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Abstract- Networks of spiking neurons can perform complex
non-linear computations in fast temporal coding just as well as
rate coded networks. These networks differ from previous models
in that spiking neurons communicate information by the timing,
rather than the rate, of spikes. To apply spiking neural networks
on particular tasks, a learning process is required. Most existing
training algorithms are based on unsupervised Hebbian learning.
In this paper, we investigate the performance of the Parallel Dif-
ferential Evolution algorithm, as a supervised training algorithm
for spiking neural networks. The approach was successfully tested
on well-known and widely used classification problems.

I. INTRODUCTION
Artificial Neural Networks (ANNs) are parallel compu-

tational models comprised of densely interconnected, sim-
ple, adaptive processing units, characterized by an inherent
propensity for storing experiential knowledge and rendering
it available for use. ANNs resemble the human brain in two
fundamental respects; firstly, knowledge is acquired by the
network from its environment through a learning process, and
secondly, synaptic weights are employed to store the acquired
knowledge [I].
The building block of ANNs is the model of the artificial

neuron. In [2] three generations of artificial neuron models
are distinguished. The first generation of neurons gave rise
to multilayered perceptrons, Hopfield nets, and Boltzmann
machines. These networks can compute any boolean function,
as well as, all digital functions. The second generation neurons
apply activation functions with a continuous set of possible
output values to a weighted sum of the inputs (e.g. sigmoid
functions, linear saturated functions, piecewise exponential
functions). From this emerged feedforward and recurrent sig-
moidal neural nets and networks of radial basis function units.
These networks can further approximate, arbitrarily closely,
any continuous function defined on a compact domain, and
support learning algorithms based on gradient descent. All
these models require the timing of individual computation
steps to adhere to a global schedule that is independent of
the values of the input parameters. Incoming spikes induce
a postsynaptic potential according to an impulse response
function.

Spiking neurons are considered to comprise the third gen-
eration of neurons. The main motivation behind the spiking

neuron model was the fact that computation in the brain is
primarily carried out by spiking neurons. A spiking neuron
fires at certain points in time, thereby sending an electric
pulse which is commonly referred to as action potential,
or spike. Incoming spikes induce a postsynaptic potential
according to an impulse response function. The size and
shape of a spike is independent of the input, but the time
when a neuron fires depends on the input of that neuron.
Thereby, information in SNNs is propagated by the timing
of individual spikes. The latter fact renders SNNs capable of
exploiting time as a resource for coding and computation in
a much more sophisticated manner than typical computational
models. Substantial evidence indicates that the time structure
of sequences of neuronal spikes (spike trains) is relevant in
neural signal processing. Experimental results coupled with
theoretical studies suggest that temporal correlation of activity
can be exploited by the brain to bind features of one object
and to differentiate objects [3], [4]. For practical applications
of temporally encoded SNNs, a learning process is required.
Recently, a modification of the classical backpropagation al-
gorithm has been proposed for the training of SNNs [5].

In the present paper we consider the application of a
parallel version of the Differential Evolution [6] algorithm
to the problem of supervised training of SNNs. The paper
is organized as follows, Section II provides a brief introduc-
tion to the Spike-Response Model and the theoretical results
that underpin the computational power of SNNs. Section III
describes the Parallel Differential Evolution algorithm. Next
the experimental results are reported and discussed. The paper
ends with conclusions and ideas for future research.

II. SPIKING NEURAL NETWORKS
The spiking nature of biological neurons has recently led

to explorations of the computational power associated with
temporal information coding in single spikes. In [7] it was
proven that networks of spiking neurons can simulate arbitrary
feedforward sigmoidal neural nets and can thus approximate
any continuous function. In fact, it has been shown theoreti-
cally that spiking neural networks are computationally more
powerful than neurons with sigmoidal activation functions with
regard to circuit complexity.
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A. Spike-Response Model

For completeness purposes, we provide some background
material on the basic spike-response model [8], [9]. The state
of neuron i is described by the state variable ui. The neuron is
said to fire if ui crosses from below a predefined threshold 9.
The moment of threshold crossing defines the firing time tif)
The set of all firing times of neuron i is denoted by,

J i = {tif) : 1 .f < n}-{t : ui(t) > 0. (1)

Two factors contribute to the value of the state variable ui.
First, immediately after firing an output spike at time t(f) the
state variable ui is reduced. Second, the neuron receives input
from a set of presynaptic neurons j E ri, where

ri = Ij: j presynaptic to i}. (2)

A presynaptic spike at time tj) affects the state ui(-) of
neuron i for t ) t(f) by the amount wijE (t -tjf)). The
weight wij is a factor which accounts for the strength of the
connection, while e(s) is a kernel function. A kernel function
is a piecewise continuous, bounded, symmetric around zero,
concave at zero, real valued, function. For convenience, kernel
functions often integrate to one.
The state ui(t) of a neuron i at time t is given by the linear

superposition of all contributions,

ui(t) = t - t() +
t(f)Ei

+ ± wij
jeri

( t7E t-tV)
t(f) E--Pj

The terms on the right-hand side of Eq. (3) admit a straight-
forward interpretation. The first sum captures the impact the
previous spikes of neuron i exert on its state. The sum over
the e(.) kernels model the neuron's response to all presynaptic
spikes. Eqs. (1)-(3) define the generic Spike Response Model.
To be more specific, we consider the following kernel func-
tions for 7Q(-) and e(-).
The kernel 71(s) is usually nonpositive for s > 0 and in our

implementation it assumes the form [9],

=(s)--ro exp (--) l-(s), (4)

where r70 is the amplitude of the relative refractoriness; r is
a decay time constant; and h(s) is the well-know heavyside
function which vanishes for s . 0 and assumes the value
of 1 for s > 0. Assuming continuous time, at the moment
of firing the value of the state variable ui (t) is equal to the
threshold 0. The effect of Eq. (4) therefore, is to set ui(t)
to the value (9 - ?o) after each firing instance. Note that if
77o = 0, then the state variable, ui (t) is reset to zero after a
firing instance.
The kernel e(.) models the unweighted postsynaptic poten-

tial (PSP) of a single spike of a neuron j E ri impinging on

neuron i. The mathematical formulation used is,

6(s) = exp -- X(s), (5)

where rij is an another decay time constant. The amplitude
of the PSP is modulated by the synaptic weight factor wij
(in Eq. (3)). For inhibitory synapses the kernel can have a
negative sign in front of the right-hand side of Eq. (5).
Alternatively, the sign of the weight wij can determine the
excitatory or inhibitory nature of the postsynaptic potential.
The latter approach is adopted in this contribution. A positive
weighted PSP is referred to as excitatory PSP (in abbreviation
EPSP), while a negative weighted PSP is called inhibitory PSP
(henceforth IPSP).

B. Theoretical Aspects of SNNs
On the basis of the computational mechanism described

above networks of spiking neurons can be created to approxi-
mate any bounded continuous function in the temporal domain.
Theorem 1 stated below provides the basis for the proof of the
previous proposition [7].

Theorem 1: Any feedforward or recurrent analog neural
network, consisting of s sigmoidal neurons that employ the
piecewise linear gain function can be simulated arbitrarily
closely by a network of (s + c) spiking neurons (where c
is a small constant) with analog inputs and outputs encoded
by temporal delays of spikes. This holds even if the spikes are
subject to noise.

It is well-known that feedforward sigmoidal neural net-
works with piecewise linear gain function are universal ap-
proximators. More specifically, in [10], [11] the following
Theorem is proved.

Theorem 2: Standard Feedforward Networks with only a
single hidden layer can approximate any continuous function
uniformly on any compact set and any measurable function to
any desired degree of accuracy.
Hence Theorem 1 in conjunction with Theorem 2 implies

the following Corollary:
Corollary 1: Any given continuous function F: [0, ]" -

[0, i]f can be approximated arbitrarily closely by a network of
spiking neurons with inputs and outputs encoded by temporal
delays.

III. PARALLEL EVOLUTIONARY TRAINING ALGORITHM
Differential Evolution (DE) is a novel minimization

method [6], capable of handling nondifferentiable, nonlinear
and multimodal objective functions. DE has been designed
as a stochastic parallel direct search method, which utilizes
concepts borrowed from the broad class of evolutionary al-
gorithms (EAs). The method typically requires few, easily
chosen, control parameters. Experimental results have shown
that DE has good convergence properties and outperforms
other well known evolutionary algorithms [12], [6].
DE, like other EAs, is easily parallelized due to the fact that

each member of the population is evaluated individually [13].
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The only phase of the algorithm that requires communication
with other individuals is in reproduction. This phase can also
be parallelized for pairs of individuals [14], [13]. Generally,
there are two typical models for EA parallelization. The
first employs fine grained parallelism, in which case, each
individual is assigned to a different processor. This approach
is problematic when the number of available processors is lim-
ited, or when the computation of the fitness function requires
information from the entire population. The second model,
which is used in this paper, maps an entire subpopulation to
a processor. Thus each subpopulation evolves independently
toward a solution. This allows each subpopulation to de-
velop its own solution independently. To promote information
sharing, the best individual of each subpopulation is moved
to other subpopulations, according to a predefined topology.
This operation is called "migration". The topology of the
proposed scheme is a ring, i.e. the best individuals from each
subpopulation are allowed to migrate to the next subpopulation
of the ring. This concept reduces the migration between
the subpopulations and consequently the messages exchanged
among the processors [15].
The migration of the best individuals is controlled by the

migration constant, b E (0, 1). At each iteration, a random
number from the interval (0, 1) is uniformly chosen and com-
pared with the migration constant. If the migration constant
is larger, then the best individuals of each subpopulation
migrate and take the place of a randomly selected individual
(different from the best) in the next subpopulation; otherwise
no migration is permitted. We have experimentally found that a
migration constant, 0 = 0.1, is a good choice, since it allows
each subpopulation to evolve for some iterations before the
migration phase actually occurs [15].
To apply the PARallel DE (PARDE) to train spiking neural

networks, we start with a specific number of subpopulations,
each one consisting of NP, D-dimensional weight vectors,
and evolve them over time. NP is fixed throughout the training
process. All the weight subpopulations are randomly initialized
in the interval [-1, 1], following the uniform probability dis-
tribution. At each iteration, called generation, all the subpopu-
lations are evolved independently in parallel, until a migration
phase is decided. After the migration of the best individuals,
the new subpopulations continue to evolve as before.

Let us now focus on a subpopulation. In each subpopulation,
new weight vectors are generated by the combination of
randomly chosen weight vectors from the population. This
operation in our context can be referred to as mutation.
Specifically, for each weight vector Wk k = 1, . . .,NP, where
g denotes the current generation, a new vector Vg'+ (mutant
vector) is generated according to the following equation:

vk wk + ,Z (Wbest _ Wk) + t, (Wri -Wr2),(6g+ .(6)
where Wbest is the best member of the previous generation;g
,t > 0 is a real parameter, called mutation constant, which
controls the amplification of the difference between two weight
vectors so as to avoid the stagnation of the search process;
and rl, r2, E {1,2,...,k-1,7k+ 1, ..., NP}, are random

integers mutually different and different from the running
index k.
To increase further the diversity of the mutant weight vector,

the outcoming vectors are combined with another predeter-
mined weight vector - the target weight vector - this operation
is called recombination. Specifically, for each component 1
(1 = 1,2,..., D) of the mutant weight vector Vk 1, we
randomly choose a real number r from the interval [0, 1]. Then,
we compare this number with p (recombination constant), and
if r . p we select, as the l-th component of the trial vector
Uk+1, the corresponding component l of the mutant vector
Vg+. Otherwise, we pick the 1-th component of the target
vector Wkg+1. This operation yields the trial weight vector.
Finally, the trial vector is accepted for the next generation
if and only if it yields a reduction in the value of the error
function. This is the selection operation. In [16], it has been
shown that this methodology can efficiently train Feedforward
Neural Networks with arbitrary, as well as, constrained integer
weights.

IV. EXPERIMENTAL RESULTS

For the test problems considered, we made no effort to
tune the mutation, recombination and migration constants, t,
p and / respectively, to obtain optimal or at least nearly
optimal convergence speed. Instead, the fixed values it = 0.8,
p = 1.0, and q = 0.1, were used. Smaller values of q
can further reduce the messages between the processors and
thus reduce computational time, but this may result in rare
and insufficient migrations. It is obvious that one can try to
fine-tune the ,u, p, 0 and NP parameters to achieve better
results, i.e. less error function evaluations and/or better success
rates. The weight subpopulations were initialized with random
numbers in the interval [-1, 1]. The total population size NP
was divided equally to the subpopulations. Regarding total
population size, experimental results have shown that a good
choice is 2D < NP < 4D. Clearly, using a larger population
size promotes a finer exploration of the weight space, but this
practice usually increases the number of function evaluations
performed. On the other hand, small values of NP render
the algorithm inefficient and more generations are required
to converge to the minimum.

Regarding the set of constants that are employed in the
equations that describe the spike-response model (Eq. (1)-
Eq. (5)), the following values were used. The value of the
threshold 0 was set to 0.1, the amplitude of the relative
refractoriness, 710 = 1.0, both decay time constants r = =rij
1.0. This set of parameter values was selected experimentally.
Proper fine-tuning of these parameters can further improve the
performance of the SNNs.

Numerical experiments were performed using a Differential
Evolution and a Neural Network C++ Interface developed
under the Fedora Linux 1.0 operating system using the GNU
compiler collection (gcc) version 3.3.2.
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A. The Exclusive-OR Problem
The first test problem we considered is the eXclusive-

OR (XOR) Boolean function problem, which historically has
been considered as a good test of a network model and
learning algorithm. A 2-2-1 SNN (six weights, dimension
of the problem D = 6) has been used for the simulations.
The encoding of this problem in spike-time patterns, was
performed by substituting 1 with 10 uniformly distributed
spikes in the simulation interval, and 0 with no spikes at all.
The desired output of the networks is at least one spike at the
output neuron for the {0, 1} and {1, 0} input patterns and zero
spikes for the {0, 0} and {1, 1} input patterns. The following
fitness function was used to evaluate network performance:

E { °' if classification is correct, (7)

where p indicates the index of the current pattern, op stands
for the actual response of the network (in terms of the number
of output spikes), and tp represents the target value for pattern
p (number of output spikes as before).
The PARDE trained SNN was able to correctly classify the

four patterns associated with the XOR problem in all 100
experiments performed. The maximum number of generations
in each run was 10. An advantage of the proposed approach
over SpikeProp [5] is the significant reduction in the number of
weights. Specifically, the SNN trained through SpikeProp had
320 weights, whereas the proposed approach required only 6
weights.

B. The Diabetes Problem
The Diabetes Problem is a classification problem from the

Proben 1 dataset [17]. To encode the data of this problem in
spike times the values of the input variable were normalized
to integer values in the range [0, 10]. The normalized values
represent the number of uniformly distributed spikes over the
simulation period. For each input pattern the classification
decision of the SNN was decided by the output neuron with
the maximum number of spikes. The fitness function in Eq. (7)
was employed. The SNN architecture used was an 8-4-4-2
feedforward network.
The performance of the trained SNNs is compared with

that of MultiLayer Perceptrons (MLP) trained through Back
Propagation (BP) algorithm, Backpropagation with Momen-
tum (MBP) [18], [19], as well as, Second Order Momentum
(SMBP). The MLP architecture was 8-2-2-2. The stopping
error criterion for training was an error goal of 0.15 for
the BP algorithm. Since BP performance heavily depends
on the learning rate parameter, while the performance of the
momentum methods additionally depends on the value of the
momentum term, we tried all the values in the range (0.0, 1.0),
with a 0.1 step. For the MBP, the best results were obtained
for the values 0.9 and 0.6 for the learning rate and momentum
term respectively. For SMBP, the best results were produced
for 0.9 and 0.6. The maximum number of generations was 100
for PARDE trained SNNs. For the Backpropagation family
methods the maximum number of iterations was 1000. The

results of 100 independent experiments for the Diabetesl
problem are exhibited in Table I. The mean performance of
the SNNs trained through the PARDE algorithm is comparable
to that of multilayer perceptrons.

TABLE I
DIABETES I PROBLEM TEST SET CLASSIFICATION ERROR (%)

Algorithm Mean Stdev Max Min
BP 36.45 0 36.45 36.45
MBP 28.71 4.8 36.45 23.43
SMBP 28.70 5.12 36.45 21.88

SNN with PARDE 37.95 4.5 38.21 37.69

C. The Iris Problem
The Iris benchmark dataset consists of 150 samples, each

having four features. The dataset consists of three classes, two
of which are non-linearly separable. Each class contains 50
instances and refers to a type of iris plant. The dataset was
temporarily encoded by normalizing all input values to integers
in the range [0, 10]. As before, the value of the integer was then
transformed to uniformly distributed spikes over the simulation
period. The SNN topology used was 4-4-1. If the number
of output spikes of the network was in the range [0,10] the
input pattern was classified to the first class, if the number
of spikes was in (10,20] then the pattern was classified to
the second class. Otherwise, the input pattern was assigned
to the third class. The results of 100 runs on this dataset are
reported in Table II. For the algorithms employed to train the
multilayer perceptrons the following set of values were used.
The learning rate was set to 0.6 for all three methods, while the
momentum term appearing in MBP and SMBP was equal to
0.6. The maximum number of generations was 100 for PARDE
trained SNNs. For the Backpropagation family methods the
maximum number of iterations was 1000. In this test problem
the classification ability of the PARDE trained SNNs compares
favorably to that of multilayer perceptrons in terms of both
mean performance and standard deviation.

TABLE II
IRIS PROBLEM TEST SET CLASSIFICATION ERROR (%)

Algorithm
BP
MBP
SMBP

SNN with PARDE

Mean
5.24
5.70
5.2
4.73

Stdev
0.51
1.21
0.48
0.52

Max Min
8 2.66
10.66 4
6.66 4
6.75 2.70

V. CONCLUSION
This paper investigates the application of a parallel evolu-

tionary algorithm, namely parallel Differential Evolution, on
the problem of supervised training of feedforward spiking
neural networks. Spiking neural networks constitute a new
form of connectionist model. These networks differ from
traditional models in that spiking neurons communicate via
delayed spikes. Thereby, information in spiking nets is prop-
agated by the timing of individual spikes. The experimental
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results on three well-known classification problems indicate
that the proposed approach can produce networks having a
generalization ability comparable to that of standard multilayer
perceptrons trained through gradient descent based algorithms.
In a future correspondence we intend to apply an evolutionary
scheme to adjust not only the weights of the network but also
the parameters of the spike-response model.
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