
Neural Network Training with Constrained Integer Weights

V.P. Plagianakos
University of Patras

Department of Mathematics,
U.P. Artificial Intelligence

Research Center (UPAIRC),
GR-26500 Patras, Greece.

e-mail: vpp@mat h. upatras. gr

Abstract- In this contribution we present neural
network training algorithms, which are based on
the differential evolution (DE) strategies intro-
duced by Storn and Price [Journal of Global Op-
timization 11, 341-359, 19971. These strategies
are applied to train neural networks with small
integer weights. Such neural networks are bet-
ter suited for hardware implementation than the
real weight ones. Furthermore, we constrain the
weights and biases in the range [-2k + 1, 2k - 11,
for k = 3 ,4 ,5 . Thus, they can be represented by
just k bits.

These algorithms have been designed keeping
in mind that the resulting integer weights require
less bits to be stored and the digital arithmetic
operations between them are easier to be imple-
mented in hardware. Obviously, if the network
is trained in a constrained weight space, smaller
weights are found and less memory is required.
On the other hand, as we have found here, the
network training procedure can be more effec-
tive and efficient when large weights are allowed.
Thus, for a given application a trade off between
effectiveness and memory consumption has to be
considered.

Our intention is to present results of evolu-
tion algorithms on this difficult task. Based on
the application of the proposed class of methods
on classical neural network benchmarks, our ex-
perience is that these methods are effective and
reliable.

1 Introduction

Artificial Feedforward Neural Networks (FNNs) have
been widely used in many application areas in recent
years and have shown their strength in solving hard
problems in Artificial Intelligence. Although many dif-
ferent models of neural networks have been proposed,
multilayered FNNs are the most common. FNNs consist
of many interconnected identical simple processing units,
called neurons. Each neuron calculates the dot product
of the incoming signals with its weights, adds the bias to

M.N. Vrahatis
University of Patras

Department of Mathematics,
U.P. Artificial Intelligence

Research Center (UPAIRC),
GR-26500 Patras, Greece.

e-mail: vrahatis@math.upatras.gr

the resultant, and passes the calculated sum through its
activation function. In a multilayer feedforward network
the neurons are organized into layers with no feedback
connections.

FNNs can be simulated in software, but in order to be
utilized in real life applications, where high speed of ex-
ecution is required, hardware implementation is needed.
The natural implementation of an FNN - because of its
modularity - is a parallel one. The problem is that the
conventional multilayer FNNs, which have continuous
weights, are expensive to implement in digital hardware.
Another major implementation obstacle is the weight
storage. FNNs having integer weights and biases are
easier and less expensive to implement in electronics as
well as in optics and the storage of the integer weights
is much easier to be achieved.

Another advantage of the FNNs with integer weights
is their immunity to noise in the training data, Such
networks only capture the main feature of the training
data. Low amplitude noise that possibly contaminates
the training data cannot perturb the discrete weights,
because those weights require relatively large variations
to jump from one integer value to another.

In recent publications [6, 51 we have studied neural
networks with integer weights. Here, we proceed further
by studying neural networks having integer weights con-
strained in the ranges [-2k + 1, 2k - 11, k = 3 , 4 , 5 which
correspond to k-bit integer representation of the weights.
This property reduces the amount of memory required
for weight storage in digital electronic implementations.
Additionally, it simplifies the digital multiplication oper-
ation, since multiplying any number with a k-bit integer
requires only the following number of basic instructions:
one sign change, (k - l)(k - 2)/2 one-step left shifts and
k - 2 additions. Finally, if inputs are restricted to the
set { -1, l} (bipolar inputs), the neurons in the first hid-
den layer require only sign changes during multiplication
operations, and only integer additions.

the
incremental adaptation of the connection weights that
propagate information between the neurons, is a sub-
ject of considerable ongoing research and numerous al-
gorithms have been proposed t o this end. The majority

The efficient supervised training of FNNs, i.e.

0-7803-5536-9/99/$10.00 01999 IEEE 2007

of those algorithms use the negative of the gradient of
the error function, -VE(w), as their descent direction.
The gradient VE(w) can be computed by the BackProp-
agation of the error through the layers of the network.
This calculation, however, is computationally expensive
and difficult to be implemented in hardware. In this con-
tribution, we propose a new class of training algorithms
that do not need the gradient of E.

Formally, a typical FNN consists of L layers, where
the first layer denotes the input, the last one, L, is the
output, and the intermediate layers are the hidden lay-
ers. It is assumed that the (1-1) layer has Nl-1 neurons.
The neurons operate according to the following equa-
tions

y: = u' (net:) ,
i=l

where tu:;''' is the connection weight from the i-th neu-
ron at the (1 - 1) layer to the j-th neuron at the l-th
layer, y: is the output of the i th neuron belonging to
the l-th layer, 0; denotes the bias of the j - th neuron
at the lth layer, and u is a nonlinear activation func-
tion. The weights in the FNN can be expressed in
vector notation. Let the weight vector have the form:
w = (w1, w2, . . . , WN). The weight vector, in general, de-
fines a point in the N-dimensional real Euclidean space
RN, where N denotes the total number of weights and
biases in the network. Throughout this paper w is con-
sidered to be the k-bit, k = 3 , 4 , 5 integer vector of the
weights and biases.

F'rom the optimization point of view, supervised train-
ing OP an FNN is equivalent to minimizing a global error
function, which is a multivariate function that depends
on the weights in the network. The square error over
the set of input-desired output patterns with respect
to every weight, is usually taken as the function to be
minimized. Specifically, the error function for an input
pattern t is defined as follows:

where d j (t) is the desired response of an output neu-
ron at the input pattern t . For a fixed, finite set of
input-desired output patterns, the square error over the
training set which contains T representative pairs is:

t=1 t=l j=1

where Et(w) is the sum of the squares of errors associ-
ated with the pattern t . Minimization of E is attempted
by using a training algorithm to update the weights. Ef-
ficient training algorithms have been proposed for trial
and error based training, but it is difficult to use them
when training with discrete weights [l, 21.

In this work a differential evollution approach, as ex-
plained in Section 2, has been utilized to train neural net-
works with k-bit, k = 3 ,4 ,5 integer weights, suitable for
hardware implementation. A brief overview of the most
used differential evolution strategies is also presented.
Experiments and computer simulation results are pre-
sented in Section 3. In Section 3, in addition to the
speed and robustness, we also evaluate the generaliza-
tion capabilities of 3-bit integer weight neural networks,
by testing them on the MONK'S problems [8]. The final
section contains concluding remarks and a short discus-
sion for future work.

2 Training neural networks with integer
weights

In a recent work, Storn and Price [7] have presented
a novel minimization method, called Differential Evo-
lution (DE), which has been designed to handle non-
differentiable, nonlinear and multimodal objective func-
tions. To fulfill this requirement, DE has been designed
as a stochastic parallel direct search method, which uti-
lizes concepts borrowed from the broad class of evolu-
tionary algorithms, but requires few easily chosen control
parameters. Experimental results have shown that DE
has good convergence properties and outperforms other
evolutionary algorithms.

In order to apply DE to neural network training with
k-bit integer weights, we start with a specific number
(NP) of N-dimensional integer weight vectors, as an ini-
tial weight population, and evolve them over time. NP is
fixed throughout the training process. The weight popu-
lation is initialized with random integers from the inter-
val [-P + 1, 2k - 11, for k = 3 , 4 , 5 following a uniform
probability distribution.

At each iteration, called generation, new weight vec-
tors are generated by the combination of weight vectors
randomly chosen from the population and the outcome
is rounded to the nearest integer. Moreover, we force
the new vectors to be in the range [-2k + 1,2k - 1IN.
This operation is called mutation. The outcoming k-
bit integer weight vectors are then mixed with another
predetermined integer weight vector - the target weight
vector - and this operation is called crossover. This op-
eration yields the so-called trial weight vector, which is
an integer vector in the range [-2k + 1,2k - 1IN. The
trial vector is accepted for the next generation if and
only if it reduces the value of the error function E. This
last operation is called selection. We now briefly review
the two basic DE operators used for integer weight FNN
training.

2.1 The mutation operator

The first DE operator we consider is mutation. Specifi-
cally, for each weight vector w i , i = 1, . . . ,NP, where g

2008

denotes the current generation, a new vector (mu-
tant vector) is generated according to one of the follow-
ing relations:

(1)

(2)

(3)

(4)

(5)

(6)

og+l i = ws” + p (wgrl - w?) ,
Y g + l - g +cL(wgr1 -q) 1

= w;1 + p (w? - w;3) ,
= w; + p (Wgbest - w;) + p (w;’ - w;2) ,

w ~ + ~ a = w;’ + p (w? - w,‘”) + p (w; - w:) ,

i -Wbest

- Wbest - + p (Wi1 - w?) + p (4 3 - w;‘) ,

where w : ~ ~ ~ is the best member of the previous gener-
ation, p > 0 is a real parameter, called mutation con-
stant, which controls the amplification of the difference
between two weight vectors and

T ~ , T Z , 7 - 3 , ~ 4 , ~ 5 E { l ,2 , . . . ,i - l , i + 1 , . . . , N P } ,

are random integers mutually different and different from
the running index i. Obviously, the mutation operator
results in a real weight vector. As our aim is to maintain
an integer weight population at each generation, each
component of the mutant weight vector is rounded to
the nearest integer. Additionally, if the mutant vector is
not in the range [-2k + 1,2k - 1IN, we take:

wg+l i = sign(v;+,) x (/w;+,1 mod 2k-1).

Relation (1) has been introduced as crossover operator
for genetic algorithms [4] and is similar to relations (2)
and (3). The remaining relations are modifications which
can be obtained by the combination of (l) , (2) and (3). It
is clear that more such relations can be generated using
the above ones as building blocks. In a previous work [6],
we have shown that the above relations can efficiently be
used to train FNNs with arbitrary integer weights.

2.2 The crossover operator

To increase further the diversity of the rounded mutant
weight vector, the crossover operator is applied. Specif-
ically, for each integer component j (j = 1,2, . . . , N)
of the mutant weight vector we randomly choose a
real number T from the interval [0,1]. Then, we compare
this number with p (crossover constant), and if T 5 p we
select, as the j- th component of the trial vector u ; + ~ , the
corresponding component j of the mutant vector
Otherwise, we pick the j- th component of the integer
target vector w;+~ . It must be noted that the result of
this operation is again a k-bit integer vector.

3 Functionality tests

Two classical learning test problems - the exclusive OR
(XOR) and the 3-Bit Parity problems - have been used

for testing the functionality, and computer simulations
have been developed to study the performance of the
DE training algorithms for various values of IC. In or-
der to examine the generalization behavior of these al-
gorithms, we have tested the best of them on the well
known MONK’S problems [8].

The simulations have been carried out on a IBM PC
compatible, using MATLAB version 5.2. For each of the
test problems we present a table summarizing the per-
formance of the DE algorithms using different mutation
rules. We call DE1 the algorithm that uses relation (1)
as mutation operator, DE2 the algorithm that uses rela-
tion (2), and so on.

The reported parameters for simulations that have
reached solution are: min the minimum number of er-
ror function evaluations, mean the mean value of error
function evaluations, mux the maximum number of er-
ror function evaluations, s. d. the standard deviation of
error function evaluations, and succ. simulations suc-
ceeded out of 1000 within the generation limit maxgen.

When an algorithm fails to converge within the
maxgen limit, it is considered that it fails to train the
FNN and its error function evaluations are not included
in the statistical analysis of the algorithms. We must
note here that a key feature of the DE algorithms is that
only error function values are needed. No gradient in-
formation is required, so there is no need of backward
passes.

For all the simulations we have used bipolar input and
output vectors and hyperbolic tangent activation func-
tions in both the hidden and output layer neurons. We
made no effort to tune the mutation and crossover pa-
rameters, p and p respectively. Fixed values (p = 0.5
and p = 0.7) have been used instead. The weight pop-
ulation has been initialized with random integers from
the interval [-2k + 1,2’” - 11.

The weight population size N P has been chosen to
be twice the dimension of the problem, i.e. NP= 2 N ,
for all the simulations. Some experimental results have
shown that a good choice for N P is 2 N 5 NP 5 4 N .
It is obvious that the exploitation of the weight space is
more effective for large values of NP, but sometimes more
error function evaluations are required. On the other
hand, small values of N P make the algorithm inefficient
and more generations are required in order to converge
to the minimum.

For the test problems considered, no choice of the pa-
rameters has been needed in order to obtain optimal or
at least nearly optimal convergence speed. The param-
eters we have used have fixed values and we have made
no effort to tune them. Of course, one can try to tune
the p, p and NP parameters to achieve better results,
i.e. less error function evaluations and/or exhibit higher
success rates.

2009

3.1 The exclusive-OR problem the sum, mod 2, of 3 binary in:puts - otherwise known
as computing the “odd parity” function. We use a 3-3-1
FNN (twelve weights, four biases) in order to train the 3-
Bit Parity problem. The initial population consists of 32
weight vectors. The results of the computer simulation
are summarized in the Table 2.

A typical 3-bit weight vector after the end of the
training process is w = (3, 3, 2, 3, -1, -1, 2, -2, -2,
-3, 3, -3, 1, 0, 1, 1) and the corresponding value of the
error function is E = 0.0257.

The first test problem we will consider is the exclusive-
OR (XOR) Boolean function problem, which historically
has been considered as a good test of a network model
and learning algorithm. The XOR function maps two
binary inputs to a single binary output. This simple
Boolean function is not linearly separable and thus re-
quires the use of extra hidden units to learn the task.
Moreover, it is sensitive to initial weights as well as to
learning rate variations and presents a multitude of local
minima with certain weight vectors. A 2-2-1 FNN (six
weights, three biases) has been used for these simulations
and the training has been stopped when the value of the IC Alg. min mean inax s.d. succ.

Table 2: Results for the 3-Bit parity problem

error function E , has been E 5 0.1 within maxgen=100 3 DE1 96 809.2 2016 313.9 88.1%
generations. The population size is NP=18. DE2 704 1966.9 3072 769.2 1.5%

DE3 320 1123.4 3168 461.0 97.7%

-
k
3
-

4

5

Table 1: Results for the XOR problem
Alg. min mean max s.d. succ.

DE1 54 191.9 810 89.7 63.0%
DE2 90 836.3 1782 371.7 93.5%
DE3 90 300.5 1584 171.2 82.5%
DE4 54 364.5 1676 222.6 93.4%
DE5 36 1047.8 1782 422.6 63.0%
DE6 54 931.5 1782 431.1 73.1%
DE1 90 182.9 612 97.5 69.0%
DE2 72 266.7 1188 162.4 87.2%
DE3 198 647.8 1566 246.3 99.1%
DE4 126 764.1 1656 357.2 95.9%
DE5 72 316.9 1602 300.4 92.3%
DE6 108 660.0 1566 368.7 93.1%
DE1 54 192.9 684 124.7 75.1%
DE2 72 284.9 1332 216.2 80.4%
DE3 144 583.9 1314 256.3 97.3%
DE4 180 706.1 1764 343.7 97.5%
DE5 72 300.5 1584 250.2 85.2%
DE6 90 482.9 1368 264.9 93.0%
NP=18, LL = 0.5, D = 0.7, max:9en=100

The results of the simulation are shown in Table 1. A
typical 3-bit weight vector after the end of the training
process is w = (3, 3, 2, 3, 2, -2, 1, -3, -2) and the
corresponding value of the error function is E = 0.0221.
The six first components of the above vector are the
weights and the remaining three are the biases.

It must be noted that, the success rates of all
strategies are better than other well-known continu-
ous weight training algorithm, such as Backpropagation
(BP), adaptive BP or BP with momentum.

3.2 3-Bit par i ty

The second test problem is the parity problem, which can
be considered as a generalized XOR problem but is more
difficult. The task is to train a neural network to produce

DE4
DE5
DE6

4 DE1
DE2
DE3
DE4
DE5
DE6

160
1344

160
96

192
320
288
192

1056

2072.1
2057.1
1890.0
762.7

2056.0
978.3

1333.0
1959.1
2153.4

3168
3072
:3168
2624
:3072
3136
3104
2816
3168

631.9
703.9
907.7
515.1
711.4
555.5
652.6
981.6
619.7

75.5%
0.7%
3.2%

90.3%
28.1%
95.4%
96.5%
9.6%

17.8%
5 DE1 160 622.6 3072 522.1 90.8%

DE2 576 1994.1 3168 657.6 60.8%
DE3 224 896.3 2688 450.6 99.1%
DE4 256 1060.2 3168 716.6 97.5%
DE5 672 2112.0 3104 644.9 26.0%
DE6 352 2062.5 3168 794.8 44.1%
NP=32, p = 0.5, p = 0.7, maxgen=100

In a previous work [6], we have shown that DE3 and
DE4 are the more suitable algorithms for integer weight
training. This is also evident form the results shown
in Table 2. In this problem the DE1, DE3 and DE4
algorithms exhibit excellent over all performance for all
the values of IC tested.

3.3 General izat ion per formance

In addition to training speed and efficiency, we have also
evaluated the generalization performance of the DE al-
gorithms.

To this end, we have tested the best of them (DE3
and DE4) in their most constrained form (k = 3,w E
[-3, 3IN) on the MONK’S problems. These are difficult
binary classification tasks which have been used for com-
paring the generalization performance of learning algo-
rithms. These problems rely on the artificial robot do-
main, in which robots are described by six different at-
tributes. Each problem is given by a logical description
of the class, as shown below:

2010

MONK-1: (Attribute1 = Attribute2) OR (Attribute5 =
1). This problem is in standard Disjunctive Nor-
mal Form (DNF). 124 examples have been selected
randomly from the data set for training, while the
remaining 308 have been used for the generaliza-
tion testing. There are no misclassifications.

MONK-2: (Only two attributes = 1). This problem
is similar to the parity problem mentioned above
and is difficult to describe in DNF or Conjunctive
Normal Form (CNF). 169 examples have been ran-
domly selected from the data set for training, while
the rest have been used for testing. Again, there
is no noise.

MONK-3: (Attribute5 = 3 AND Attribute4 = 1) OR
(Attribute5 # 4 AND Attribute2 # 3) with added
noise. This problem is also in DNF but with 5% de-
liberate misclassifications in the training set, which
consists of 122 examples. The remaining 310 ex-
amples have been used for testing.

Each one of the six attributes can have one of 3, 3, 2,
3 ,4 , and 2 values, respectively, which results 432 possible
combinations that constitute the total data set (see [8],
for details). Finally, each possible value for every at-
tribute is assigned a single bipolar input, resulting 17
inputs.

We have tested DE3 and DE4 against the Backprop-
agation (BP), the Backpropagation with Weight Decay
(BPWD), and the Cascade Correlation (CC) algorithms.
In Table 3 we exhibit the comparative results on the
MONK’s problems.

Table 3: Comparison of generalization performance on
the MONK’s problems -

Alnorithm MONK-1 MONK-2 MONK-3
Y

BP 100% 100% 93.1%
BPWD 100% 100% 97.2%
cc 100% 100% 97.2%
DE3 100% 100% 100%
DE4 100% 100% 100%

It is clear from Table 3 that the DE algorithms gen-
erate FNNs, which are at least as capable as the best
generated by real-weight learning algorithms. Those
networks, in all the MONK’s problems, seem to have
learned the concept embedded in the training data. This
is more evident in MONK-3, where there are 5% delib-
erate misclassifications and the networks generated by
BP, BPWD, and CC seem to fail to capture the con-
cept embedded in the training data, and fit to the noise
instead.

The topology of the trained networks is shown in Ta-
ble 4. It is known that the best generalizers are neither
too complex nor too simple; they exactly match the com-
plexity of the embedded in the training data concept.

We think that the reason why our algorithms, in gen-
eral, need a bigger network in order to generate FNNs
with good generalization capabilities is that more inte-
gers than real numbers are needed in order to match the
complexity of the given problem.

Table 4: Network configuration for the MONK’s prob-
lems

Algorithm MONK-1 MONK-2 MONK-3
BP 17:3:1 17:2:1 17:4:1
BPWD 17:2:1 17:2:1 17:2:1
cc 17:l:l 17:l:l 17:3:1
DE3 17:4: 1 17:4:1 17:3:1
DE4 17:4:1 17:4:1 17:3:1

At the end of this paper, we present three tables with
the integer weights of the networks trained using DE3.
Similar networks are generated by DE4.

4 Concluding remarks and discussion

Differential evolution based algorithms for k-bit, k =
3,4,5 integer weight neural network training are studied
in this contribution. This is an interesting kind of neu-
ral networks, because the amount of memory required for
the storage of their weights is significantly reduced com-
pared to networks with real weights. Additionally, the
digital multiplication operations required are simplified.

Furthermore, it is known that the hardware imple-
mentation of the backward passes, which compute the
gradient of the error function, is more difficult than the
implementation of the forward passes. That is why all
the proposed algorithms require only forward passes re-
sulting in the value of the error function.

Obviously, the smaller the k the less the memory re-
quired. On the other hand, as we have observed, the
network training procedure can be more effective and
efficient when more bits are used. Thus, for a given ap-
plication a trade off between effectiveness and memory
consumption has to be considered.

In this paper, customized differential evolution opera-
tors have been applied on the population of k-bit integer
weight vectors, in order to evolve them over time and ex-
ploit the constrained weight space as wide as possible.
Also, the performance of these algorithms has been ex-
amined and simulation results from some classical test
problems have been presented. Summarizing the simu-
lations, we have concluded that the DE3 and DE4 al-
gorithms are definitely the best choices for all the con-
strained weight spaces tested. On the other hand, even
the algorithm DE1, based on the simple strategy (l),
performed very well. An interesting observation is that
all the algorithms considered increase their performance
when the IC value is increased.

The results indicate that this new class of algorithms

201 1

is promising and effective, even when compared with
other well-known algorithms that require the gradient
of the error function and train the network with real
weights. Moreover, we have tested the generalization
capabilities of the networks generated by DE3 and DE4.
Both algorithms have exhibited excellent performance
and have outperformed other well known real weight
learning algorithms.

Preliminary investigations suggest that the methods
of this paper can also be applied to discrete neural net-
works [3]. This kind of networks are based on neurons
whose output can be in a particular state and are impor-
tant, since they can handle many of the inherently binary
tasks that neural networks are used for. Their internal
representations are clearly interpretable, they are com-
putationally simpler to understand than networks with
sigmoid units and provide a starting point for the study
of the neural network properties. In a future work we
intend to present results in this approach.

Bibliography

[l] A.H. Khan, Feedforward Neural Networks with Con-
strained Weights, Ph.D. Thesis, Univ. of Warwick,
Dept. of Engineering, (1996).

[2] A.H. Khan and E.L. Hines, Integer-weight neural
nets, Electronics Letters, 30, 1237-1238, (1994).

[3] G.D. Magoulas, M.N. Vrahatis, T.N. Grapsa and
G.S. Androulakis, A training method for discrete
multilayer neural networks, In: Mathematics of Neu-
ral Networks, Models, Algorithms and Applications,
S.W. Ellacott, J.C. Mason and I.J. Anderson Eds.,
Kluwer Academic Publishers, 250-254, (1997).

[4] Z. Michalewicz, Genetic Algorithms + Data Struc-
tures = Evolution Programs, Springer-Verlag, (1996).

[5] V.P. Plagianakos and M.N. Vrahatis, Training Neu-
ral Networks with 3-bit Integer Weights, Proceedings
of Genetic and Evolutionary Computation Confer-
ence, to appear, (1999).

[6] V.P. Plagianakos, D.G. Sotiropoulos and M.N. Vra-
hatis, Integer Weight Training by Differential Evo-
lution Algorithms, In: Recent Advances in circuits
and systems, N.E. Mastorakis Ed., World Scientific,
(l998).

[7] R. Storn and K. Price, Differential Evolution - A
Simple and Efficient Heuristic for Global Optimiza-
tion over Continuous spaces, Journal of Global Opti-
mization, 11, 341-359, (1997).

[8] S.B. Thrun, J . Bala, E. Bloedorn, I. Bratko, B.
Cestnik, J . Cheng, K. De Jong, S. Dzeroski, S.E.
Fahlman, D. Fisher, R. Hamann, K. Kaufmann, S.

Keller, I. Kononenko, J. Kreuziger, R.S. Michalski,
T. Mitchell, P. Pachowicz, E’. Reich, H. Vafaie, W.
Van de Welde, W. Wenzel, -1. Wnek and J. Zhang,
The MONK’S Problems: A performance compari-
son of different learning algorithms, Technical Re-
port, Carnegie Mellon University, CMU-CS-91-197,
(1991).

Table 5: MONK’S problem #1: weights and biases
From node To node

Hidl Hid2 Hid3 Hid4 Out _-____-
Ill1
In2
In3
In4
In5
In6
In7
In8
In9
In10
In11
In12
In13
In14
In15
In16
In17
Bias
Hidl
Hid2
Hid3
Hid4
Bias

0 n n
3

2
3
2
1
1

-3
-2

2
0
1
1
2
0
2

-3
-1

-3

-1
-2
-3

1
-1

3
3
2
2
2

-3
2
2
2

-3
-3

3

2
-3

3
2

-2
-3
-3
-3
-2
-3
-3
-3
-3
-3
-3
-2

-1

3
-2

2
3
1
3
3
3
3
3
3

-3
-3
-3

2
2

-2 3 3 -3
-3
-1
-3

2
3

2012

In 1
In2
In3
In4
In5
In6
In7
In8
In9
InlO
In11
In12
In13
In14
In15
In16
In17

-2 -1 -3 -2
3 2 -2 3
2 2 -2 3
1 1 -3 -2
2 2 -2 3
3 2 -2 3
2 2 2 -3
1 -3 3 2
3 1 2 -2
2 2 3 3
1 1 3 3

-2 -3 2 -2
-1 3 3 3
-2 0 3 3
-1 2 3 3

2 -1 2 -3
2 2 3 2

2013

In 1 0 0 1
In2 -1 0 1
In3 -1 0 -1
In4 0 -2 0
In5 -2 -2 2
In6 -1 2 0
In7 1 1 -2
In8 -2 1 1
In9 -2 0 0
InlO -1 2 2
In11 -2 2 1
In12 1 -1 1
In13 -2 -1 -3
In14 1 -3 0
In15 0 3 1
In16 2 0 0
In17 0 0 1
Bias 0 1 -2
Hidl
Hid2
Hid3
Bias

0
-2

0
2

