
1st International Conference “From Scientific Computing to Computational Engineering”
1st IC–SCCE

Athens, 8–10 September, 2004
c
�

IC–SCCE

TRAJECTORY METHODS FOR SUPERVISED LEARNING

Yannis G. Petalas and Michael N. Vrahatis
Department of Mathematics, University of Patras, GR–26110 Patras, Greece,

University of Patras Artificial Intelligence Research Center(UPAIRC)
email: � petalas,vrahatis � @math.upatras.gr

Keywords: Neural Networks, Trajectory Methods, Ordinary Differential Equations

Abstract. The task of supervised learning in Artificial Neural Networks reduces to the minimization of the network
error function subject to the weights of the network. Trajectory Methods are global optimization methods that
formulate the optimization problem into a set of ordinary differential equations, the equilibrium points of which,
correspond to local minima of the objective function. In this work, we apply Trajectory methods to address the
Neural Network training problem. The reported experimental results indicate that this is a promising approach.

1 INTRODUCTION

A trajectory method[1] defines a finite set of curves (paths, trajectories) constructed in a way that ensures that
many of the solutions of the optimization problem lie on them. In many cases these curves are created by solving
ordinary differential equations of first, or second order. Various papers describe the use of second order differential
equations to create search trajectories[2, 3, 4, 5, 6, 7]. In analogy with classical mechanics these search trajectories are
based on Newton’s law for a particle of mass m � t � in a potential F subject to a dissipative force � u � t � ẋ � t � ,

m � t � ẍ � t ��� u � t � ẋ � t �	�
� ∇ f � x � t ���� (1)

Artificial neural networks (ANNs) are computational paradigms which implement simplified models of their
biological counterparts, biological neural networks. Biological neural networks are the local assemblages of neu-
rons and their dendritic connections that form the (human) brain. Accordingly, ANNs are characterized by local
processing at the level of artificial neurons; massively parallel processing, implemented by rich connection pat-
terns between neurons; the ability to acquire knowledge via learning from experience; and knowledge storage in
distributed memory through the synaptic connections among neurons.

In supervised training, both the inputs and the outputs are provided for a number of patterns which comprise
the training set. The network then processes the inputs and compares its resulting outputs against the desired
outputs. Errors are propagated backward through the system, in order to adjust the weights which in turn control
the network. The goal is to minimize the error function of the network with respect to the weights of the network.

In this work, we propose the application of the trajectory methods to the optimization problem that arises in the
training of a neural network. The paper is organized as follows: In Section 2 we briefly review some well–known
trajectory methods and the proposed approach is exposed. In Section 3 the experimental results are presented, and
finally in Section 4 we give the conclusions of our work.

2 TRAJECTORY METHODS

In this Section, we give a short description of the most popular trajectory methods, namely the methods due to
Griewank[4], Snyman and Fatti[3], and Branin[2].

Griewank method: Griewank[4] states five desirable properties that a search method must satisfy using a target
value c which is slightly larger than the global minimum f � .

1 The trajectory cannot converge to minima with values greater than c.

2 As long as f � c, the trajectory is little affected by the perturbation of u and tries to follow a descent direction
with respect to � ∇u � t � .

3 As f tends to c, the trajectory minimizes more thoroughly and finally reduces to a local minimization tech-
nique when f � c.

Yannis G. Petalas and Michael N. Vrahatis

4 The trajectory does not explicitly depend on the Hessian of f .

5 The trajectory is invariant with respect to translations and multiplication of f � c by a positive scalar.

Griewank has also shown that these requirements are satisfied by the solutions of the following second order
differential equation,

ẍ � t ���
� e � I � ẋẋ ��� ∇ f � x �
f � x ��� c � e � 0 � (2)

from any initial point x0 � ẋ0 with f � x0 ��� c and � ẋ0 ��� 1 � The values of the parameters e and c play a significant
role in the performance of the method.

Snyman and Fatti method: In[3] Snyman and Fatti use the following initial value problem,

ẍ � � ∇ f � x � �
x � 0 ��� x0 � (3)
ẋ � 0 ��� 0 �

The multiplication of the above equation with ẋ and its integration give the energy conservation relationship,

1
2
� ẋ � 2 � f � x �	� f � x0 �� (4)

A particle will move in the direction of steepest descent and his kinetic energy will increase as long as it moves
downhill. The energy conservation relationship will continue past a local minimum and surmount a ridge of
height less than f � x0 � , possibly finding an even lower value of f . The trajectory must be terminated before it
approximately retraces itself. Snyman and Fatti use for the integration of the equation the leap–frog method
which has been proven efficient besides its simplicity. Finally they combine this method with a multistart global
optimization algorithm. The starting points are taken randomly and a Bayesian approach is used to terminate the
procedure. This method has been applied in numerous test functions with very good results.

Branin’s method: Branin[2] studied the problem of finding all the solutions of the equation F � x �	� 0 in � n . He
introduced the following first order differential equation,

d
dt

F � x ��� F � x ��� 0 � x � 0 ��� x0 � (5)

which gives,
ẋ �
� DF � x ��� 1F � x � � x � 0 ��� x0 � (6)

as long as the Jacobian DF � x � is nosingular. Applying Euler’s method to the above equation we get the usual
Newton method with stepsizes hk,

xk 1 � xk � hkDF � xk � � 1F � xk �� (7)

This is the reason these trajectories are also known as Newton trajectories. From the analytical solution,

F � x � t ���	� F � x0 � e � t � (8)

it follows that the trajectories tend to zero if the integration can be continued to t ! ∞. Furthermore, we note that
F has constant direction on the trajectories, that is, F " x #$

F " x # $ stays constant on any trajectory x � t � . However, the right
hand side of the equation is not defined in these points where DF � x � becomes singular.

Here we experimentally show that the application of Stoermer’s rule[8] to the initial value problem of Eq. (3)
produces better results than the backpropagation family methods. Assume the following initial value problem,

ÿ � f � x � y � �
y � x0 ��� y0 � (9)
ẏ � x0 ��� z0 �

(10)

Stoermer’s rule is described by the equations,

y1 � y0 � h
%
z0 � 1

2
h f � x0 � y0 �'&

yk 1 � 2yk � yk � 1 � h2 f � x0 � kh � yk � k � 1 � ����� � m � 1 (11)

zm � ym � ym � 1 (h � 1
2

h f � x0 � H � ym �

Yannis G. Petalas and Michael N. Vrahatis

where H is the total step to be taken in m substeps. Thus, each substep is of length h � H (m. The final value, zm,
is ẏ � x0 � H � . Henrici[9] showed how to rewrite the above equations reducing the roundoff error using the quantities
∆k � yk 1 � yk. The new formulation of the method assumes the form,

∆0 � h
%
z0 � 1

2
h f � x0 � y0 �)& �

y1 � y0 � ∆0 �
∆k � ∆k � 1 � h2 f � x0 � kh � yk � k � 1 � ����� � m � 1 � (12)

yk 1 � yk � ∆k k � 1 � ����� � m � 1 �
zm � ∆m � 1 (h � 1

2
h f � x0 � H � ym ��

3 EXPERIMENTAL RESULTS

The performance of the proposed method has been compared with that of well–known and widely used varia-
tions of the Backpropagation (BP) method, namely: Backpropagation with Momentum (MBP)[10, 11], Second Order
Momentum (SMBP) and Adaptive Backpropagation (ABP), using the adaptive scheme suggested by Vogl[10, 12],
Parallel Tangents method (PARTAN)[13], as well as, Scaled Conjugated Gradient (SCG)[14].

3.1 Description of the problems

The problems we used were Cancer1, Diabetes1, and Heart1. All three are classification problems from the
proben1[15] dataset with fixed training and test sets. A brief description of each problem follows.

Cancer1: The architecture used was 9–4–2–2. The stopping error criterion for training was an error goal of
0 � 05 within 1000 function (including gradient) evaluations. In the experiments the best results for the methods
were given with the following parameters: For BP the step–size was set to 0 � 9, for PARTAN it was 0 � 9, for MBP
and SMBP the step–size was 0 � 9 and the momentum term was 0 � 7. For ABP, the error ratio factor was 1 � 04, the
stepsize increment factor was equal to 1 � 05, while the stepsize decrease factor was 0 � 7. The parameter setup for
the proposed method was H � 12 and m � 4.

Heart1: The architecture used was 35–8–2. The stopping error criterion for training was an error goal of
0 � 1 within 1000 function (also counting gradient) evaluations. The parameter configuration for the previous two
problems was also applied in this case. In the experiments the best results for the methods were given with the
following parameters: For BP the step–size was 0 � 9, for PARTAN it was 0 � 9. For MBP the step–size was 0 � 9 and
the momentum term was 0 � 6. For SMBP the step–size was 0.9 and the momentum term was 0 � 7. For ABP, the
error ratio factor was 1 � 04, the step–size increment factor was equal to 1 � 05 while the step–size decrease factor
was 0 � 7. As for the Cancer1 problem, the parameter setup for the proposed method was H � 12 and m � 4.

Diabetes1: The architecture used was an 8–2–2–2 feedforward neural network. The stopping error criterion for
training was an error goal of 0 � 15 within 1000 function (also counting gradient) evaluations. In the experiments the
best results for the methods were given with the following parameters: For BP the step–size was 0 � 6, for PARTAN
it was 0 � 9, for MBP the step–size was 0 � 9 and the momentum term 0 � 4, for SMBP the stepsize was 0 � 9 while the
momentum was 0 � 6. For ABP, the error ratio factor was 1 � 04, the step–size increment factor was equal to 1 � 05
while the step–size decrease factor was 0 � 7. For the proposed method, H was set to 12 and m was set to 4.

We performed 100 simulations for each problem. The evaluation measures we used are, the number of suc-
cesses (suc), the mean, the standard deviation (stdev), the minimum (min), and the maximum (max), number of
function evaluations (also counting gradient evaluations). In addition to the above measures we computed these
statistics for the percentage of misclassification on the test set.

In Tables 1, 2 the results for the cancer1 problem are presented. The proposed method required the minimum
function evaluations. From the other methods considered, only ABP exhibited a comparable performance. With
respect to misclassification error ABP achieved the minimum while the proposed method exhibited almost the
same performance.

In Tables 3, 4 the results for the heart1 problem are exhibited. Concerning the number of function evaluations,
the proposed method achieved the best performance followed by ABP. Relative to the classification performance,
MBP attained the minimum error but overall all methods exhibited a very similar performance.

The results for the diabetes1 problem are reported in Tables 5, 6. The proposed method required the minimum
number of function evaluations to converge. Concerning the classification error, the proposed method achieved the
second lowest misclassification percentage.

Yannis G. Petalas and Michael N. Vrahatis

Algorithm Mean Stdev Max Min Suc.
BP 583 � 25 154 � 72 1001 347 98

MBP 300 � 79 95 � 59 664 158 100
SMBP 323 � 98 102 � 93 773 157 100
ABP 74 � 26 8 � 87 95 63 100

PARTAN 159 � 12 39 � 99 273 87 100
SCG 259 � 36 807 � 77 1001 16 92

Stoermer 60 � 34 19 � 86 139 31 100

Table 1: FE Cancer1 problem

Algorithm Mean Stdev Max Min
BP 2 � 2 0 � 57 3 � 44 0 � 57

MBP 2 � 01 0 � 63 3 � 65 0 � 57
SMBP 2 � 02 0 � 60 3 � 44 0 � 57
ABP 1 � 93 0 � 83 3 � 44 0 � 57

PARTAN 2 � 15 0 � 48 3 � 45 1 � 15
SCG 4 � 51 9 � 76 37 � 36 0 � 57

Stoermer 1 � 95 0 � 61 3 � 45 0 � 57

Table 2: CE Cancer1 problem

Algorithm Mean Stdev Max Min Suc.
BP 1001 � 00 0 � 00 1001 1001 0

MBP 631 � 09 136 � 06 984 367 100
SMBP 638 � 17 161 � 63 1001 303 98
ABP 159 � 13 26 � 77 217 95 100

PARTAN 327 � 69 47 � 95 427 213 100
SCG 339 � 37 841 � 67 1001 46 91

Stoermer 123 � 40 19 � 03 181 85 100

Table 3: FE Heart1 problem

Algorithm Mean Stdev Max Min
BP 20 � 75 0 � 81 23 � 04 18 � 70

MBP 20 � 62 1 � 10 22 � 60 17 � 82
SMBP 20 � 93 1 � 18 24 � 35 17 � 82
ABP 20 � 76 1 � 01 22 � 60 17 � 82

PARTAN 20 � 64 0 � 66 22 � 60 19 � 13
SCG 21 � 60 4 � 76 47 � 82 17 � 82

Stoermer 20 � 71 0 � 78 22 � 17 18 � 7
Table 4: CE Heart1 problem

Algorithm Mean Stdev Max Min Suc.
BP 1001 � 00 0 � 00 1001 1000 0

MBP 863 � 75 186 � 39 1001 354 46
SMBP 865 � 45 190 � 57 1001 256 46
ABP 664 � 85 153 � 80 965 385 100

PARTAN 796 � 35 145 � 54 1001 549 81
SCG 499 � 69 973 � 11 1001 64 87

Stoermer 355 � 42 115 � 79 889 181 100

Table 5: FE Diabetes1 problem

4 CONCLUSIONS

In this work we propose a trajectory method for neural network training. To this end, the optimization problem
that appears in Neural Networks was addressed using a second order differential equation. We solved numerically

Yannis G. Petalas and Michael N. Vrahatis

Algorithm Mean Stdev Max Min
BP 36 � 45 36 � 45 36 � 45 36 � 45

MBP 28 � 71 4 � 80 36 � 45 23 � 43
SMBP 28 � 70 5 � 12 36 � 45 21 � 88
ABP 24 � 54 0 � 94 29 � 17 22 � 92

Partan 26 � 44 3 � 01 36 � 45 23 � 96
SCG 26 � 48 3 � 98 36 � 45 21 � 87

Stoermer 25 � 19 0 � 65 26 � 56 22 � 40

Table 6: CE Diabetes1 problem

this equation using Stoermer’s rule and tested it on three classification problems. The results showed that the
proposed method exhibits a significantly better performance compared to the considered backpropagation family
methods.

Acknowledgment
We acknowledge the partial support of the “Pythagoras” research grant awarded by the Greek Ministry of

Education and Religious Affairs and the European Union.

References
[1] Diener, I. (1995). “Trajectory methods in global optimization”. editors Horst, R. and Pardalos, P. M., In

Handbook of Global Optimization II, Vol., pp. 649–668, pp. 649–668. Dordrecht, Netherlands: Kluwer.

[2] Branin, F. H. (1972). “A widely convergent method for finding multiple solutions of simultaneous nonlinear
equations”. I.B.M Journal of Research and Development, Vol. 16, pp. 504–522.

[3] Snyman, J.A. and Fatti, L.P. (1987). “A multi–start global minimization algorithm with dynamic search
trajectories”. JOTA, Vol. 54(3,8), pp. 121–141.

[4] Griewank, A.O. (1981). “Generalized descnet for global optimization”. JOTA, Vol. 34(3,8), pp. 11–39.

[5] Incerti, S., Parisi, V., and Zirilli, F. (1979). “A new method for solving nonlinear simultaneous equations”.
SIAM J. Num. Anal, Vol. 16(3), pp. 779–789.

[6] Zhidkov, N. and Shchdrin, B. (1978). “On the search of minimum of a function of several variables”.
Computing methods and Programming, Vol. 10(3,7), pp. 203–210.

[7] Inomata, S. and Cumada, M. (1964). “On the golf method”. Bulletin of the Electronical Laboratory, Vol.
25(3), pp. 495–512.

[8] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1988). “Numerical recipes in C: The art
of scientific computing”. Cambridge University Press.

[9] Henrici, P. (1962). “Discrete variable methods in ordinary differential equations”. John Wiley, New York.

[10] Magoulas, G.D., Vrahatis, M.N., and Androulakis, G.S. (1997). “Effective backpropagation training with
variable stepsize”. Neural Networks, Vol. 10(1), pp. 69–82.

[11] Magoulas, G.D., Vrahatis, M.N., and Androulakis, G.S. (1999). “Increasing the convergence rate of the
error backpropagation algorithm by learning rate adaptation methods”. Neural Computation, Vol. 11(7),
pp. 1769–1796.

[12] Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., and Alkon, D.L. (1988). “Accelerating the convergence of
the back-propagation method”. Biol. Cybern., Vol. 59, pp. pp. 257–263.

[13] Rao, S.S. (1992). “Optimization theory and applications”. Wiley Eastern Limited.

[14] Moller, M. (1993). “A scaled conjugate gradient algorithm for fast supervised learning”. Neural Networks,
Vol. 6, pp. 525–533.

[15] Prechelt, L. (1994). “Proben1: A set of neural network benchmark problems and benchmarking rules”.
Technical Report 21/94.

