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Abstract- In this contribution we present neural 
network training algorithms, which are based on 
the differential evolution (DE) strategies intro- 
duced by Storn and Price [Journal of Global Op- 
timization 11, 341-359, 19971. These strategies 
are applied to train neural networks with small 
integer weights. Such neural networks are bet- 
ter suited for hardware implementation than the 
real weight ones. Furthermore, we constrain the 
weights and biases in the range [-2k + 1, 2k - 11, 
for k = 3 ,4 ,5 .  Thus, they can be represented by 
just k bits. 

These algorithms have been designed keeping 
in mind that the resulting integer weights require 
less bits to be stored and the digital arithmetic 
operations between them are easier to be imple- 
mented in hardware. Obviously, if the network 
is trained in a constrained weight space, smaller 
weights are found and less memory is required. 
On the other hand, as we have found here, the 
network training procedure can be more effec- 
tive and efficient when large weights are allowed. 
Thus, for a given application a trade off between 
effectiveness and memory consumption has to be 
considered. 

Our intention is to present results of evolu- 
tion algorithms on this difficult task. Based on 
the application of the proposed class of methods 
on classical neural network benchmarks, our ex- 
perience is that these methods are effective and 
reliable. 

1 Introduction 

Artificial Feedforward Neural Networks (FNNs) have 
been widely used in many application areas in recent 
years and have shown their strength in solving hard 
problems in Artificial Intelligence. Although many dif- 
ferent models of neural networks have been proposed, 
multilayered FNNs are the most common. FNNs consist 
of many interconnected identical simple processing units, 
called neurons. Each neuron calculates the dot product 
of the incoming signals with its weights, adds the bias to  
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the resultant, and passes the calculated sum through its 
activation function. In a multilayer feedforward network 
the neurons are organized into layers with no feedback 
connections. 

FNNs can be simulated in software, but in order to be 
utilized in real life applications, where high speed of ex- 
ecution is required, hardware implementation is needed. 
The natural implementation of an FNN - because of its 
modularity - is a parallel one. The problem is that  the 
conventional multilayer FNNs, which have continuous 
weights, are expensive to implement in digital hardware. 
Another major implementation obstacle is the weight 
storage. FNNs having integer weights and biases are 
easier and less expensive to implement in electronics as 
well as in optics and the storage of the integer weights 
is much easier to be achieved. 

Another advantage of the FNNs with integer weights 
is their immunity to noise in the training data, Such 
networks only capture the main feature of the training 
data. Low amplitude noise that possibly contaminates 
the training data cannot perturb the discrete weights, 
because those weights require relatively large variations 
to jump from one integer value to  another. 

In recent publications [6, 51 we have studied neural 
networks with integer weights. Here, we proceed further 
by studying neural networks having integer weights con- 
strained in the ranges [-2k + 1, 2k - 11, k = 3 , 4 , 5  which 
correspond to k-bit integer representation of the weights. 
This property reduces the amount of memory required 
for weight storage in digital electronic implementations. 
Additionally, it simplifies the digital multiplication oper- 
ation, since multiplying any number with a k-bit integer 
requires only the following number of basic instructions: 
one sign change, ( k  - l)(k - 2)/2 one-step left shifts and 
k - 2 additions. Finally, if inputs are restricted to  the 
set { -1, l} (bipolar inputs), the neurons in the first hid- 
den layer require only sign changes during multiplication 
operations, and only integer additions. 

the 
incremental adaptation of the connection weights that  
propagate information between the neurons, is a sub- 
ject of considerable ongoing research and numerous al- 
gorithms have been proposed t o  this end. The majority 
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of those algorithms use the negative of the gradient of 
the error function, -VE(w), as their descent direction. 
The gradient VE(w) can be computed by the BackProp- 
agation of the error through the layers of the network. 
This calculation, however, is computationally expensive 
and difficult to be implemented in hardware. In this con- 
tribution, we propose a new class of training algorithms 
that do not need the gradient of E. 

Formally, a typical FNN consists of L layers, where 
the first layer denotes the input, the last one, L,  is the 
output, and the intermediate layers are the hidden lay- 
ers. It is assumed that the (1-1) layer has Nl-1 neurons. 
The neurons operate according to the following equa- 
tions 

y: = u' (net:) , 
i=l 

where tu:;''' is the connection weight from the i-th neu- 
ron at the ( 1  - 1) layer to the j-th neuron at  the l-th 
layer, y: is the output of the i th  neuron belonging to 
the l-th layer, 0; denotes the bias of the j - th  neuron 
at the lth layer, and u is a nonlinear activation func- 
tion. The weights in the FNN can be expressed in 
vector notation. Let the weight vector have the form: 
w = (w1, w2, . .  . , WN).  The weight vector, in general, de- 
fines a point in the N-dimensional real Euclidean space 
RN, where N denotes the total number of weights and 
biases in the network. Throughout this paper w is con- 
sidered to be the k-bit, k = 3 , 4 , 5  integer vector of the 
weights and biases. 

F'rom the optimization point of view, supervised train- 
ing OP an FNN is equivalent to minimizing a global error 
function, which is a multivariate function that depends 
on the weights in the network. The square error over 
the set of input-desired output patterns with respect 
to every weight, is usually taken as the function to  be 
minimized. Specifically, the error function for an input 
pattern t is defined as follows: 

where d j ( t )  is the desired response of an output neu- 
ron at the input pattern t .  For a fixed, finite set of 
input-desired output patterns, the square error over the 
training set which contains T representative pairs is: 

t=1 t=l j=1 

where Et(w) is the sum of the squares of errors associ- 
ated with the pattern t .  Minimization of E is attempted 
by using a training algorithm to update the weights. Ef- 
ficient training algorithms have been proposed for trial 
and error based training, but it is difficult to  use them 
when training with discrete weights [l, 21. 

In this work a differential evollution approach, as ex- 
plained in Section 2, has been utilized to  train neural net- 
works with k-bit, k = 3 ,4 ,5  integer weights, suitable for 
hardware implementation. A brief overview of the most 
used differential evolution strategies is also presented. 
Experiments and computer simulation results are pre- 
sented in Section 3. In Section 3, in addition to  the 
speed and robustness, we also evaluate the generaliza- 
tion capabilities of 3-bit integer weight neural networks, 
by testing them on the MONK'S problems [8].  The final 
section contains concluding remarks and a short discus- 
sion for future work. 

2 Training neural networks with integer 
weights 

In a recent work, Storn and Price [7] have presented 
a novel minimization method, called Differential Evo- 
lution (DE), which has been designed to handle non- 
differentiable, nonlinear and multimodal objective func- 
tions. To fulfill this requirement, DE has been designed 
as a stochastic parallel direct search method, which uti- 
lizes concepts borrowed from the broad class of evolu- 
tionary algorithms, but requires few easily chosen control 
parameters. Experimental results have shown that DE 
has good convergence properties and outperforms other 
evolutionary algorithms. 

In order to apply DE to neural network training with 
k-bit integer weights, we start with a specific number 
(NP)  of N-dimensional integer weight vectors, as an ini- 
tial weight population, and evolve them over time. NP is 
fixed throughout the training process. The weight popu- 
lation is initialized with random integers from the inter- 
val [-P + 1, 2k - 11, for k = 3 , 4 , 5  following a uniform 
probability distribution. 

At each iteration, called generation, new weight vec- 
tors are generated by the combination of weight vectors 
randomly chosen from the population and the outcome 
is rounded to the nearest integer. Moreover, we force 
the new vectors to  be in the range [-2k + 1,2k - 1IN. 
This operation is called mutation. The outcoming k- 
bit integer weight vectors are then mixed with another 
predetermined integer weight vector - the target weight 
vector - and this operation is called crossover. This op- 
eration yields the so-called trial weight vector, which is 
an integer vector in the range [-2k + 1,2k - 1IN. The 
trial vector is accepted for the next generation if and 
only if it reduces the value of the error function E.  This 
last operation is called selection. We now briefly review 
the two basic DE operators used for integer weight FNN 
training. 

2.1 The mutation operator 

The first DE operator we consider is mutation. Specifi- 
cally, for each weight vector w i ,  i = 1, . . . ,NP, where g 
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denotes the current generation, a new vector (mu- 
tant vector) is generated according to  one of the follow- 
ing relations: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

og+l i = ws” + p (wgrl - w?) , 
Y g + l -  g +cL(wgr1 -q) 1 

= w;1 + p (w? - w;3) , 
= w; + p (Wgbest - w;) + p (w;’ - w;2) , 

w ~ + ~  a = w;’ + p (w? - w,‘”) + p (w; - w:) , 

i -Wbest 

- Wbest - + p (Wi1  - w?) + p ( 4 3  - w;‘) , 

where w : ~ ~ ~  is the best member of the previous gener- 
ation, p > 0 is a real parameter, called mutation con- 
stant, which controls the amplification of the difference 
between two weight vectors and 

T ~ , T Z ,  7 - 3 , ~ 4 , ~ 5  E { l ,2 , .  . . ,i - l , i  + 1 , .  . . , N P }  , 

are random integers mutually different and different from 
the running index i. Obviously, the mutation operator 
results in a real weight vector. As our aim is to maintain 
an integer weight population at each generation, each 
component of the mutant weight vector is rounded to 
the nearest integer. Additionally, if the mutant vector is 
not in the range [-2k + 1,2k - 1IN, we take: 

wg+l i = sign(v;+,) x (/w;+,1 mod 2k-1). 

Relation (1) has been introduced as crossover operator 
for genetic algorithms [4] and is similar to relations (2) 
and (3). The remaining relations are modifications which 
can be obtained by the combination of (l) ,  (2) and (3). It 
is clear that more such relations can be generated using 
the above ones as building blocks. In a previous work [6], 
we have shown that the above relations can efficiently be 
used to train FNNs with arbitrary integer weights. 

2.2 The crossover operator 

To increase further the diversity of the rounded mutant 
weight vector, the crossover operator is applied. Specif- 
ically, for each integer component j ( j  = 1,2, .  . . , N )  
of the mutant weight vector we randomly choose a 
real number T from the interval [0,1]. Then, we compare 
this number with p (crossover constant), and if T 5 p we 
select, as the j- th component of the trial vector u ; + ~ ,  the 
corresponding component j of the mutant vector 
Otherwise, we pick the j- th component of the integer 
target vector w;+~ .  It must be noted that the result of 
this operation is again a k-bit integer vector. 

3 Functionality tests 

Two classical learning test problems - the exclusive OR 
(XOR) and the 3-Bit Parity problems - have been used 

for testing the functionality, and computer simulations 
have been developed to  study the performance of the 
DE training algorithms for various values of IC. In or- 
der to examine the generalization behavior of these al- 
gorithms, we have tested the best of them on the well 
known MONK’S problems [8]. 

The simulations have been carried out on a IBM PC 
compatible, using MATLAB version 5.2. For each of the 
test problems we present a table summarizing the per- 
formance of the DE algorithms using different mutation 
rules. We call DE1 the algorithm that uses relation (1) 
as mutation operator, DE2 the algorithm that uses rela- 
tion (2), and so on. 

The reported parameters for simulations that have 
reached solution are: min the minimum number of er- 
ror function evaluations, mean the mean value of error 
function evaluations, mux the maximum number of er- 
ror function evaluations, s. d. the standard deviation of 
error function evaluations, and succ. simulations suc- 
ceeded out of 1000 within the generation limit maxgen.  

When an algorithm fails to converge within the 
maxgen limit, it is considered that it fails to  train the 
FNN and its error function evaluations are not included 
in the statistical analysis of the algorithms. We must 
note here that a key feature of the DE algorithms is that 
only error function values are needed. No gradient in- 
formation is required, so there is no need of backward 
passes. 

For all the simulations we have used bipolar input and 
output vectors and hyperbolic tangent activation func- 
tions in both the hidden and output layer neurons. We 
made no effort to tune the mutation and crossover pa- 
rameters, p and p respectively. Fixed values ( p  = 0.5 
and p = 0.7) have been used instead. The weight pop- 
ulation has been initialized with random integers from 
the interval [-2k + 1,2’” - 11. 

The weight population size N P  has been chosen to 
be twice the dimension of the problem, i.e. NP= 2 N ,  
for all the simulations. Some experimental results have 
shown that a good choice for N P  is 2 N  5 NP 5 4 N .  
It is obvious that the exploitation of the weight space is 
more effective for large values of NP, but sometimes more 
error function evaluations are required. On the other 
hand, small values of N P  make the algorithm inefficient 
and more generations are required in order to converge 
to the minimum. 

For the test problems considered, no choice of the pa- 
rameters has been needed in order to  obtain optimal or 
at least nearly optimal convergence speed. The param- 
eters we have used have fixed values and we have made 
no effort to tune them. Of course, one can try to  tune 
the p,  p and NP parameters to achieve better results, 
i.e. less error function evaluations and/or exhibit higher 
success rates. 
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3.1 The exclusive-OR problem the sum, mod 2, of 3 binary in:puts - otherwise known 
as computing the “odd parity” function. We use a 3-3-1 
FNN (twelve weights, four biases) in order to  train the 3- 
Bit Parity problem. The initial population consists of 32 
weight vectors. The results of the computer simulation 
are summarized in the Table 2. 

A typical 3-bit weight vector after the end of the 
training process is w = (3, 3, 2, 3, -1, -1, 2, -2, -2, 
-3, 3, -3, 1, 0, 1, 1) and the corresponding value of the 
error function is E = 0.0257. 

The first test problem we will consider is the exclusive- 
OR (XOR) Boolean function problem, which historically 
has been considered as a good test of a network model 
and learning algorithm. The XOR function maps two 
binary inputs to a single binary output. This simple 
Boolean function is not linearly separable and thus re- 
quires the use of extra hidden units to learn the task. 
Moreover, it is sensitive to initial weights as well as to 
learning rate variations and presents a multitude of local 
minima with certain weight vectors. A 2-2-1 FNN (six 
weights, three biases) has been used for these simulations 
and the training has been stopped when the value of the IC Alg. min mean inax s.d. succ. 

Table 2: Results for the 3-Bit parity problem 

error function E ,  has been E 5 0.1 within maxgen=100 3 DE1 96 809.2 2016 313.9 88.1% 
generations. The population size is NP=18. DE2 704 1966.9 3072 769.2 1.5% 

DE3 320 1123.4 3168 461.0 97.7% 

- 
k 
3 
- 

4 

5 

Table 1: Results for the XOR problem 
Alg. min mean max s.d. succ. 

DE1 54 191.9 810 89.7 63.0% 
DE2 90 836.3 1782 371.7 93.5% 
DE3 90 300.5 1584 171.2 82.5% 
DE4 54 364.5 1676 222.6 93.4% 
DE5 36 1047.8 1782 422.6 63.0% 
DE6 54 931.5 1782 431.1 73.1% 
DE1 90 182.9 612 97.5 69.0% 
DE2 72 266.7 1188 162.4 87.2% 
DE3 198 647.8 1566 246.3 99.1% 
DE4 126 764.1 1656 357.2 95.9% 
DE5 72 316.9 1602 300.4 92.3% 
DE6 108 660.0 1566 368.7 93.1% 
DE1 54 192.9 684 124.7 75.1% 
DE2 72 284.9 1332 216.2 80.4% 
DE3 144 583.9 1314 256.3 97.3% 
DE4 180 706.1 1764 343.7 97.5% 
DE5 72 300.5 1584 250.2 85.2% 
DE6 90 482.9 1368 264.9 93.0% 
NP=18, LL = 0.5, D = 0.7, max:9en=100 

The results of the simulation are shown in Table 1. A 
typical 3-bit weight vector after the end of the training 
process is w = (3, 3, 2, 3, 2, -2, 1, -3, -2) and the 
corresponding value of the error function is E = 0.0221. 
The six first components of the above vector are the 
weights and the remaining three are the biases. 

It must be noted that, the success rates of all 
strategies are better than other well-known continu- 
ous weight training algorithm, such as Backpropagation 
(BP), adaptive BP or BP with momentum. 

3.2 3-Bit par i ty  

The second test problem is the parity problem, which can 
be considered as a generalized XOR problem but is more 
difficult. The task is to train a neural network to produce 

DE4 
DE5 
DE6 

4 DE1 
DE2 
DE3 
DE4 
DE5 
DE6 

160 
1344 

160 
96 

192 
320 
288 
192 

1056 

2072.1 
2057.1 
1890.0 
762.7 

2056.0 
978.3 

1333.0 
1959.1 
2153.4 

3168 
3072 
:3168 
2624 
:3072 
3136 
3104 
2816 
3168 

631.9 
703.9 
907.7 
515.1 
711.4 
555.5 
652.6 
981.6 
619.7 

75.5% 
0.7% 
3.2% 

90.3% 
28.1% 
95.4% 
96.5% 
9.6% 

17.8% 
5 DE1 160 622.6 3072 522.1 90.8% 

DE2 576 1994.1 3168 657.6 60.8% 
DE3 224 896.3 2688 450.6 99.1% 
DE4 256 1060.2 3168 716.6 97.5% 
DE5 672 2112.0 3104 644.9 26.0% 
DE6 352 2062.5 3168 794.8 44.1% 
NP=32, p = 0.5, p = 0.7, maxgen=100 

In a previous work [6], we have shown that DE3 and 
DE4 are the more suitable algorithms for integer weight 
training. This is also evident form the results shown 
in Table 2. In this problem the DE1, DE3 and DE4 
algorithms exhibit excellent over all performance for all 
the values of IC tested. 

3.3 General izat ion per formance  

In addition to training speed and efficiency, we have also 
evaluated the generalization performance of the DE al- 
gorithms. 

To this end, we have tested the best of them (DE3 
and DE4) in their most constrained form (k = 3,w E 
[-3, 3IN) on the MONK’S problems. These are difficult 
binary classification tasks which have been used for com- 
paring the generalization performance of learning algo- 
rithms. These problems rely on the artificial robot do- 
main, in which robots are described by six different at- 
tributes. Each problem is given by a logical description 
of the class, as shown below: 
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MONK-1: (Attribute1 = Attribute2) OR (Attribute5 = 
1). This problem is in standard Disjunctive Nor- 
mal Form (DNF). 124 examples have been selected 
randomly from the data set for training, while the 
remaining 308 have been used for the generaliza- 
tion testing. There are no misclassifications. 

MONK-2: (Only two attributes = 1). This problem 
is similar to  the parity problem mentioned above 
and is difficult to describe in DNF or Conjunctive 
Normal Form (CNF). 169 examples have been ran- 
domly selected from the data set for training, while 
the rest have been used for testing. Again, there 
is no noise. 

MONK-3: (Attribute5 = 3 AND Attribute4 = 1) OR 
(Attribute5 # 4 AND Attribute2 # 3) with added 
noise. This problem is also in DNF but with 5% de- 
liberate misclassifications in the training set, which 
consists of 122 examples. The remaining 310 ex- 
amples have been used for testing. 

Each one of the six attributes can have one of 3, 3, 2, 
3 ,4 ,  and 2 values, respectively, which results 432 possible 
combinations that constitute the total data set (see [8], 
for details). Finally, each possible value for every at- 
tribute is assigned a single bipolar input, resulting 17 
inputs. 

We have tested DE3 and DE4 against the Backprop- 
agation (BP), the Backpropagation with Weight Decay 
(BPWD), and the Cascade Correlation (CC) algorithms. 
In Table 3 we exhibit the comparative results on the 
MONK’s problems. 

Table 3: Comparison of generalization performance on 
the MONK’s problems - 

Alnorithm MONK-1 MONK-2 MONK-3 
Y 

BP 100% 100% 93.1% 
BPWD 100% 100% 97.2% 
cc 100% 100% 97.2% 
DE3 100% 100% 100% 
DE4 100% 100% 100% 

It is clear from Table 3 that the DE algorithms gen- 
erate FNNs, which are at least as capable as the best 
generated by real-weight learning algorithms. Those 
networks, in all the MONK’s problems, seem to have 
learned the concept embedded in the training data. This 
is more evident in MONK-3, where there are 5% delib- 
erate misclassifications and the networks generated by 
BP, BPWD, and CC seem to fail to capture the con- 
cept embedded in the training data, and fit to the noise 
instead. 

The topology of the trained networks is shown in Ta- 
ble 4. It is known that the best generalizers are neither 
too complex nor too simple; they exactly match the com- 
plexity of the embedded in the training data concept. 

We think that the reason why our algorithms, in gen- 
eral, need a bigger network in order to  generate FNNs 
with good generalization capabilities is that more inte- 
gers than real numbers are needed in order to  match the 
complexity of the given problem. 

Table 4: Network configuration for the MONK’s prob- 
lems 

Algorithm MONK-1 MONK-2 MONK-3 
BP 17:3:1 17:2:1 17:4:1 
BPWD 17:2:1 17:2:1 17:2:1 
cc 17:l:l 17:l:l 17:3:1 
DE3 17:4: 1 17:4:1 17:3:1 
DE4 17:4:1 17:4:1 17:3:1 

At the end of this paper, we present three tables with 
the integer weights of the networks trained using DE3. 
Similar networks are generated by DE4. 

4 Concluding remarks and discussion 

Differential evolution based algorithms for k-bit, k = 
3,4,5 integer weight neural network training are studied 
in this contribution. This is an interesting kind of neu- 
ral networks, because the amount of memory required for 
the storage of their weights is significantly reduced com- 
pared to networks with real weights. Additionally, the 
digital multiplication operations required are simplified. 

Furthermore, it is known that the hardware imple- 
mentation of the backward passes, which compute the 
gradient of the error function, is more difficult than the 
implementation of the forward passes. That is why all 
the proposed algorithms require only forward passes re- 
sulting in the value of the error function. 

Obviously, the smaller the k the less the memory re- 
quired. On the other hand, as we have observed, the 
network training procedure can be more effective and 
efficient when more bits are used. Thus, for a given ap- 
plication a trade off between effectiveness and memory 
consumption has to be considered. 

In this paper, customized differential evolution opera- 
tors have been applied on the population of k-bit integer 
weight vectors, in order to evolve them over time and ex- 
ploit the constrained weight space as wide as possible. 
Also, the performance of these algorithms has been ex- 
amined and simulation results from some classical test 
problems have been presented. Summarizing the simu- 
lations, we have concluded that the DE3 and DE4 al- 
gorithms are definitely the best choices for all the con- 
strained weight spaces tested. On the other hand, even 
the algorithm DE1, based on the simple strategy (l), 
performed very well. An interesting observation is that 
all the algorithms considered increase their performance 
when the IC value is increased. 

The results indicate that this new class of algorithms 
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is promising and effective, even when compared with 
other well-known algorithms that require the gradient 
of the error function and train the network with real 
weights. Moreover, we have tested the generalization 
capabilities of the networks generated by DE3 and DE4. 
Both algorithms have exhibited excellent performance 
and have outperformed other well known real weight 
learning algorithms. 

Preliminary investigations suggest that the methods 
of this paper can also be applied to  discrete neural net- 
works [3]. This kind of networks are based on neurons 
whose output can be in a particular state and are impor- 
tant, since they can handle many of the inherently binary 
tasks that neural networks are used for. Their internal 
representations are clearly interpretable, they are com- 
putationally simpler to  understand than networks with 
sigmoid units and provide a starting point for the study 
of the neural network properties. In a future work we 
intend to  present results in this approach. 
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Table 5: MONK’S problem #1: weights and biases 
From node To node 

Hidl Hid2 Hid3 Hid4 Out _-____- 
Ill1 
In2 
In3 
In4 
In5 
In6 
In7 
In8 
In9 
In10 
In11 
In12 
In13 
In14 
In15 
In16 
In17 
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2012 



In 1 
In2 
In3 
In4 
In5 
In6 
In7 
In8 
In9 
InlO 
In11 
In12 
In13 
In14 
In15 
In16 
In17 

-2 -1 -3 -2 
3 2 -2 3 
2 2 -2 3 
1 1 -3 -2 
2 2 -2 3 
3 2 -2 3 
2 2 2 -3 
1 -3 3 2 
3 1 2 -2 
2 2 3 3 
1 1 3 3 

-2 -3 2 -2 
-1 3 3 3 
-2 0 3 3 
-1 2 3 3 

2 -1 2 -3 
2 2 3 2 

2013 

In 1 0 0 1 
In2 -1 0 1 
In3 -1 0 -1 
In4 0 -2 0 
In5 -2 -2 2 
In6 -1 2 0 
In7 1 1 -2 
In8 -2 1 1 
In9 -2 0 0 
InlO -1 2 2 
In11 -2 2 1 
In12 1 -1 1 
In13 -2 -1 -3 
In14 1 -3 0 
In15 0 3 1 
In16 2 0 0 
In17 0 0 1 
Bias 0 1 -2 
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