ÈBÎP�Ê Æ Ã �2Ä½wË�Ì� � s ��� �� ��� �Â ��ÅF� s |D�2�g|�� Æ |�ÇPÏ
Test Problem 4 [17]. This is a Ð –dimensional nonlinear
programming problem and it is transformed to an equivalent
minimax problem according to Eq. (4),Á Æ Ã �2ÄÑw Ã � s ��ÈBÎ6Ä � |�Ç Ã �2�ª�£ÈBÅ6Ä � |�Ò Ã � Æ �£È�È8Ä � |�� ÆÂ ||%ÈBÎF��ÓÔg|£É¢� �Ó |D� ÆÕ ��Ö�� Ó � Õ ��ÈBÎF� Ó ��ÍF� Õ �Ê � Ã �2ÄÑwË�mÅF� � s ��ÒF� ÆÂ ��� Â ��Ö�� �Æ �DÇF� Ô |×ÈBÅ6É5�Ê Â Ã �2ÄÑwË��É¢� s ��ÒF�2�ª��ÈBÎF� �Â ��� Æ |�� Ô |�Å�Í�ÅP� (17)Ê Æ Ã �2ÄÑwË�mÅ�ÒF� s ��� �� ��ØF� �Ó |�ÍF� Õ |§ÈBÙ�ØP�Ê Ô Ã �2ÄÑwË�ÌÖ�� � s ��� �� |�ÒF� s �2���{ÅF� �Â �{ÇF� Ó |§È�È�� Õ Ï

Test Problem 5 [18]. This is a @ –dimensional problem and
it consists of @ functions,�D�9��	�ªÚ�
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Test Problem 6 [18]. This is a 0P= –dimensional problem and
it consists of 05= functions,�D�9��	�ªÜ�
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Test Problem 7 [19]. This is a @ –dimensional problem and
it consists of @ functions,�D�9��	�ªÝ�
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Test Problem 8 [19]. This is a À –dimensional problem and
it consists of À functions,�D�9�� �ªç�

�����ÁNè5Ã �2ÄÑwêé¬ë¢ì�íFî v Ã �2Äuï4�®ðNwWÈ��BÏ�ÏBÏB�
Ö��î s Ã �2ÄÑw � � s � Ã � Æ |"È8Ä Æ � � |òñE�2��� � � s � Ã � Æ |"È8Ä Æ � ÆFó � |ÅF� �Â |D� �Æ �DÇ � � s � Ã � Æ |"È8Ä Æ � ��Ç ñ �2��� � � s �Ã � Æ |×È8Ä Æ � Æ¢ó ��ÅPÈ�� Â |�É¢� Æ �
îF� Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎÌô � � s � Ã � Æ |§È8Ä Æ � � | ñ �2��� � � s �Ã � Æ |×È8Ä Æ � Æ¢ó � |D� �Â |�� �Æ | � � s � Ã � Æ |§È8Ä Æ �õ�

ñ � � � � � s � Ã � Æ |×È8Ä Æ � Æ ó |�� Â ��� Æ �DÍ8ö°� (21)

î Â Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎ ô � � s � Ã � Æ |§È8Ä Æ � � |�Å ñ �2��� � � s �Ã � Æ |×È8Ä Æ � Æ¢ó � |D� �Â |�ÅF� �Æ � � � s � Ã � Æ |×È8Ä Æ � �
� Æ �£ÈBÎ ö �



î Æ Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎÌô � � s � Ã � Æ |×È8Ä Æ � � | ñ �2��� � � s �Ã � Æ |×È8Ä Æ � Æ ó � |D� �Â |�Å � � s � Ã � Æ |§È8Ä Æ �õ�
ñ � � � � � s � Ã � Æ |"È8Ä Æ � Æ ó ��� Æ ��Ç8ö�Ï

Test Problem 9 [19]. This is a ¸ –dimensional problem and
it consists of Ð functions,���9�� ��÷»
������ÁNø5Ã �2ÄÑwêé¬ë¢ìEíFî v Ã �2Äuï4�®ð¦wWÈ��8Ï�Ï�Ï8�uÇP�î s Ã �2ÄÑw Ã � s ��ÈBÎ6Ä � |�Ç Ã �2�ª��ÈBÅ6Ä � |D� ÆÂ |�Ò Ã � Æ ��È�È8Ä � |"ÈBÎF��ÓÔ |É¢� �Ó |D� ÆÕ ��Ö�� Ó � Õ �£ÈBÎF� Ó �{ÍF� Õî � Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎ Ã ÅF� � s |£ÒF� Æ� |D� Â |�Ö�� �Æ |�ÇF� Ô �£ÈBÅ6É�Äù� (22)î Â Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎ Ã É¢� s |£ÒF�2�g|×ÈBÎF� �Â |�� Æ ��� Ô �{Å�Í�Å6Äù�î Æ Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎ Ã Å�ÒF� s |�� �� |�ØF� �Ó ��ÍF� Õ ��ÈBÙ�Ø6Äú�î Ô Ã �2ÄÑw-î s Ã �2Ä»|"ÈBÎ Ã Ö�� � s |�� �� ��ÒF� s �2�g|�ÅF� �Â |�ÇF� Ó �£È�È�� Õ ÄúÏ
Test Problem 10 [19]. This is a À –dimensional problem and
it consists of @?0 functions,������	� ��û 
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For all minimax problems, the search space was � H Ð =°� Ð =��
* ,
where ý is the dimension of the problem, and the desired
accuracy for detecting the global minimizer was 0P= f ¼ . The
swarm size was equal to @2= for Test Problems (TP) 0 , @ , ¹
and Ð , and equal to Ð = for the other problems [5]. In the
cases where the transformation of Eq. (4) was employed,
the value J � �y0P= was used for all / [5].

INTEGER PROGRAMMING PROBLEMS

Test Problem 1 [20]. This problem is defined as

� � 
������_þ6�ªþ � �ÿÛ � � Û «������P« Û � * Ûq� (24)

where ý is the dimension. The solution is � � �_

=?�5343534�8=»� ^
with � � 
�� � �²�A= . We considered this problem for ý � ¹ = .
Test Problem 2 [20]. This problem is defined as
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where ý is the dimension. The solution is � � �_

=?�5343534�8=»� ^
with � ] 
�� � �²�A= .

Test Problem 3 [21]. This problem is Ð –dimensional and it
is defined asÁ Â Ã �2ÄÑwÿ��� ÈBÇ Å6ÉºÒ�Ø ÈBÍ ÈBÅ�
 ��|

���������
Ò�Ç �mÅ�Î �IÈBÎ Ò�Å �IÈBÎ�mÅ�Î Ö6Î �mØ �mÒPÈ Ò�Å�IÈBÎ �mØ È�È �mØ �IÈBÎÒ�Å �mÒPÈ �mØ Ò�Í �mÅ�Î�IÈBÎ Ò�Å �IÈBÎ �mÅ�Î ÒPÈ

������ �¦Ï (26)

The best known solutions are � � �)
u=?�50202�F@2@?�40��°���»� ^ and� � �_
u=?�50P@N�F@ ¹ �40 ¸ ���»� ^ , with � ± 
�� � ���-H ¸E¹»¸ .
Test Problem 4 [21]. This problem is @ –dimensional and it
is defined as

� ¼ 
������-
���� ] � « @�� ]] H[020�� ] « 
 ¹ � � « À � ]] H ¸ � ] 3 (27)

Its solution is � � �e
�0��40�� ^ with � ¼ 
�� � ����= .
Test Problem 5 [21]. This problem is À –dimensional and it
is defined as

��Ú�
����G� 

� � « 05=2� ] � ] « Ð 

� ± HC� ¼ � ] «

� ] H´@E� ± ��¼ « 05=°

� � HC� ¼ �ù¼�3 (28)

Its solution is � � �e

=°�8=°�8=?�¢=�� ^ with � Ú 

� � �²�A= .
Test Problem 6 [22]. This problem is @ –dimensional and it
is defined as

� Ü 
������A@�� ] � « ¹ � ]] « À � � � ] H���� � H ¹ � ] 3 (29)

Its solution is � � �e
u@?�4Hä0�� ^ with ��Ü»
�� � �²�-H�� .

Test Problem 7 [21]. This problem is @ –dimensional and it
is defined as

�ªÝ�

������H ¹�� = ¹ 3 �2À H[0 ¹�� 3 = � � � H´@ ¹ @N3 ��@�� ] «0P@ ¹ 3 = � � ] � « @2= ¹ 3 � À � ]] « 0 � @N3�@ Ð � � � ] 3 (30)

Its solution is � � �e

=°�40�� ^ with � Ý 
�� � ���yH ¹ �2¹2¹ 3�0�@ .
For all integer programming problems, the search space was� Hä05=2=°�40P=2=E�\* , where ý is the dimension of the problem, and
the desired accuracy for detecting the global minimizer was05= f ¼ . The swarm size was problem dependent and it was
equal to 05=�= for TP 0 , equal to 0P= for TP @ and � , equal to¸ = for TP ¹ , and equal to @�= for the rest of the problems [6].

In order to avoid deterioration of the algorithms’ dynam-
ics, we let the particles assume real values and rounded their
components to the nearest integer only for the evaluation of
the objective function.

In all cases, the default PSO parameters, � �}=?3 ¸ @�� ,� � � � ] � @N3 = Ð , were used [14]. Three UPSO variants
were investigated, namely, the main UPSO scheme with©"�A=?3�@ and ©"�A=?3 Ð , as well as the scheme with mutation of



Table 1. Results for the minimax problems.
TP PSOg PSOl UPSO1 UPSO2 UPSOm

Suc. !�"�" !#"$" !�"$" !�"$" !�"$"È Mean Å�Ç�Ò�ÍPÏ Å�Î Å�Í�ÒPÈ�Ï Ø�Î ÅPÈBÍ6É5Ï Å�Î.ÅPÈBÒ�ÅPÏ Î�Î !�%$%$& Ï ' "
St.D. È�ÈBÒFÖ�Ï Î�Å ÈBÎ6ÉFØPÏ Å�Å ( !#) Ï *+' ÙPÈ8É5Ï Ç�Î Í�Ç�ÒPÏ Ø�Ç
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Å Mean ÅPÈ�Ö6ÎPÏ Ö6Î Å�Ø�Å�ÍPÏ Ø�Î Å�Å�Å�ÇPÏ Ø�Î.ÅPÈBÇ�ÒPÏ Ö6Î ! *$*$(»Ï , "
St.D. Å�Ø6É5Ï Í�Ù Ò�Ø6É5Ï Í�Ò Å�Ù�ÅPÏ Ù�Ç Å6ÉFØPÏ Ç�Å ).-/! Ï %+-
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ò Mean ÈBÇ�Í�ÇPÏ Ö6Î Å�Ò�Ç�ÙPÏ Ö6Î ÈBØPÈBÍPÏ Ö6Î !�- *+,¦Ï , " ÈBØ6ÉFÎPÏ Ö6Î
St.D. Ò�Î�ÅPÏ�ÈBÇ Ç�ÇPÈ�Ï ÍFÖ ÒPÈ�Ö�Ï Ò�Ù ) ,$'¦Ï &0! Ç�Ò�ÎPÏ Ç�Ø
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ö Mean ÉFÎ6ÉFÒPÏ Ç�Î È8ÉFÎ�Å6É5Ï Ç�Î�ÉFÒ�Î6É5Ï Ç�Î1, - ' - Ï "�" ÈBÅ�Í�ÎPÈ�Ï Ç�Î
St.D. ! ,�* ) Ï * ! Ö6Î�Å�ÍPÏ Ö6Å Å�Î�Ù�ÍPÏ ÙPÈ.ÈBØ6ÉFÙPÏ Ù�Í.Ç�Î6ÉFÅPÏ�È�È
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ç Mean Å�Î�Î�ÒPÏ Å�Î ÅFÖ6Í�ÅPÏ Í�Î Å�ÎFÖ6ÎPÏ Ø�Î ÈBÙ�ÙPÈ�Ï Ø�Î ! * "0! Ï , "
St.D. Å�Ò�ÎPÏ Å�Ò Ò�Å�ÒPÏ ÉFÇ Å�Ç�ÒPÏ Ø�Î ÅFÖ�È�Ï ÉFÍ ! ' - Ï %�)
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ø Mean ÈBÒ�Ò6ÉFÎPÏ Î�ÎQÒ�Ø�Ç�Ù6É5Ï Ç�Î-È�ÈBÎ�ÍPÈ�Ï Î�Î % ' - (»Ï ( " ÈBÍ�Å�ÙFÖ�Ï Ç�Î
St.D. Í�Ç�ÒPÏ ÉFÅ ÒFÖ6Ç�ÍPÏ Î�Î Ø�Ø�ÎPÏ�È�È -�% *»Ï %$& Å�Ò�Í�ÙPÏ Ò�Ç
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"É Mean )2!�%/! Ï "$" Ö6Å�Ù�ÅPÏ Ç�Î ÒPÈBÇ�ÅPÏ Î�Î.Å�Ø�Í6É5Ï Ç�Î.ÒFÖ6Ò�ÇPÏ Ç�Î
St.D. (+,�'¦Ï )+" ÈBÍ6ÉFÅPÏ Î�Ò ÈBÅ�Ò�ÙPÏ Ö6Í Ø�ÒPÈ�Ï Ò�Ù È�Ö6Í6É5Ï Ø�Î
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Í Mean Ç�Í�Å�ÇPÏ Ç�Î Í�Í�Ç�ÅPÏ Î�Î Ç�Î�Ø�ÒPÏ Î�Î -�&0! (»Ï "�" Ø�ØPÈBÍPÏ Ç�Î
St.D. ÒFÖ6Í�ØPÏ Ç�Ù Å�ÇFÖ6ØPÏ Ù�Ù ÈBÎPÈBÅPÏ�È�È3'�( % Ï ($* Å�Ç�Ù6É5Ï ÇFÖ
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ù Mean ! ,$,�,¦Ï "$" Ò�Ò6ÉFÒPÏ Î�Î Å�Î�Ù�ÙPÏ Ç�Î ÈBØ6ÉFÙPÏ Ç�Î.ÅPÈBÅ�ÍPÏ Ç�Î
St.D. - ) *»Ï (+' ÈBÅ�Ù�ÍPÏ Î�Ò Ø�Ø�ÎPÏ ÉFÙ Ö4É¢Ö�Ï ÉFÅ Ç�Ù6É5Ï Ö6Î
Suc. ÉFÙ Ù�Ù Ù�Í Ù�Ò !�"$"ÈBÎ Mean ÇFÖ6Î�ÎPÏ Ø�Ò Ö6Ò�Ò�ØPÏ Í6É.Ò�Í�Å�ÎPÏ Ù�Å.Ç�Î�Ç6É5Ï Ç�Ò &$&$&�) Ï ( "
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Eq. (12) with ©W�e=?390 , ��±{³ µ 
 k �F¶·� , k � 

=?�5343536�8=»� ^ ,¶U�65 ]#7 , 5 � =?3 =?0 , and
7

being the identity matrix. These
variants were selected due to their good performance in un-
constrained and dynamic optimization problems [7, 8]. We
will denote these variants as UPSO1, UPSO2, and UPSOm,
respectively.

UPSO’s performance was compared with the performa-
nce of the standard local and global PSO variant, which are
denoted as PSOl and PSOg, respectively. For the determi-
nation of the search direction � � of UPSO, as well as for the
local PSO variant, a ring neighborhood topology was used
with neighborhood radius equal to 0 , in order to take full
advantage of its exploration properties.

For each test problem and algorithm, 05=�= experiments
were conducted, recording the success rate of each algo-
rithm, i.e., the number of experiments at which it detected
the solution with the desired accuracy, as well as the mean
and the standard deviation of the required function evalu-
ations. Moreover, a non–parametric Wilcoxon ranked sum
test was performed for each pair of algorithms in order to
investigate the statistical significance between their perfor-
mances in significance level ���28 .

In Table 1, the results for the minimax problems are re-
ported with the best value per row being boldfaced, while in

Table 2. Wilcoxon ranked sum tests for the minimax prob-
lems.

PSOg PSOl UPSO1 UPSO2 UPSOm
PSOg | � | |
PSOl | | | |È UPSO1 � | � |
UPSO2 | | � |
UPSOm | | | |
PSOg | � � |
PSOl | | | |Å UPSO1 � | � |
UPSO2 � | � |
UPSOm | | | |
PSOg | � | �
PSOl | | | |Ò UPSO1 � | | �
UPSO2 | | | |
UPSOm � | � |
PSOg | � | |
PSOl | | | |Ö UPSO1 � | | |
UPSO2 | | | |
UPSOm | | | |
PSOg | � � |
PSOl | | | |Ç UPSO1 � | � |
UPSO2 � | � |
UPSOm | | | |
PSOg | | | |
PSOl | | | |Ø UPSO1 | | | |
UPSO2 | | | |
UPSOm | | | |
PSOg | | | |
PSOl | | | |É UPSO1 | | | �
UPSO2 | | | |
UPSOm | | � |
PSOg | � | |
PSOl | | | |Í UPSO1 � | | |
UPSO2 | | | |
UPSOm | | | |
PSOg | | � |
PSOl | | | |Ù UPSO1 | | | �
UPSO2 � | | |
UPSOm | | � |
PSOg � � � |
PSOl � � | |ÈBÎ UPSO1 � � � |
UPSO2 � | � �
UPSOm | | | �

Table 2 the statistical hypothesis tests are given, with “ « ”
denoting statistically significant difference between the per-
formances of two algorithms. In all test problems, with the
exception of TP 0P= , all algorithms had a success rate of05=�=28 . In TP 0 , @ and Ð , UPSOm (UPSO with mutation)
outperformed the other algorithms, having also a statisti-
cally significant difference. In TP ¹ , À , � and � , UPSO2
(UPSO with ©[�'=°3 Ð ) had the best performance, followed



Table 3. Results for the integer programming problems.
TP PSOg PSOl UPSO1 UPSO2 UPSOm

Suc. ÉFÇ !#"$" !�"$" !�"$" !�"$"È Mean Å�ÎFÖ�Ö6ÎPÏ Î�ÎAÒ�ÙPÈBÅ�ÍPÏ Î�ÎyÈBÒPÈBÇ�ÅPÏ Î�Î !$! *+,$,NÏ "$" ÈBÇ�Ù�Å�ÒPÏ Î�Î
St.D. Ø�Í�Ø�ÒPÏ ÅFÖ ÇPÈBÅ�ÍPÏ Ö6Ç ! * " (»Ï ) ' Ò�Í�ÎFÖ�Ï Î6É Å�ÒPÈ8É5Ï Ö6Ò
Suc. !�"�" Ù�Ù !�"$" !�"$" Ù�ÍÅ Mean Ø�Ù�ØPÏ�ÈBÎ Í�ØFÖ�Ï Ù�Ç Ø6É�É5Ï Ò�Î Ø�Í�ÒPÏ Å�Î , ! '¦Ï " ,
St.D. ÉFÅ�ÍPÏ Ù�Ø ÈBÍ�ÙPÏ Å�Ò !�&$& Ï %0! Í�ØFÖ�Ï É�É Å�Ç�ÇPÏ Î6É
Suc. Ù6É !#"$" !�"$" Ù�Ø !�"$"Ò Mean ÇPÈBÇ�ÙPÏ Î6ÉÞÅ�Î�Å�ÎPÈ�Ï Ò�Î}Ç�ÍPÈBÍPÏ Ö6Î -�%$% ,¦Ï % ' ÈBÇ�Ç�Ç�ØPÏ�ÈBÎ
St.D. !�-�% '¦Ï *$(1Ø�Í�Å�ØPÏ ÉFÇ ÈBØ�Ç6É5Ï Ö4É ÈBÍPÈBÍPÏ ÒPÈ Ø�Ù�Å�ÙPÏ Î6É
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ö Mean Ò�Ç�ÒPÏ Ø�Î Ö6ÎPÈ�Ï Å�Î Ò�Ù�ÎPÏ Ö6Î Ò6ÉFÎPÏ Å�Î &$"$% Ï ' "
St.D. È�ÈBÙPÏ Ç�Ù ÈBÒ�ÎPÏ Í�Ç ÈBÎ�ÍPÏ�È�È È�È8É5Ï É5È ' % Ï (+,
Suc. Í�Ø !#"$" !�"$" !�"$" !�"$"Ç Mean ÈBØ�Ç�ÅPÏ Î�Ù Ò�ÎFÖ6ÒPÏ Å�Î ÈBØ�Ç�ÍPÏ Î�Î ! ( "$& Ï )$" ÈBÙ�Ò�ÒPÏ Å�Î
St.D. ÉFÙ�ÒPÏ�È8É ÉFÍ�ÒPÏ É¢Ö Ö�ÈBÙPÏ Í�Ç & * ) Ï (+, Ç�Å�ÅPÏ ÅFÖ
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"Ø Mean Å�Î�ÇPÏ�ÈBÎ ÅFÖ�È�Ï Å�Î Å�ÅPÈ�Ï Ç�Î Å�Î�ÇPÏ�ÈBÎ ! * ! Ï ( "
St.D. ØPÈ�Ï ÉFÅ ÙPÈ�Ï ÉFÅ Ø6É5Ï�ÈBÎ Ø�ØPÏ Ù�Ò ( " Ï ) ,
Suc. !�"�" !#"$" !�"$" !�"$" !�"$"É Mean Ö6Å�ÇPÏ Î�Î Ö4É�É5Ï Ö6Î Ö�ÈBÍPÏ Í�Î Ö6ÎFÖ�Ï Í�Î & ' - Ï "�"
St.D. È�Ö�È�Ï�ÈBÅ È8ÉFÎPÏ É¢Ö ÈBÒ6É5Ï Ù�Å ÈBÒ�ÎPÏ Í�Î '�*»Ï ($*

by UPSO1 (UPSO with ©U� =?3�@ ), having statistically sig-
nificant difference between its performance and the perfor-
mance of the other algorithms. The global variant of the
standard PSO (PSOg) proved to be more efficient in TP ¸
and � , although, in the latter, there was no statistically sig-
nificant difference between its performance and the perfor-
mance of UPSO2. TP 05= proved to be the most difficult
for all algorithms, perhaps due to the large number of func-
tions. The success rate was reduced for all algorithms ex-
cept UPSOm, which had the best performance. Also, TP 05=
was the only case where the standard local PSO (PSOl) out-
performed the global variant (PSOg) underlining the differ-
ence between their exploration ability, which is crucial in
such difficult problems. Summarizing the results for the
minimax problems, UPSOm and UPSO2 proved to be the
most promising schemes overall, in accordance with results
reported for different optimization problems [7, 8]. PSOg
proved to be competitive in a few problems, without always
having statistically significant difference from UPSO. Fi-
nally, in difficult test problems, UPSOm proved to be the
most efficient algorithm.

In Tables 3 and 4 the corresponding results and sta-
tistical hypothesis tests for the integer programming prob-
lems are reported. The rounding of the particles’ compo-
nents to the nearest integer for the evaluation of the ob-
jective function seems to introduce a peculiarity in the al-
gorithms’ dynamics. Two different real components that
are close can be rounded to the same integer, assigning to
different particles the same objective function. Obviously,
exploitation–based schemes can be affected by this proce-
dure, since they are more prone to move the particles faster
towards the best positions detected by the swarm. Thus,

Table 4. Wilcoxon ranked sum tests for the integer program-
ming problems.

PSOg PSOl UPSO1 UPSO2 UPSOm
PSOg | | | |
PSOl | | | |È UPSO1 | | | |
UPSO2 | | | |
UPSOm | | | |
PSOg | | � �
PSOl | | | |Å UPSO1 | | | |
UPSO2 � | | �
UPSOm � | | �
PSOg | | � |
PSOl | | | |Ò UPSO1 | | | |
UPSO2 � | | |
UPSOm | | | |
PSOg | � � |
PSOl | � � |Ö UPSO1 � � � |
UPSO2 � � � |
UPSOm | | | |
PSOg | � | |
PSOl | | | |Ç UPSO1 � | | |
UPSO2 | | | |
UPSOm | | | |
PSOg | � � |
PSOl | � � |Ø UPSO1 � � � |
UPSO2 � � � |
UPSOm | | | |
PSOg � � � �
PSOl � � | |É UPSO1 � � � �
UPSO2 � | � �
UPSOm � | � �

schemes that promote exploration were expected to have
better performance. This is indeed reflected in the results
reported in Table 3. PSOl (local PSO variant) had better
success rates than PSOg (global variant) in all but the last
test problem. Also, UPSO1 ( © �ê=?3�@ ), which promotes ex-
ploration rather than exploitation, was more competitive to
the “balanced” UPSO2 scheme ( ©´�Ë=°3 Ð ) than in the min-
imax problems, having the best performance in TP @ and¹ , while UPSO2 performed better in TP 0 and Ð . UPSOm
had the best performance in the other problems, although
it did not have statistically significant difference in the last
test problem.

In general, both in minimax and integer programming
problems, the standard UPSO variants seemed to follow the
performance pattern of PSO, i.e., in problems where PSOl
has a good performance, UPSO schemes that promote ex-
ploration are more efficient, while in the other cases more
balanced schemes, such as UPSO2, proved to have better
performance. The overall good performance of UPSO with



mutation indicates that properly perturbed exploration–ba-
sed schemes of UPSO retain a good balance between explo-
ration and exploitation. This behavior is in accordance with
previously reported results in different static and dynamic
optimization problems [7, 8], thereby rendering UPSOm a
good default choice.

4. CONCLUSIONS

We investigated the performance of Unified Particle Swarm
Optimization on minimax and integer programming prob-
lems. Different variants of the algorithm were investigated
and compared with the standard Particle Swarm Optimiza-
tion algorithm. The results indicate that UPSO can tackle
efficiently problems of both types, outperforming in most
cases the standard PSO. Useful conclusions were also de-
rived regarding the performance of different UPSO variants,
as well as on the effect of rounding on the algorithms’ per-
formance in integer programming problems.
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