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Abstract: The identification of price patterns and trends, and the formation of rules to
generate market signals have a long history in foreign exchange rate markets. Recent
studies, however, question the profitability of the simple rules that have been shown to
yield abnormal profits in previous decades. Rather than assuming a fixed set of rules, in
this paper we employ genetic programming to identify rules in the Euro US Dollar daily
exchange rate series over the period 1/1/1999 to 30/12/2005. Preliminary experimental
results suggest that genetic programming is capable of generating profitable rules but for
a limited time into the future.
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1 Introduction

Technical Analysis (TA) focuses on the identification of price patterns and trends, as well as, the
use of mechanical rules to generate valuable economic signals [8]. Recent surveys (see [1] and
the references therein) indicate that since the inception of floating exchange rates TA has been a
major constituent of financial practice in foreign exchange markets. Moreover, a number of studies
during the 1980s and the early 1990s suggest that the application of simple technical trading
strategies (mainly moving average and filter rules) can yield returns net of transaction costs above
5% per annum. Olson [6] argues that these abnormal profit opportunities are due to temporary
inefficiencies which are in accordance with an evolving market and that simple trading rule returns
have declined, if not disappeared, since then. Olson’s view, however, does not rule out the existence
of more sophisticated profitable strategies.

Genetic programming (GP) is a domain-independent evolutionary search method that explores
a space of computer programs [3]. GP evolves a population of computer programs using genetic
operations inspired from Darwinian evolution to identify programs that solve a given task. The
advantages of GP for the identification of trading strategies are twofold. First, it allows the
construction of rules of arbitrary complexity. Second, by avoiding the ex post specification of the
trading rules that are examined, it circumvents a basic, but rarely addressed issue, namely data-
snooping [8]. Neely et al. [5] employ GP to identify profitable trading rules in several daily foreign

LCorresponding author. e-mail: npav@math.upatras.gr



2 N.G. Pavlidis, E.G. Pavlidis and M.N. Vrahatis

exchange rate series. Their findings suggest that trading rules obtained through GP substantially
outperform simple trading rules for daily exchange rates. In this study, we employ GP to identify
trading rules in the daily exchange rate of the Euro against the US Dollar. Our preliminary
experimental results suggest that GP is capable of identifying profitable rules in the training set,
but the noisy nature of the time series places limits on the profitability of these rules as we move
further into the future. GP, however, was capable of identifying rules whose performance for a
period in the future equal in length to the training period, was as good as their performance on
the training dataset.

2 Genetic Programming

GP is an extension of Genetic Algorithms (GAs) in which individuals are computer programs
expressed as syntax trees, rather than fixed length strings. The internal nodes of syntax trees are
function nodes. A function node applies one of the user—defined functions to the outputs of its
children. The leaves of a syntax tree are terminal nodes. Terminal nodes return as output the
value of a constant, an input variable, or a zero—argument function [3].

A critical component of GP is the random-tree creation algorithm(s) it employs. The standard
GP initialization technique, ramped half and half, relies on two tree-generation algorithms, GROW
and its full-tree variant, FULL [3]. GROW is by far the most commonly employed random-tree
generation mechanism, not only for the initialization of individuals, but also for subtree mutation [4].
To avoid the shortcomings of GROW a recently proposed algorithm, PTC2 [4], was used instead
to construct random trees. The GP operators employed in this study were proportionate selection,
reproduction, subtree mutation and uniform crossover. A flowchart of the operation of GP is
provided in Fig. 1. According to proportionate selection, the probability of selecting individual i is
equal to E;/ Zjvzl E;, where E is the function that is to be maximized, and E; is the function value
that corresponds to the ith individual. Reproduction inserts a copy of the selected individual to the
population of the next generation. Subtree mutation, on the other hand, substitutes a randomly
selected subtree with a new subtree. Crossover is the primary GP search operator. We employed
the uniform crossover (GPUX) operator [7]. At early stages of the algorithm GPUX favors global
search by swapping large subtrees near the root, while as the population converges it becomes
more and more local in the sense that, the offsprings it produces are progressively more similar
to their parents. GPUX starts by identifying the common region between the two syntax trees.
Each node that lies in the common region undergoes crossover with a fixed probability. For nodes
that lie in the interior of the common region uniform crossover swaps the nodes without affecting
the subtree below them. On the contrary, for nodes on the boundary of the common region the
subtrees rooted at these nodes are swapped.

3 Experimental Results and Discussion

The dataset used in this study was the daily closing prices for the Euro US Dollar exchange
rate from Barclays Bank International provided by Datastream. The 1825 observations cover the
period from January 4th 1999 to December 30th 2005. After normalization and embedding a total
of 1525 patterns was available. The first 500 patterns were assigned to the training set, while
the remaining 1025 were assigned to the test set. The computational experiments were performed
using a C++ implementation based on the interface for the creation of expressions described in [2,
Chap.8] and the GNU compiler collection (gcc) version 4.0.3. The terminal set, 7, consisted of,
T ={a}, 271, ..., 2} 50, Rand}, where x} stands for the daily exchange rate at date ¢ divided by
the 250-day moving average, and Rand denotes a random constant in the interval [—50,50]. The
function set used was, F = {+, —, %, /, OR, AND, <, >, ==, sin, cos, sqrt, log, exp, max, min, average}.
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Figure 1: Flowchart of Genetic Programming.

A positive evaluation of an individual over a pattern was assumed to signal that the current
holdings should be held in the base currency (in this case dollars), and vice versa. The fitness
measure of each individual was the rate of return over the training period. A one-way transaction
cost equal to 0.5% and 0.05% for the training, and test period, respectively, was used. The
choice of 0.05% is in accordance with the cost faced by large institutional investors. A larger
transactions cost was imposed during training to penalize rules that trade very frequently, and
hence discourage overfitting [5]. Regarding the parameters of the GP algorithm, the maximum
tree depth at initialization was set to 5, while the maximum tree depth in all other generations
was set to 8. The maximum number of nodes was set to 50. Population size was 5000 and the
maximum number of generations was 500. The reproduction, mutation, and crossover probabilities
were p, = 0.1, p,, = 0.2, and p. = 0.7, respectively. Finally, the probability of performing uniform
crossover at a node was 0.5. The output of the algorithm was the individual with the highest
fitness encountered during its execution.

Initially 30 experiments were performed using the aforementioned configuration. GP identified
highly profitable rules in the training set, but their performance on the test set was very poor.
To investigate the impact of the time horizon on generalization, the test set was segmented into
two sets, with 510 and 515 patterns each. Performing 30 experiments, the six out of the 30 best
individuals yielded a positive rate of return on the test set that contained the patterns immediately
following the training period. The performance of the rule that yielded the best performance on
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this dataset is visualized in Fig. 2. Taking into account the fact that daily exchange rates are
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Figure 2: Trading performance of the best rule identified with transactions cost 0.05%.

highly noisy, and noise causes overfitting, the fact that GP was able to identify a rule yielding a
return close to 19% over the test set is promising. At present we are considering the construction
of a portfolio of genetically programmed trading rules to mitigate the problem of overfitting [5].
We also intend to verify the statistical significance of our results using the bootstrap method, as
well as, to examine if the trading frequency of our approach is in line with real world practice.
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