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Abstract. We apply the method of the Smaller Alignment Index (SALI) for determining the ordered or chaotic 
nature of orbits, on some examples of Hamiltonian systems and symplectic maps. Finding the SALI for a sample 
of initial conditions allows us to distinguish clearly between regions of phase space where ordered or chaotic 
motion occurs. The computation of SALI is performed rather easily: For a given orbit we follow the evolution in 
time of two different initial deviation vectors and compute the norms of the difference (parallel alignment index) 
and the addition (antiparallel alignment index) of the two normalized vectors. The time evolution of the smaller 
alignment index reflects clearly the chaotic or ordered nature of the orbit. In general the SALI tends to zero for 
chaotic orbits, while it fluctuates around non-zero values for ordered orbits. 
 
 

1 INTRODUCTION 

The distinction between ordered and chaotic motion of a dynamical system is fundamental in many areas of 
applied science. This distinction is particularly difficult in many degrees of freedom, basically because we 
cannot visualize their motion in phase space. So, we need fast and accurate tools to give us information about 
the chaotic or ordered character of an orbit, especially for conservative systems, where, in the absence of 
attractors, orbits can wander for very long times in uncharted domains of phase space.  

Many methods have been developed over the years that try to give an answer to this problem. The inspection 
of the intersections of an orbit with a Poincaré surface of section has been used extensively mainly for 2 – 
dimensional (2D) maps and 2 degree of freedom dynamical systems. One of the most common methods is the 
computation of the maximal Lyapunov Characteristic Number (LCN)[1,2], which can be applied for systems with 
many degrees of freedom. Another efficient method is the frequency map analysis developed by Laskar[3,4]. In 
recent years new methods have been developed like the study of spectra of ''short time Lyapunov characteristic 
numbers'' [5,6] or ''stretching numbers'' [7,8] and the ''spectral distance'' of such spectra [9], as well as the study of 
spectra of helicity and twist angles [10-12]. In addition Froeschlé et al.[13] introduced the fast Lyapunov indicator 
(FLI), while Vozikis et al.[14] proposed a method based on the frequency analysis of ''stretching numbers''.  

Recently a new, fast and easy to compute indicator of the chaotic or ordered nature of orbits, has been 
introduced, called the smaller alignment index (SALI)[15]. In the present paper, we first recall the definition of 
the smaller alignment index and show its effectiveness in distinguishing between ordered and chaotic motion, by 
applying it to a 2D and a 4D symplectic map as well as in a Hamiltonian system with two degrees of freedom. 
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2 DEFINITION OF THE SMALLER ALIGNMENT INDEX 

Let us consider the n-dimensional phase space of a conservative dynamical system, which could be a 
symplectic map or a Hamiltonian flow. We consider also an orbit in that space with initial condition P(0)=(x1(0), 
x2(0),…,xn(0)) and a deviation vector ξ(0)=(dx1(0), dx2(0),…, dxn(0)) from the initial point P(0). In order to 
determine if this orbit is ordered or chaotic we follow the evolution in time of two different initial deviation 
vectors (e.g. ξ1(0), ξ2(0)), noting that in maps the time is discrete and is equal to the number N of the iterations. 
In every time step, we compute the parallel alignment index (ALI): 

 
d–(t) ≡ ||ξ1(t) – ξ2(t) ||      (1) 

 
and the antiparallel ALI: 
 

d+(t) ≡ ||ξ1(t) + ξ2(t) ||      (2) 
 
 
where || || denotes the Euclidean norm of a vector. It is evident from the above definitions that when d–=0 the 
two vectors coincide and when d+=0 the two vectors become opposite Then the smaller alignment index (SALI) 
is defined as the minimum value of the above alignment indices (ALIs) at any point in time, t: 
 

SALI(t) = min(d–(t) , d+(t))     (3) 
 

In 2D maps the ordered motion lies on a 1D torus, the so-called invariant curve and any two deviation 
vectors, after a transient period, become tangent to this curve, tending to coincide or become opposite to each 
other[9]. This means that one of the ALIs tends to zero. A similar behavior appears when the orbit tested is 
chaotic: any two deviation vectors eventually become tangent to the most unstable nearby manifold and so one 
of the ALIs tends to zero. If we consider the vectors ξ1(t) and ξ2(t) to be normalized in every time step with norm 
equal to 1, the two deviation vectors tend to coincide when d–(t)→0 and d+(t)→2 and tend to become opposite 
when d–(t)→2 and d+(t)→0. So in 2D maps the smaller alignment index (SALI) tends to zero both for ordered as 
well as chaotic orbits, following however very different time rates (as shown in the next section), which allows 
us to distinguish between the two cases. 

On the other hand, in the case of 4D maps and Hamiltonian systems with 2 degrees of freedom the 
distinction between ordered and chaotic motion is even easier. In these cases, the ordered motion occurs on a 2D 
torus on which any initial deviation vector becomes almost tangent after a short transient period. In general, two 
different initial deviation vectors become tangent to different directions on the torus, producing different 
sequences of vectors, so that both quantities d–(t) and d+(t) do not tend to zero but fluctuate around positive 
values in the interval (0,2). For chaotic orbits, any two initially different deviation vectors tend to coincide in the 
direction defined by the most unstable nearby manifold and hence either coincide with each other, or one vector 
tends to the opposite of the other. This means than one ALI (the smaller one we call SALI) tends to zero when 
the orbit is chaotic and to a non-zero value when the orbit is ordered. Thus, the completely different behaviour 
of the SALI helps us distinguish between ordered and chaotic motion in 4D maps and in Hamiltonian systems 
with 2 degrees of freedom, but more importantly in systems of higher dimensionality also.  

3 APPLICATION OF THE ALIGNMENT INDICES  

3.1 Symplectic mappings 

Following [15] we compute the SALI in some simple cases of ordered and chaotic orbits in symplectic maps 
with two and four dimensions. In particular we use the 2D map:  

 

1 1 2

2 2 1 2

x  = x  + x
    mod(2 )

x  = x   sin(x  + x )
π

ν
′
′ − ⋅

    (4) 

 
and the 4D map:  
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which is composed of two 2D maps of the form (4), with parameters ν and κ, coupled with a term of order µ. All 
variables are given (mod 2π), so xi ∈ [-π, π), for i=1,2,3,4. The map (5) is a variant of the 4D map studied by 
Froeschlé[16]. Some dynamical structures on the phase space of this map, were examined in detail in [17] for 
small values of the coupling parameter µ.  

In the case of the 2D map (4) we consider the ordered orbit A with initial conditions x1=2, x2=0 and the 
chaotic orbit B with initial conditions x1=3, x2=0 for ν=0.5. The initial deviation vectors used are ξ1(0)=(1,0) and 
ξ2(0)=(0,1) for both orbits. These vectors eventually coincide in both cases, but at completely different time 
rates. This is evident from figure 1(a), where the SALI (coinciding with d– for both orbits) is plotted as a 
function of the number N of iterations for the ordered orbit A (grey line) and the chaotic orbit B (black line) in 
log-log scale. For the ordered orbit A the SALI decreases as N increases, following a power law and becomes 
SALI≅10-13 after 107 iterations, which means that the two deviation vectors almost coincide. On the other hand 
the SALI of the chaotic orbit B decreases abruptly, reaching the limit of accuracy of the computer (10-16) after 
only about 200 iterations. After that time, the two vectors are identical since the same numbers in the computer 
represent their coordinates. So, it becomes evident that the SALI can distinguish between ordered and chaotic 
motion in a 2D map, since it tends to zero following completely different time rates.  
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Figure 1. The evolution of the smaller alignment index SALI, with respect to the number N of iterations, in log-
log scale, for (a) the 2D map (4) with ν =0.5, for the ordered orbit A with initial conditions x1=2, x2=0 (grey 
line) and for the chaotic orbit B with initial conditions x1=3, x2=0 (black line) and (b) the 4D map (5) with ν 

=0.5, κ =0.1, µ=10-3, for the ordered orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0 (grey line) and for 
the chaotic orbit D with initial conditions =3, x2=0, x3=0.5, x4=0 (black line). 

 
In the case of the 4D map (5) for ν =0.5, κ=0.1 and µ=10-3 we consider the ordered orbit C with initial 

conditions x1=0.5, x2=0, x3=0.5, x4=0 and the chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0. 
The initial deviation vectors used are (1,1,1,1) and (1,0,0,0). As we see in figure 1(b) the SALI of the ordered 
orbit C remains almost constant (grey line), fluctuating around SALI≅0.28. On the other hand, the SALI of the 
chaotic orbit D decreases abruptly reaching the limit of accuracy of the computer (10-16) after about 4.7 103 
iterations (black line). After that time the coordinates of the two vectors are represented by opposite numbers in 
the computer (since the SALI coincides with d+). So, in 4D maps the SALI tends to zero for chaotic orbits, while 
it tends to a positive non-zero value for ordered orbits. Thus, the different behaviour of SALI clearly 
distinguishes between ordered and chaotic orbits. 
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3.1 The case of a Hamiltonian system of two degrees of freedom  

In order to illustrate the effectiveness of SALI in determining the chaotic or ordered nature of orbits in a 
flow, we consider the two degrees of freedom Hamiltonian  

 
2 2 4 4 4

x y x y
1 1H(x, y, p , p )= (p +p )+ (x +y +η(x-y) )
2 4

   (6) 

 
where x, y are the generalized coordinates, the px, py conjugate momenta and η a real parameter. The possible 
integrability of this Hamiltonian, for different values of the parameter η, was studied in [18], using singularity 
analysis in complex time.  

For η=0.15 and H=1,000 we consider the ordered orbit E with initial conditions x=0, y=0, px=15, py=42.13 
and the chaotic orbit F with initial conditions x=0.5, y=0, px=0.5, py=44.72 and the initial deviation vectors 
(dx(0), dy(0), d px (0), d py (0)) are (1,0,0,0) and (0,0,1,0). As we see in figure 2 the SALI of the ordered orbit E 
remains almost constant, fluctuating around SALI≅0.97 (grey line), while the SALI of the chaotic orbit F 
decreases abruptly reaching the limit of accuracy of the computer (10-16) after about 1,000 time units (lack line). 
This behaviour is similar to the one encountered in the case of the 4D map (5) (figure 1(b)), since the phase 
space of the Hamiltonian system is four-dimensional as in the 4D map.  
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Figure 2. The evolution of the smaller alignment index SALI as a function of time t, in log-log scale, for the 
Hamiltonian (6) with H=1000 and η=0.15, for the ordered orbit E with initial conditions x=0, y=0, px =15,   

 py=42.13 (grey line) and for the chaotic orbit F with initial conditions x=0.5, y=0, px=0.5, py=44.72 (black line). 
 
For H=1000 and η=0.15 there exist regions in phase space where the motion is chaotic. These regions 

correspond to the area filled with scattered points in the Poincaré surface of section (x, px) (figure 3(a)), while 
ordered motion corresponds to the islands formed by the invariant smooth curves. Since the values of the SALI 
tend to completely different values for ordered and chaotic orbits, its computation for a sample of initial 
conditions can be used to distinguish between regions of phase space where ordered (or chaotic motion) occurs. 
So for any point on the Poincaré surface of section (x, px) we compute the value of the SALI for t=3,000 time 
steps. The points for which SALI<10-8 are marked with black dots in figure 3(b), while for 10 -8≤SALI<10-4 they 
are marked with grey dots. The resulting image indicates the regions where the motion is chaotic (black points) 
or slightly chaotic (grey points) leaving blank the region where ordered motion occurs. The resemblance with 
the region seen as chaotic in figure 3(a) is obvious. So, starting with any initial condition, the computed value of 
the SALI rapidly gives a clear view of chaotic vs. ordered motion even in conservative systems described by 
ordinary differential equations, where surface of section plots are already time consuming for 2 degrees of 
freedom and practically useless for systems of higher dimensionality. 

4 CONCLUSIONS  

In this paper, we have given some examples of Hamiltonian systems and symplectic maps where the 
computation of the smaller alignment index SALI allows us to distinguish in a “cost – efficient” way between 
ordered and chaotic orbits.  
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An advantage of using the SALI in Hamiltonian systems or in multidimensional maps is that usually the 

chaotic nature of an orbit can be established beyond any doubt. This happens because when the orbit under 
consideration is chaotic, the SALI becomes equal to zero, in the sense that it reaches the limit of the accuracy of 
the computer. After that time the two deviation vectors are identical (equal or opposite), since their coordinates 
are represented by the same or opposite numbers in the computer. Thus they have exactly the same evolution in 
time and cannot be separated.  
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Figure 3. (a) The Poincaré surface of section (x, px) of Hamiltonian (6) for H=1,000 and η=0.15. (b) Regions 

of different values of the SALI on the Poincaré surface of section (x, px). Black points correspond to initial 
conditions that give SALI<10-8 after 3,000 time steps (chaotic motion), while grey points to initial conditions 

that give 10-8≤SALI<10-4 (slightly chaotic motion). The resemblance of the region of chaotic motion in the two 
panels is evident.   
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 In 2D maps the SALI tends to zero along both ordered and chaotic orbits, for reasons that we have 
explained. However, they do so at very different time rates and hence the distinction between these two 
behaviours can still be accurately made. Our approach, in fact, begins to be truly valuable for Hamiltonian 
systems of 2 degrees of freedom (where detailed surface of section plots are too costly) and promises to become 
extremely useful for higher than 2 degree of freedom Hamiltonians and higher dimensional symplectic maps.   
 Indeed, it is in such cases that the dynamics becomes particularly complex and there exist regions with 
varying “degrees” of chaotic behaviour, where orbits are seen to diffuse at very different rates [19]. 
Furthermore, there are periodic orbits of remarkable spatial complexity and varying numbers of stable and 
unstable directions in their tangent space [20], which may very well turn out to seriously affect the behaviour of 
the orbits in their vicinity.  
 It seems to us, therefore, that our previously established and well tested methods for computing long 
periodic orbits for these systems [21], combined with the evaluation of the SALI can constitute a useful 
quantitative indicator of the different properties of chaotic motion in these higher dimensional systems. In fact, 
we have already started to compare the values of our index with those of diffusion rates and Lyapunov 
exponents in the neighbourhood of such unstable periodic orbits and results will be reported soon in a future 
publication. 

ACKNOWLEDGEMENTS  

C. Antonopoulos was partially supported by a “Karatheodory” graduate student fellowship. Ch. Skokos was 
supported by a 'Karatheodory' post – doctoral fellowship No 2794 of the University of Patras and by the 
Research Committee of the Academy of Athens (program No 200/532). 

 



Ch. Skokos, C. Antonopoulos, T.C. Bountis, and M.N. Vrahatis. 
REFERENCES 

[1] Benettin G., Galgani L. and Strelcyn J. M. (1976), “Kolmogorov entropy and numerical experiments”, Phys. 
Rev. A, 14, pp. 2338-2345. 

[2] Froeschlé C. (1984), “The Lyapunov characteristic exponents - Applications to celestial mechanics”, Cel. 
Mech., 34, pp. 95-115. 

[3] Laskar J. (1990), “The chaotic motion of the solar system - A numerical estimate of the size of the chaotic 
zones”, Icarus, 88, pp. 266-291. 

[4] Laskar J., Froeschlé C. and Celletti A. (1992), “The measure of chaos by the numerical analysis of the 
fundamental frequencies. Application to the standard mapping”, Physica D, 56, pp. 253-269. 

[5] Froeschlé C., Froeschlé Ch. and Lohinger E. (1993), “Generalized Lyapunov characteristic indicators and 
corresponding Kolmogorov like entropy of the standard mapping”, Celest. Mech. Dyn. Astron., 56, pp. 307-
314. 

[6] Lohinger E., Froeschlé C. and Dvorak R. (1993), “Generalized Lyapunov exponents indicators in 
Hamiltonian dynamics - an application to a double star system”, Celest. Mech. Dyn. Astron., 56, pp. 315-
322. 

[7] Voglis N. and Contopoulos G. (1994), “Invariant spectra of orbits in dynamical systems”, J. Phys. A, 27, pp. 
4899-4909. 

[8] Contopoulos G., Grousousakou E. and Voglis N. (1995), “Invariant spectra in Hamiltonian systems”, Astron. 
Astroph., 304, pp. 374-380. 

[9] Voglis N., Contopoulos G. and Efthymiopoylos C. (1999), “Detection of Ordered and Chaotic Motion Using 
the Dynamical Spectra”, Celest. Mech. Dyn. Astron., 73, pp. 211-220. 

[10] Contopoulos G. and Voglis N. (1996), “Spectra of Stretching Numbers and Helicity Angles in Dynamical 
Systems”, Celest. Mech. Dyn. Astron., 64, pp. 1-20. 

[11] Contopoulos G. and Voglis N. (1997), “A fast method for distinguishing between ordered and chaotic 
orbits”, Astron. Astroph., 317, pp. 73-81. 

[12] Froeschlé C. and Lega E. (1998), “Twist angles: a method for distinguishing islands, tori and weak chaotic 
orbits. Comparison with other methods of analysis”, Astron. Astroph., 334, pp. 355-362. 

[13] Froeschlé C., Lega E. and Gonzi R. (1997), “Fast Lyapunov Indicators. Application to Asteroidal Motion”, 
Celest. Mech. Dyn. Astron., 67, pp. 41-62. 

[14] Vozikis Ch. L., Varvoglis H. and Tsiganis K. (2000), “The power spectrum of geodesic divergences as an 
early detector of chaotic motion”, Astron. Astroph., 359, pp. 386-396. 

[15] Skokos Ch. (2001), “Alignment indices: a new, simple method for determining the ordered or chaotic 
nature of orbits”, J. Phys. A, 34, pp. 10029-10043. 

[16] Froeschlé C. (1972), “Numerical Study of a Four-Dimensional Mapping”, Astron. Astroph., 16, pp.172-
189. 

[17] Skokos Ch., Contopoulos G. and Polymilis C. (1997), “Structures in the Phase Space of a Four 
Dimensional Symplectic Map”, Celest. Mech. Dyn. Astron., 65, pp. 223-251. 

[18] Bountis T. and Segur H. (1982) “Logarithmic Singularities and Chaotic Behavior in Hamiltonian Systems”, 
A.I.P. Conf. Proc., eds. M. Tabor and Y. Treves, A.I.P. New York, Vol. 88, 279 - 292. 

[19) Bountis, T. and Kollmann, M. (1994) “Diffusion Rates in a 4-D Mapping Model of Accelerator Dynamics'', 
Physica 71D, 122-131. 

[20] Vrahatis M. N., Isliker H. and Bountis T. (1997),"Structure and Breakdown of Invariant Tori in a 4-D 
Mapping Model of Accelerator Dynamics", Int. J. of Bifurc. and Chaos 7 (12), 2707-2722. 

[21] Vrahatis M. N., Bountis T. and Kollmann M. (1996), “Periodic Orbits and Invariant Surfaces of 4D 
Nonlinear Mappings”, Int. J. of Bifurc. and Chaos 6 (8), 1425 – 1437. 


