
Memetic Algorithms for Neural Network Training in Bioinformatics

Y.G. Petalas and M.N. Vrahatis
Department of Mathematics,University of Patras, GR–26110 Patras, Greece,

University of Patras Artificial Intelligence Research Center(UPAIRC)
Phone:+302610997374, Fax:+302610992965

email:{petalas,vrahatis}@math.upatras.gr

ABSTRACT: Bioinformatics is a new, rapidly growing, scientific area that exploits computational techniques to study
DNA and protein sequences. A particularly interesting task in this context is to predict the structure of proteins. Artificial
Neural Networks can efficiently handle classification and prediction tasks. On the other hand, Memetic Algorithms belong
to the class of heuristic methods that have been developed to address hard optimization problems. Since training Artificial
Neural Networks is such a problem, Memetic Algorithms can be used to address it. In this paper we propose a Local-
Search-Based Memetic Algorithm, and study its performance as a neural network training method. The resulting Neural
Network is applied for the prediction of the cellular localization sites of two proteins. The performance of the proposed
method is compared to that of alternative memetic and global optimization algorithms.

KEYWORDS: Bioinformatics, Memetic Algorithms, Neural Networks, Differential Evolution.

INTRODUCTION
Modern Biology has rendered it possible to determine and store huge amounts of information about DNA sequences
including the amino acid sequences of a diverse set of proteins. Analyzing these proteins is critical because proteins
comprise both the “building blocks” and the “architects” of life. Since a protein’s structure determines its biological
function, the task of protein structure prediction has drawn considerable attention. Solving this problem will contribute to
our understanding of the gene expression and it will also facilitate the design of new products, including diagnostic tests
and drugs. In this work we examine the classification problems associated with the E.coli and yeast proteins [1], [2]. A
short description of the data sets that we will be used in our analysis follows.

E.Coli Data Set: The objective of this data set is to predict the cellular localization sites of E.coli proteins [3]. There
are 8 different cellular sites, namely, cytoplasm (cp), inner membrane without signal sequence (im), periplasm (pp),
inner membrane with uncleavable signal sequence (imU), outer membrane (om), outer membrane lipoprotein (omL),
inner membrane lipoprotein (imL) and inner membrane with cleavable signal sequence (imS). The attributes are signal
sequence recognition methods (specifically those of McGeoch and von Heijne), the presence of charge on N-terminus of
predicted lipoproteins and 3 different scoring functions on the amino acid contents whether predicted as a outer membrane
or inner membrane, cleavable or uncleavable sequence signal.

Yeast Data Set: Similarly to the E.coli data set, the objective is to determine the cellular localization of the yeast
proteins [3]. There are 10 different sites, which include: CYT (cytosolic or cytoskeletal); NUC (nuclear); MIT (mito-
chondrial); ME3 (membrane protein, no N-terminal signal); ME2 (membrane protein, uncleaved signal); ME1 (membrane
protein, cleaved signal); EXC (extracellular); VAC (vacuolar); POX (peroxisomal) and ERL (endoplasmic reticulum lu-
men). The attributes are similar to the E.coli data set with the addition of nuclear localization information.

To address the classification problems associated with the aforementioned data sets, we employ Artificial Feedforward
Neural Networks (FNNs). FNNs are parallel computational models comprised of densely interconnected, simple, adaptive
processing units, characterized by an inherent propensity for storing exponential knowledge and rendering it available for
use. FNNs resemble the human brain in two fundamental respects; firstly, knowledge is acquired by the network from its
environment, through a learning process, and secondly, inter-neuron connection strengths, known as synaptic weights, are
employed to store the acquired knowledge [4].

The efficient supervised training of FNNs is the subject of considerable ongoing research and numerous algorithms
have been proposed to this end. Supervised training amounts to the global minimization of the network error function
E. The rapid computation of a set of weights that minimizes this error is a difficult task since, in general, the number of
network weights is large and the resulting error function generates a complex surface in the weight space, characterized
by multiple local minima and broad flat regions adjoined to narrow steep ones. To address this hard optimization problem,

eunite 2004 41 www.eunite.org



we propose a new Memetic Algorithm (MA), as a neural network training algorithm. MAs are population–based heuristic
search methods for global optimization.

The rest of the paper is organized as follows; the next Section is devoted to MAs, subsequently we give a short
description of our method, and proceed to present the experimental results. The paper ends with concluding remarks.

MEMETIC ALGORITHMS
Memetic Algorithms (MAs) comprise a family of population–based, heuristic, search algorithms designed to perform
global optimization. MAs bear a similarity to genetic algorithms (GAs) [5]. While GAs rely on the concept of biolog-
ical evolution, MAs mimic cultural evolution. In nature genes, are usually not modified during an individual’s lifetime,
whereas memes are. Most MAs can be interpreted as a cooperative-competitive strategy of optimizing agents. Their
success can be attributed to the synergy of the different search approaches incorporated. Local-Search-based Memetic
Algorithms (LS-based MAs) have been successfully applied in combinatorial optimization and especially for the approx-
imate solution of NP–hard optimization problems [6]. For completeness purposes we outline the general description of
an LS-based MA as it appears in [6]:

Begin
InitializePopulation Pop using FirstPop()
Foreach individual i ∈ Pop do i← Local-Search-Engine(i)
Foreach individual i ∈ Pop do i← Evaluate(i)
Repeat

parfor j = 1 to # recombinations do
selectToMerge a subset Spar of Pop
offspring← Recombine(Spar, x);
offspring← Local-Search-Engine(offspring);
Evaluate(offspring);
addInPopulation individual offspring to Pop;
endparfor

parfor j = 1 to # mutations do
selectTomutate an individual i ∈ Pop;
im ←Mutate(i);
im ← Local-Search-Engine(im);
im ← Evaluate(im);
addInPopulation individual offspring to Pop;
endparfor

Pop← SelectPop(Pop);
if Pop has converged then Pop← RestartPop(Pop);
until termination-condition=True;
End

Next we briefly explain the above pseudo-code. InitializePopulation initializes the population with some random
values. Local-Search-Engine() receives as input an individual and executes a local search method for a few iterations. The
Evaluate() function plays the role of the objective function. After the initial population has been created, the recombination
process takes place for selected individuals. The term parfor in the pseudo-code indicates operations that can be executed
in parallel.

A new individual is created by recombining the selected individuals according to the Recombine() function. The
Mutate() function performs the mutation operation to some individuals of the population. The SelectPop() function
chooses the individuals that will survive in the next population. The convergence of the population is determined by the
similarity of the individuals in the population. When the population has converged a RestartPop() function is used. In
general, the best individual is retained and a new population is created using some randomized method. All individuals in
the population are evaluated and the whole process is repeated. The termination-condition can be implemented in various
ways, including time-expiration and/or generation-expiration criteria.

eunite 2004 42 www.eunite.org



From the above description of the LS-based MA we see that it is an evolutionary algorithm that incorporates a local
search in each iteration. A number of hybrid algorithms that exploit GAs as an evolution algorithm and a local search
at each iteration (GA-LS) have been proposed [7], [8], [9], [10]. The GA-LS hybrid scheme is interesting because the
local and the global search methods can influence each other’s behavior. An important example of this phenomenon is the
Baldwin effect [8], [11] in which learning in natural systems speeds up the rate of evolutionary change. Similar effects
have been observed by a number of authors that used GA-LS hybrids [7], [8], [9]. GA-LS hybrid methods have been
used for neural network training [7], [10]. In this contribution, we propose an LS-based MA which uses the Differential
Evolution (DE) algorithm [12] as the global search method and in each iteration we apply a Random Walk with Direction
Exploitation as the local search method.

METHOD DESCRIPTION
The proposed algorithm is based on the DE algorithm with the difference that it performs a local search in each iteration
before applying the evolutionary operators of DE. As a local search method we use Random Walk with Direction Ex-
ploitation. Random walk with Direction Exploitation can be applied even if the objective function is discontinuous and
non–differentiable. It has been shown to be effective in cases where other methods fail due to local difficulties such as
sharply varying functions and shallow regions [13]. Below we give a short description of DE as well as the Random Walk
with Direction Exploitation.

DIFFERENTIAL EVOLUTION
DE [12] is a population-based, direct-search algorithm for the global optimization of multimodal functions. DE exploits
a population of individuals, the ith individual denoted as ui. A description of the algorithm follows:

Step 1. Initialize the individuals of the population with random values.
Step 2. (Mutation Step) Mutate each individual ui (called the target individual), of the population to form a trial

individual vi, by applying one of the following operators,

vi = ur1 + α(ur2 − ur3) (DE1)

vi = ur1 + α(ur1 − ur2) (DE2)

vi = ubest + α(ur1 − ur2) (DE3)

vi = ui + α(ui − ubest) + α(ur1 − ur2) (DE4)

vi = ubest + α(ur1 − ur2) + α(ur3 − ur4) (DE5)

where α is a parameter assuming values in the interval [0, 1], and r1, r2, r3, r4 are random integers satisfying
r1 6= r2 6= r3 6= r4 6= i 6= best. The index best is used to represent the individual with the lowest function
value in the current population.

Step 3. (Crossover step) For each element of the trial individual, vi, obtain a random value r in the interval [0, 1].
If r 6 β, then the jth component of the trial individual remains unchanged, where β ∈ [0, 1] is called the
crossover factor. Otherwise the jth component of the trial vector assumes the value of the jth component of
the vector ui.

Step 4. (Selection step) For each trial individual of the population evaluate its function value. If this value is lower
compared to that of the target individual, then the trial individual replaces the target individual in the next
generation. Otherwise the target individual is retained in the next generation. Go to step 2.

DE is a very efficient and effective algorithm in practice and like other evolutionary algorithms, it can be easily
parallelized [14].

RANDOM WALK WITH DIRECTION EXPLOITATION
In the proposed algorithm Random Walk with Direction Exploitation is used as a local search algorithm [13]. Random
Walk (RW) is an iterative method that generates a sequence of approximations to the minimizer by assuming a random
vector as a search direction. Thus, if xi−1 is the approximation to the minimizer obtained in the (i − 1)th iteration, the
new value of x in the ith iteration, xi, is computed through,

xi = xi−1 + λui

where λ is a prescribed scalar step–length, and ui is a unit–length, random vector. The workings of the method are
summarized in the following,

eunite 2004 43 www.eunite.org



Step 1. Start with an initial point x1 and a scalar step length, λ. Compute the function value f1 = f(x1).

Step 2. Set the iteration number, i = 1.

Step 3. Generate a set of n random numbers and use them to form the unit–length random vector ui.

Step 4. Find the value of the objective function at the point:

f = f(x1 + λu)

Step 5. Compare the values of f and f1. If f < f1, set xi = x1 + λu, f1 = f and goto Step 4. Else compute
f = f(x1 − λu). If f < f1, set xi = x1 − λu, f1 = f and goto Step 4. Else if f > f1 reduce the scalar step
length λ and repeat Steps 3 through 5.

Step 6. If an improved point could not be generated even after reducing the value of λ below a small number ε, stop
the procedure and return as output the current point, x1.

THE PROPOSED METHOD
The resulting memetic algorithm combining the aforementioned methods is described immediately below,

Step 1. Initialize the individuals of the population with random values.

Step 2. For each individual ui of the population perform a Random Walk with Direction Exploitation for a number of
iterations.

Step 3. Perform mutation step of the DE.

Step 3. Perform crossover step of DE.

Step 4. Perform selection step of DE and go to Step2.

The termination criterion can be a predetermined number of iterations, or a criterion based on the value of the objective
function.

EXPERIMENTAL RESULTS
The problems used were E.coli and yeast dataset from the UCI repository [2]. In the experiments apart from the DE
algorithm and the proposed method (DERW), we implemented a memetic algorithm that uses a GA as the global search
method, and BackPropagation as as the local search method, denoted as GABP. Moreover, a GA equipped with Random
Walk with Direction Exploitation (GARW) as a local search method was considered, as described in Section . The GAs
used exploit a real–valued encoding and the slotted wheel roulette as selection mechanism [5]. We performed crossover
by selecting with a probability 0.7 each individual from the population. Taking random pairs of the selected individuals,
called parents, a child is produced by taking the mean value of the parents. During the mutation process, for each
component of each individual, we add a random number (from a normal distribution with zero mean and variance 0.1)
with probability 0.4.

We executed 30 simulations for the E.coli problem and 30 simulations for the yeast problem taking each time 70% of
the data set for training and retaining the remaining 30% as a test set (in each simulation a different partitioning of the
data was imposed).

For the E.coli problem the architecture used was 7-5-8 yielding an 88–dimensional optimization task. For the yeast
problem the architecture used was 8-5-10 resulting in an 105–dimensional problem. The population for the standard DE
algorithm was set to 80 and 55 for the E.coli and the yeast problem, respectively. The population for the RWDE algorithm
was set to 7 in the E.coli problem and was set to 10 for the yeast problem. In the hybrid GA algorithms the population was
set to 20 for the E.coli problem and was set to 10 for the yeast problem. Population sizes were selected so as to achieve the
same average number of function evaluations for all the algorithms and thus be able to compare their performance more
effectively. In the yeast problem only the two individuals with the minimum function values were allowed to perform a
Random Walk with Direction Exploitation. Each call to the Random Walk method executed 10 iterations, while a call to
BP executed 5 iterations. For the DE and the DERW the parameters α and β were set to 0.5 and 0.7 respectively. The
termination criterion for all the algorithms was set to 300 iterations. We measured the classification error and calculated
the average (Mean), standard deviation (St.Dev.), maximum (Max.) and minimum (Min.) values. These results are
presented in Tables I and II for the E.coli and the yeast problem respectively.

From the results reported in Table I, for the E.coli problem, we observe that GARW outperforms the GABP algorithm,
while the DE2RW algorithm achieved the minimum classification error among all the tested algorithms. From the standard
Differential Evolution only the third mutation operator, DE3 produced a performance close to the DERW algorithms.

eunite 2004 44 www.eunite.org



Table I: E.coli problem

Algorithm Mean St.Dev. Max. Min.
DE1 28.54 5.39 39.29 21.43

DE2 41.04 6.68 58.93 23.21

DE3 17.82 3.68 24.11 9.82

DE4 44.91 9.33 58.93 26.79

DE5 31.10 5.25 41.96 22.32

GABP 19.64 3.10 25.00 10.71

GARW 17.47 4.26 28.57 11.61

DE1RW 16.67 4.70 28.57 9.82

DE2RW 14.40 3.58 20.54 7.14

DE3RW 16.88 3.69 23.21 10.71

DERW4 15.54 3.56 22.32 8.93

DERW5 16.22 4.45 25.00 8.93

Table II: Yeast problem

Algorithm Mean St.Dev. Max. Min.
DE1 63.77 4.38 75.35 56.36

DE2 69.77 2.85 73.94 64.20

DE3 47.89 3.65 57.58 42.83

DE4 69.52 3.58 84.44 65.86

DE5 58.94 3.03 67.27 53.53

GABP 58.36 3.74 61.54 53.86

GARW 59.11 3.55 63.64 52.12

DE1RW 48.06 3.99 59.39 41.82

DE2RW 47.01 3.99 55.96 41.62

DE3RW 46.81 3.08 56.57 41.01

DE4RW 46.76 3.40 56.57 41.41

DE5RW 47.28 2.07 54.14 43.23

Table II exhibits the results obtained for the yeast problem. GABP exhibited worse performance compared with
GARW and DERW and DE4RW produced the minimum classification error. The standard DE algorithms exhibited
relatively poor performance with the exception of DE3.

CONCLUDING REMARKS
A new Local-Search based Memetic algorithm has been introduced. The algorithm exploits the Differential Evolution
algorithm as a global search method, and the Random Walk with Direction Exploitation as a local search method. It
has been applied on two problems from the field of bioinformatics and the obtained results are promising. The proposed
method improve the performance of the standard DE algorithm as it manages to achieve better classification results while
performing the same average number of function evaluations. In a future work, we intend to investigate the efficiency of
the proposed method on other test problems. Moreover, we aim to try variations of the proposed algorithm using different
local and global search methods.

eunite 2004 45 www.eunite.org



Acknowledgment
We wish to thank the referees for their useful remarks and suggestions. We also acknowledge the partial support of the
“Pythagoras” research grant awarded by the Greek Ministry of Education and Religious Affairs and the European Union.

REFERENCES
[1] A.C. Tan; D. Gilbert, 2003, “An empirical comparison of supervised learning techniques in bioinformatics”, In

Proceedings of the 1st Asia Pacific Bioinformatics Conference (APBC 2003), pp. 219–222.

[2] C.L. Blake; C.J. Merz. “UCI repository of machine learning databases”, 1998.

[3] P.. Horton; K. Nakai, 1996, “A probabilistic classification system for predicting the cellural localization sites of
proteins”, In Proceedings of 4th International Conference on ISMB, pp. 109–115.

[4] S. Haykin, 1999, “Neural networks: A comprehensive foundation”, New York: Macmillan College Publishing
Company.

[5] D. Goldberg, 1989, “Genetic Algorithms in search, optimization and machine learning”, Addison-Wesley Publishing
Company, Inc.

[6] D. Corne; M. Dorigo; F. Glover, 1999, “New ideas in optimization”, McGraw-Hill.

[7] R.K. Belew; J. McInerny; N.N Schraudolph. “Evolving networks:using the genetic algorithm with connectionist
learning”. In C.G. Langton; C. Taylor; J.D. Farmer; S. Rasmussen, editors, Proceedings of the Second Conference
in Artificial Life, pp. 511–548. Addison-Wesley, 1991.

[8] G.E. Hinton; S.J Nowlan, 1987, “How learning can guide evolution”, Complex Systems, 1, pp. 495–502.

[9] R. Geesing; D.G. Stork. “Evolution and learning in neural networks:the number and distribution of learning trials
affect the rate of evolution”. In R.P. Lippmann; J.E. Moody; D.S Touretzky, editors, NIPS 3, pp. 804–810. Morgan
Kaufmann, 1991.

[10] W.E. Hart. “Adaptive global optimization with local search”. PhD thesis, University of California, San Diego,USA,
1994.

[11] R.K Belew, 1990, “Evolution, learning and culture:computational metaphores for adaptive algorithms”, Complex
Systems, 4, pp. 11–49.

[12] R. Storn; K. Price, 1997, “Differential evolution – a simple and efficient adaptive scheme for global optimization
over continuous spaces”, Journal of Global Optimization, 11, pp. 341–359.

[13] S.S. Rao, 1992, “Optimization theory and applications”, Wiley Eastern Limited.

[14] V.P. Plagianakos; M.N. Vrahatis, 2002, “Parallel evolutionary training algorithms for ‘hardware–friendly’ neural
networks”, Natural Computing, 1, pp. 307–322.

eunite 2004 46 www.eunite.org


