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ABSTRACT
A novel methodology for unsupervised data clustering
based on Evolutionary Computation, named “Intelligent
Unsupervised Clustering” (IUC) is introduced. IUC
searches for the “optimal clusters’ representatives” using
Evolutionary Algorithms (EAs) and utilising a Window
Density Function (WDF) as an objective function. EAs en-
sure that the representative is posed in a region of points
of high density. IUC aims in finding a highly dense hyper-
rectangle around the cluster’s representative, that captures
a part of cluster. Therefore, IUC uses a windowing tech-
nique and gradually enlarges a window, which is centered
on the best individual generated from the EA. This process
continues until the increase of the value of WDF does not
change “drastically”. The whole process is repeated on the
unclustered data, until all the clusters are discovered. The
quality of clustering, delivered by the IUC, is compared
with well-known clustering algorithms and the experimen-
tal results illustrate its efficiency and accuracy.
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1. Introduction

Clustering is the process of identifying sets of similar
items, called clusters. The goal of a clustering algo-
rithm is to produce a set of clusters with high intra-cluster
similarity while simultaneously preserving a low inter-
cluster similarity [4, 13]. Its application domain consists
of a broad collection of scientific fields including, statis-
tics [2], bioinformatics [25], text mining [29], marketing
and finance [5, 16, 22], image segmentation and computer
vision [14] and pattern recognition [27], among others.
Many approaches have been proposed, which can be cat-
egorised into two major categories, hierarchical and parti-
tioning [4, 15].

Partitioning algorithms consider the clustering as an
optimization problem. There are two directions. The first
one discovers clusters through optimizing a goodness cri-
terion based on the distance of the dataset’s points. Such

algorithms are k-means [17], ISODATA [3] and fuzzy c-
means [6]. The second one utilizes the notion of den-
sity and considers clusters as high-density regions. The
most characteristic algorithms of this approach are DB-
SCAN [10], CLARANS [18] and k-windows [28].

Recent approaches for clustering also apply evolu-
tion, which is an optimization process aiming in adjustment
of an organism to survive in a dynamically changing and
competitive environment. Evolutionary Computation (EC)
refers to the computer-based methods that simulate the evo-
lution process. Genetic algorithms (GA), Differential Evo-
lution (DE) and Particle Swarm Optimization (PSO) are the
main algorithms of EC [9]. The principal issues of these
methods consist of the representation of the solution of the
problem and the choice of the objective function.

The majority of clustering algorithms require a pre-
defined number of clusters or at least an upper bound of
them. This is a critical open issue in cluster analysis, since
this information is often tough to determine or, even worse,
impossible to define. Dubes called this problem “the fun-
damental problem of cluster analysis” [8].

In this study, a novel methodology is introduced,
called “Intelligent Unsupervised Clustering” (IUC), utili-
sing an Evolutionary Algorithm, which models the natu-
ral and biological intelligence, aiming to find a partition-
ing without any prior knowledge of the number of clusters
present in the dataset (unsupervised clustering). Particu-
larly, IUC exploits the benefits of EAs by deploying the
Window Density Function [26] as an objective function,
so as to discover the optimum clustering. The key idea
is to discover the center of the most dense region of the
dataset and then by using a windowing technique to cap-
ture the entire cluster. This process is repeated over the
unclustered dataset. Scrutinising the effectiveness of the
IUC algorithm, experimental runs have been done and the
results were compared with other well known clustering al-
gorithms, according to the entropy measure.

The rest of the paper is organised as follows. In Sec-
tion 2 the partitional clustering algorithms that are used in
this work are sketched. After that, the evolutionary clus-
tering algorithms are shortly reviewed in Section 3. The
proposed algorithm is outlined in Section 4 while in Sec-
tion 5 the experimental results are demonstrated. Finally,



conclusions and outlines for future work are discussed in
Section 6.

2. Partitional Clustering Algorithms

The most famous clustering algorithm is k-means [17],
which minimizes the distances between the points and the
center of the cluster that they belong to and maximizes the
distances between these points from the centers of other
clusters. This can be formalised by minimizing the square-
error criterion, min∑k

j=1 ∑xi∈Ck
‖xi− c j‖

2, where c j is the
mean (or weighted average) of the j-th cluster. The above
criterion is based on the L2-norm (Euclidean distance). The
algorithm selects k initial centers either randomly or by
exploiting any prior knowledge. The algorithm proceeds
iteratively by reassigning each point to its nearest cluster
center and recalculating the center of the clusters until an
optimum value of the objective function is found. The k-
means algorithm works well only for compact and hyper-
spherical clusters and can not guarantee convergence to the
global optimum.

Another well-known clustering algorithm is DB-
SCAN (Density Based Spatial Clustering of Applications
with Noise) [10] that relies on a density-based notion of
clusters and it can deal with arbitrarily shaped clusters in
single-scan mode. DBSCAN aims to group adjacent points
into clusters based on local density criterion. The neigh-
bourhood of a given radius eps for each point of a cluster
has to contain at least a minimum number of points Input ′s.
An eps-neighbourhood is defined as the set Neps(p) = {q∈
X |d(p,q) � eps}. There are two categories of points in a
cluster, core and border points. MinPts is a lower boundary
of the points in an eps-neighborhood. So a core point of a
cluster contains significantly more points than MinPts in
its eps-neighbourhood (core point condition) and a boarder
point contains at least MinPts points. Furthermore, a point
p is directly density reachable from q with respect to eps
and MinPts in the set of points X if the point p is in the
eps-neighbourhood of q. A point p is density reachable
from a point q with respect to eps and MinPts in the set
of points X if there is a sequence of points p1, p2, . . . , pn,
p1 = q, pn = p such that pi+1 is directly density reachable
from pi.

DBSCAN starts by randomly selecting a point of the
database. If the core point condition is not fulfilled for
this point, it is marked as noise and another point is visi-
ted. Else, all the density reachable points from the selected
point are retrieved and clustered together. This process ter-
minates when all points have been examined. The points
that cannot be assigned to a cluster are considered as noise.

Vrahatis et al. proposed the k-windows algorithm
[28] that uses a windowing technique to discover the un-
derlying clusters. It starts spreading an initial number of d-
dimensional rectangles, called windows, over the dataset.
During the movement process each window moves itera-
tively so that its center approaches the mean of the points
that lie in it. This iterative process is stopped when further

movements do not significantly contribute to the increase
in the number of points that lie in the window. Then, the
current window is enlarged in order to capture as many pat-
terns from the cluster as possible. For each coordinate, the
window is augmented iteratively by a user-defined portion
θε until the increment of the points inside the window is
insignificant. The movement and enlargement procedures
are performed on all the windows. After that, the overlap-
ping windows are considered for merging. During this op-
eration, the number of points that lie in the intersection of
each pair of overlapping windows is computed. If the ratio
of this number to the number of patterns lying in each win-
dow exceeds a user-defined threshold then the smaller win-
dow is discarded, as the two windows are considered iden-
tical. If this ratio is low then these windows capture dif-
ferent clusters and therefore both of them are kept. Other-
wise, the two windows capture different parts of the same
cluster. The remaining windows are returned as the final
clustering of the dataset.

3. Clustering using Differential Evolution

As mentioned above, Evolutionary Algorithms (EA) are
bio-inspired optimization processes. The concept on which
they are based is the evolution of possible solutions simu-
lating the evolution of organisms. Storn and Price [23] pro-
posed an EA algorithm called Differential Evolution (DE)
that randomly initializes a population and evolves it over a
number of generations employing a set of operators: muta-
tion, recombination and selection.

More formally, consider the given function f : A→R,
where A ⊆ R

d , the minimization problem is to find the
global minima x∗ such that f (x∗) � f (x) for x ∈ A. So
on, f is called objective function. A population of candi-
date solutions NP, x1,g,x2,g, . . . ,xNP,g is formed, where g
represents the generation of the population.

In this framework, DE starts by randomly initializing
a population of individual xi,0, i = 1,2, . . . ,NP. Then muta-
tion is applied by combining individuals randomly chosen
and producing a new mutated individual using the follow-
ing mutation operators [26]:

vi,g+1 = xbest,g + F · (xr1,g− xr2,g) , (1)

vi,g+1 = xr1,g + F · (xr2,g− xr3,g) , (2)

vi,g+1 = xi,g + F · (xbest,g− xi,g)+ F · (xr1,g− xr2,g) , (3)

vi,g+1 = xbest,g + F · (xr1,g− xr2,g)+ F · (xr3,g− xr4,g) ,(4)

vi,g+1 = xr1,g + F · (xr2,g− xr3,g)+ F · (xr4,g− xr5,g) . (5)

where r1,r2,r3,r4,r5 are randomly chosen integers from
{1,2, . . . ,NP} and F ∈ [0,2] is a constant factor which con-
trols the contribution of the difference between the indivi-
duals. In the rest of this paper, Eq. (1) will be referred as
operator DE1, Eq. (2) as operator DE2 and so on.

During the next step of the algorithm (recombina-
tion), each mutant individual vi,g+1 is combined with the



individual xi,g according to

u ji,g+1 =

{
v ji,g+1, if (rand( j) � CR) or j = k ,

x ji,g, otherwise ,

(6)

where i = 1,2, . . . ,NP, j = 1,2, . . . ,d and k is a randomly
chosen parameter from {1,2, . . . ,d} and CR ∈ [0,1] is a
user-defined constant. Finally, the trial individual ui,g+1 is
accepted for the next generation if and only if its fitness
value is better than the initial individual xi,g (selection).
The outcome of this process is to receive a new generation
in which each individual is at least as good as the current
one.

As clustering is regarded as an optimization problem
the DE algorithm has already been applied for its solution.
In the evolutionary clustering framework two main issues
have emerged. The first one is the representation of the
clustering as a member of the population evolved. The ma-
jority of the proposed schemes encodes the entire clustering
via its cluster centers as a single individual [12, 19, 21, 26].
This means each chromosome encodes the k representa-
tives as real-valued vector. However, Das et al. [7] inte-
grated k activation thresholds in the individual. This en-
coding does not take for granted the presence of k clusters
but sets an upper bound (Kmax) of the number of clusters.
The activation threshold Ti, j ∈ [0,1] represents whether the
corresponding center (mi, j) is participating in the clustering
described by the chromosome xi. A center mi, j is active if
its threshold exceeds 0.5.

The second issue that needs to be addressed, concern-
ing DE Clustering, is the choice of the appropriate objec-
tive function so as to evaluate the clustering quality of each
chromosome. In this direction, Paterlini and Krink [21]
utilized statistical criteria as objective functions of GA,
DE and PSO clustering and compared their performance.
Gong et al. [12] proposed an evolutionary algorithm-based
clustering, called density-sensitive evolutionary clustering
(DSEC) by using a density-sensitive dissimilarity measure
that can describe the distribution characteristic of data clus-
tering. Recently, Das et al. [7] utilised two well-known
clustering validity measures, namely CS and DB indices, as
fitness functions. Finally, a variant approach for DE Clus-
tering was introduced by Omran et al., called Self-adaptive
Differential Evolution (SDE) [19]. In their approach, the
control parameters of DE process (F and CR that men-
tioned above) are defined by an automatic way. Also, they
proposed a fitness function based on a quantization error
measure.

All the aforementioned approaches exhibit high com-
putational cost involved in the computation of the fitness
function. In order to overcome this difficulty, Tasoulis and
Vrahatis [26] introduced a novel objective function, called
Window Density Function (WDF), that represents the num-
ber of points lying in a hyper-rectangle. They proposed
an evolutionary scheme, called DEUC, that applies the DE
algorithm so as to evolve the clustering solution. More
specifically, each chromosome represents k predefined d-
dimensional vectors, each of them being the center of a

window. The objective function of a chromosome is the
sum of the WDF function over all windows. The DE al-
gorithm is executed iteratively until the majority of data is
covered. Finally, DEUC adopts the merging process of k-
windows so as to discover the real clusters.

4. Intelligent Unsupervised Clustering

The proposed methodology is based on the combination
of an Evolutionary Algorithm with a windowing technique
and aims to discover the clusters of the dataset one after the
other. It should be clarified that, the proposed methodolo-
gy can utilise any Evolutionary Algorithm, such as Genetic
and Differential Evolution Algorithms, as well as any Com-
putational Swarm Intelligence scheme such as PSO.

In this contribution, the Differential Evolution is ap-
plied to optimize the Window Density Function (WDF), in
order to find a region of high density. After that, this re-
gion is continuously enlarged until a cluster or a part of it
is captured. The patterns that reside in the cluster are re-
moved from the dataset and the process is repeated on the
remaining points to detect another cluster. This process is
terminated when only noise or outliers are left. The final
number of clusters is produced by merging the overlapping
windows. Furthermore, it must be noted that each chromo-
some is represented by the center of a single window and
thus the dimensionality of the search space for the DE al-
gorithm is not increased. Before the detailed description
of the proposed algorithm is exhibited, WDF is formally
defined.

Let a d-range of size α ∈ R and center z ∈ R
d be the

orthogonal range [z1−α,z1 + α]× ·· · × [zd −α,zd + α].
Assume further, that the set Sα ,z, with respect to the set X ,
is defined as:

Sα ,z = {y ∈ X : zi−α � yi � zi + α, ∀ i = 1,2, . . . ,d} .

Then the Window Density Function (WDF) for the set X ,
with respect to a given size α ∈R is defined as:

WDFα(z) = |Sα ,z| . (7)

WDF is a meaningful non-negative function that ex-
presses the density of the region (orthogonal range) around
the point. The points that are included in this region can be
effectively estimated using computational geometry meth-
ods [1]. For a given α , the value of WDF increases con-
tinuously as the density of the region within the window
increases. Furthermore, for low values of α , WDF has
many local maxima, more than the real number of clusters.
While the value of α increases, WDF reveals the number
of local maxima that corresponds to the number of clusters.
However for higher values of the parameter, WDF becomes
smoother and the clusters are not distinguished (Fig. 1).

The discovery of high density regions of the datasets
through the WDF is a maximization problem, however DE
is a minimization algorithm, hence −WDF is utilised as



Figure 1. WDF plot for a = 0.02, a = 0.1 and a = 0.2

Algorithm 1 Intelligent Unsupervised Clustering - IUC
repeat

Create a data structure that holds all unclustered
points
Perform the DE algorithm returning the center z
Construct the window w of size α around the center
z
Enlarge the window w for each coordinate until

|Qw′ |− |Qw|

|Qw|
� v (8)

is satisfied
Mark the points that lie in the enlarged window w′ as
clustered
Remove the clustered points from the dataset

until
WDFa(z) � WDFa(best) · t% (9)

Mark the points that lie in overlapping windows as
members of the same cluster and merge these windows
to form the clusters.

the fitness function. IUC uses −WDF as shown in Algo-
rithm 1.

Analytically, during the first step IUC constructs a
data structure in which the unclustered data are stored.
Then, the DE algorithm is executed in order to detect the

point z with the property that the window, which is centered
to it, has the highest density with respect to WDF function
and a given parameter α . Due to the fact that DE usually
converges to the global optimum, the window that encloses
this optimum is the region with the highest density. As it
has been mentioned before the user-defined parameter α
influences the convergence of DE algorithm, in the sense
that as its value decreases, the number of dense regions is
increased. Thus, the DE algorithm is prone to converge to
a local optima, which corresponds to a region with lower
density. However, the detection of such a cluster prior to
one of higher density does not affect the performance of
IUC. On the other hand, large values of α produce over-
lapping regions whilst they span the search space covering
more that one cluster.

In the third step, a window w of size α centered at z is
constructed. This window represents the core of the cluster.
During the fourth step, this window w is enlarged as much
as possible over one coordinate and, afterwards the next co-
ordinate is considered. Let, w denote the current window,
w′ the enlarged window, and Qw, Qw′ the set of points lying
in windows w, w′. A window w is resized over each coordi-
nate by a user-defined percentage e, as long as the enlarge-
ment termination criterion, inequality (8), does not hold.
Parameter v is user-defined and represents the upper bound
of the relative difference of the cardinality of the windows.
It means that, when the increment of points is larger than
v% of the number of points in the initial window, |Qw|, then
the enlargement process is continued. Otherwise, the en-
largement procedure proceeds to the next coordinate. This
step terminates when all the coordinates have been consid-
ered. Choosing large values of enlargement parameter e
causes a large increasement of the window’s size attaining
quick coverage of the region, but endangering to capture
contiguous regions. Given a constant value for the para-
meters α and e, parameter v represents the sensitivity of
the algorithm to capture a dense region in a window. Small
values of v allow IUC to enlarge a window covering bigger
portion of the region. On the other hand, bigger values of v
deter IUC for excessive enlargements.

The points inside the final window belong to the same
cluster and so they are marked with a cluster id. IUC re-
moves them from the dataset and repeats the previous steps
on the new dataset, in order to capture the next cluster. This
is done until the WDF value of DE’s best individual in the
current run falls under t% of the largest encountered WDF
value by DE algorithm. The parameter t is a threshold of
what IUC considers a dense region in the sense that t is a
boundary of the expansion of a density region over a sparse
one. Finally, two windows are merged if they overlap. Due
to the fact that a region of high density may have an ar-
bitrary shape that can not be enclosed in a single hyper-
rectangle, such regions are described by several windows
which partially overlap. Therefore, these windows must be
merged in order to capture an entire cluster. A common
cluster id is assigned to the points that lie in them. This
step yields the final number of clusters in the dataset, while



the remaining points are considered as noise or possibly as
outliers.

It must be stressed that IUC clusters a dataset in an
unsupervised manner, since it detects the clusters without
a priori knowledge of their number. It is based solely on
the density of a region. Although for the execution of IUC
algorithm, a user must determine the parameters α, e, v
and t, these user-defined parameters are easily regulated, in
contrast with the number of clusters that is an invariant fea-
ture characterising the underlying structure of the dataset
and furthermore it is difficult to define. Also, DE’s search
space dimension is equivalent to the dimensionality of the
dataset, in contrast to the majority of other approaches that
try to find all centers simultaneously, increasing the dimen-
sionality by a factor of k (where k denotes the maximum
number of clusters estimated).

5. Experimental Results

In this section, the IUC algorithm is compared to four
partitioning clustering algorithms, k-means, DBSCAN,
k-windows and DEUC. All algorithms are implemented
using the C++ programming language on the Linux opera-
ting system. For each dataset, the algorithms are executed
100 times, except DBSCAN that due to its deterministic
nature was executed once. For the k-means algorithm the
parameter k is set equal to the real number of clusters in
each dataset. For the other algorithms, their parameters
were determined heuristically. Finally, for the algorithms
DEUC and IUC all the mutation operators (Eqs. (1)-(5))
are utilized in order to investigate their effects on cluster-
ing quality.

Furthermore, for the evaluation of IUC’s perfor-
mance, two 2-dimensional, one 3-dimensional and one 5-
dimensional artificial datasets (called Dset1, Dset2, Dset3
and Dset4 respectively) are used, as shown in Fig. 2. The
first one, Dset1 has 1600 points that form four spherical clu-
sters each one with different size. The second one, Dset2
has 2761 points grouping into four arbitrary shape clusters,
three of them are convex and one is non-convex. The re-
maining datasets, Dset3 and Dset4, contain 15000 points
each and randomly generated from multivariate normal dis-
tributions, the first of them with an unary covariance matrix
and different mean vectors, grouping into six clusters with
different cardinality, based on [21] and the latter with ran-
dom parameters, forming eight clusters, based on [24]. All
the datasets are normalized in the [0,1]d range.

It is well known that Evolutionary Algorithms require
more execution time than classical clustering algorithms
[15, 20], thus this work is focused on the clustering qual-
ity rather than the execution time. In order to evaluate the
performance of the clustering algorithms the Entropy and
Purity measures are utilised. The Entropy function [29]
represents the dissimilarity of the points lying in a clus-
ter. Higher homogeneity means that entropy’s values con-
verge to zero. However, for the usage of the entropy func-
tion, the knowledge of the real classification/categorization

Figure 2. Datasets Dset1, Dset2 and Dset3

of the points is required. Let, C = {C1,C2, . . . ,Ck} be
a clustering provided by a clustering algorithm and L =
{L1,L2, . . . ,Lm} be the target classification of the patterns,
then the entropy of each cluster Ci is defined as Hi =
−∑m

j=1 P(x ∈ Lj|x ∈ Ci) logP(x ∈ Lj|x ∈ Ci). For a given
set of n patterns, the entropy of the entire clustering is the
weighted average of the entropy of each cluster. The Purity
is defined as r = 1

n ∑k
i=1 αi, where k denotes the number of

clusters found in the dataset and αi represents the number
of patterns of the class to which the majority of points in
cluster i belongs to it [11].

The experimental results for the dataset Dset1 show
that the proposed algorithm (IUC) attains to distinguish the
four clusters in the majority of the experiments, as the aver-
age entropy tends to be zero and the average purity tends to
100%. The IUC algorithm outperforms both the DEUC and
k-means algorithms, independently of the choice of muta-
tion operator, whilst the average entropy and purity of the
former algorithm is better than the average measure values
of the latter algorithms. Furthermore, IUC’s performance is
equivalent to the other classical partitioning algorithms (Ta-
ble 1). In contrast to the DEUC algorithm, IUC exhibits the
potential to cluster correctly all the points of the dataset, as
k-means, DBSCAN and k-windows achieved, as presented
in Table 2. The parameters for the IUC algorithm were set
to α = 0.1, e = 0.15, v = 0.05 and t = 0.001.

According to the experimental results for the second
dataset, some interesting conclusions are reached. IUC’s
ability to cluster all the points in the dataset remains as
in the precedent dataset (Table 2). However, this fact has



a slight impact to its performance as its average entropy
is higher than the average entropy of both the DEUC and
the k-windows algorithms. On the other hand, IUC’s mean
entropy value for each strategy is significantly lower than
the DBSCAN’s and k-means’ performance. In addition,
IUC’s purity outperforms the purity of DEUC and also k-
means and k-windows but does not surpass DBSCAN’s pu-
rity (Table 1). All the algorithms, except k-windows, en-
couter difficulties to distinguish the exact number of clus-
ters, due to presence of the non-linear separable clusters
in the dataset. Specifically, IUC splitted the dataset into
10 to 15 clusters in the majority of the experiments, while
DEUC and DBSCAN found on the average 38 and 7 clus-
ters respectively. The IUC’s experiments were performed
for α = 0.03, e = 0.02, v = 0.01 and t = 0.01.

In the third dataset, IUC’s performance is almost
equivalent to DEUC’s and k-means performance regarding
the entropy, but significantly better regarding the purity and
the points that it attained to cluster. Compared to DBSCAN
and k-windows, IUC still lacks in performance, regardless
of the choice of the utilised measure (Table 1). Although,
IUC could not cluster every point, it could manage to clus-
ter a higher percentage of points than the other DE clus-
tering algorithm (Table 2). IUC and k-windows found the
actual number of clusters in contrast with DEUC and DB-
SCAN that group data in more than 6 clusters. The best val-
ues for the IUC’s parameters resulting for preliminary ex-
periments were α = 0.09, e = 0.05, v = 0.05 and t = 0.01.

Finally, while the dimensionality and the number of
clusters increases, the entropy and purity values of IUC
are considerably better than the corresponding values of
DEUC and k-means, as shown in the results for the 5-
dimensional dataset Dset4 (Table 1). On the other hand,
IUC’s performance is slightly worse than k-windows’ and
DBSCAN’s. DEUC could not manage to cluster as many
points as IUC and the classical partitioning algorithms did.
As regarding the number of clusters that algorithms could
detect, IUC and k-windows manage to discover 8 clus-
ters in contrast with other algorithms that found on aver-
age 7 clusters. The IUC’s experiments were performed for
α = 0.2, e = 0.05, v = 0.01 and t = 0.001.

Generally speaking, the above conclusions can be
confirmed by using statistical hypothesis tests such as the
Kruskal-Wallis test. For every dataset Kruskal-Wallis tests
were executed and resulted in near zero p-values, which
means that the null hypothesis is rejected, leading to the
conclusion that the mean entropy and purity of the algo-
rithms are different.

With regard to the execution time of the proposed
algorithm, it can be concluded that for the 2-dimensional
dataset, IUC is outperformed by the other algorithms, but
as the dimensionality and the cardinality of the dataset in-
crease, the IUC algorithm exhibits better behaviour. More
specifically, it is significantly faster than DEUC, however
is slightly slower than traditional partitioning algorithms.
Although, this is an encouraging result, extended research
needs to be done on the running time and complexity issues

of the algorithm, that is beyond of the scope of this work.

6. Conclusion

In this work, a novel methodology is proposed based on
Evolutionary Computation so as to detect the clusters of
a dataset in an intelligent and unsupervised manner. In
more detail, a Differential Evolution algorithm is utilized
in combination with an efficient and simple objective func-
tion, called Window Density Function, in order to discover
the centers of regions of high density successively. After
the enlargement of this region the final window will arise
and the points in it are marked and removed. The repetition
of this process produces the final windows and after the
merging procedure the clusters of the dataset are produced
without any prior knowledge about their number. Further-
more, the proposed codification of the individual is more
efficient than contemporary encodings, as each individual
represents a cluster, thus avoiding the increase of the di-
mensionality.

The experimental results show that the IUC algorithm
is a promising algorithm while its performance is better
than the other DE clustering algorithm (DEUC) and also is
at least comparable with other well known partitioning al-
gorithms. In addition, it exhibits good behaviour regarding
the scalability, thus its performance is not affected when
the dimensionality as well as the size of the dataset and the
number of clusters increase. Although, more work needs
to be done to discover the intrinsic behaviour of the IUC
algorithm over various multidimensional datasets with ar-
bitrary shape and different densities. Furthermore, in a fu-
ture correspondence the time complexity of IUC needs to
be considered. Also, it is interesting to investigate the pro-
posed methodology using swarm computing (PSO) instead
of the DE algorithm. Finally, the behaviour of the IUC al-
gorithm needs to be examined when treating datasets with
noisy data and/or outliers.
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Table 1. The mean values and standard deviation of entropy and purity for each algorithm over the four datasets.

Entropy Values
Dset1 Dset2 Dset3 Dset4

Mean STD Mean STD Mean STD Mean STD
IUC DE1 8.55e-3 6.08e-2 4.54e-2 1.14e-1 2.52e-3 2.52e-2 2.7e-3 2.65e-2
IUC DE2 1.80e-2 1.03e-1 3.08e-2 9.12e-2 7.59e-3 4.34e-2 7.9e-3 4.54e-2
IUC DE3 1.94e-4 1.94e-3 7.16e-2 1.34e-1 1.02e-2 5.00e-2 8.0e-3 4.54e-2
IUC DE4 6.01e-3 6.01e-2 4.21e-2 1.02e-1 0.00e+0 0.00e+0 1.06e-3 5.22e-2
IUC DE5 2.46e-2 1.21e-1 6.95e-2 1.33e-1 5.04e-3 3.55e-2 2.12e-3 7.22e-2

DEUC DE1 1.70e-1 1.02e-1 3.39e-2 1.87e-2 6.86e-3 8.92e-3 2.63e-3 2.14e-1
DEUC DE2 1.36e-1 9.90e-2 3.22e-2 1.73e-2 6.04e-3 8.73e-3 2.90e-3 1.93e-1
DEUC DE3 1.66e-1 9.35e-2 2.90e-2 1.86e-2 6.16e-3 7.43e-3 2.94e-3 2.14e-1
DEUC DE4 1.45e-1 9.20e-2 3.16e-2 1.93e-2 7.17e-3 1.15e-2 3.09e-3 2.4e-1
DEUC DE5 1.39e-1 1.04e-1 2.88e-2 1.81e-2 6.38e-3 8.84e-3 2.79e-3 2.29e-1

k-means 1.10e-1 2.15e-1 3.45e-1 5.70e-2 2.69e-1 1.89e-1 3.99e-3 2.55e-1
k-windows 0.00e+0 0.00e+0 2.20e-2 8.14e-2 4.18e-5 3.06e-4 0 0
DBSCAN 0.00e+0 — 3.74e-1 — 8.54e-4 — 0 0

Purity Values
Dset1 Dset2 Dset3 Dset4

Mean STD Mean STD Mean STD Mean STD
IUC DE1 99.7% 2.16% 98.9% 2.7% 94.7% 4.75% 99.7% 1.01%
IUC DE2 99.4% 3.29% 99.2% 2.26% 96% 4.26% 99.5% 1.6%
IUC DE3 100% 0.02% 98.2% 3.34% 95.5% 4.01% 99.6% 1.6%
IUC DE4 99.8% 1.97% 99% 2.53% 96.6% 1.65% 99.4% 1.83%
IUC DE5 99.2% 3.88% 98.3% 3.28% 97% 1.78% 99% 2.55%

DEUC DE1 91.0% 5.22% 90.5% 1.35% 90.7% 2.04% 87.4% 7.11%
DEUC DE2 92.3% 5% 90.3% 1.11% 91% 2.09% 86.4% 5.76%
DEUC DE3 90.4% 5.17% 90.8% 1.23% 91.2% 1.64% 86.4% 7.09%
DEUC DE4 91.1% 4.63% 90.4% 1.35% 89.9% 1.88% 86% 7.51%
DEUC DE5 92.9% 5.19% 90.6% 1.08% 90.1% 2.11% 86.8% 7.04%

k-means 96.7% 6.5% 90.5% 3.35% 89.9% 7.15% 86.8% 9.01%
k-windows 99.2% 2.9% 95.4% 1.95% 98.3% 0.32% 99.7% 0.57%
DBSCAN 100% — 100% — 99.2% — 100% —

Table 2. The mean values and standard deviation of clustered points for each algorithm over the four datasets.

Clustered Points
Dset1 Dset2 Dset3 Dset4

Mean STD Mean STD Mean STD Mean STD
IUC DE1 1600.0 (100.0%) 0.0 2761.0 (100.0%) 0.0 14220.5 (94.8%) 705.7 14961.7 (99.7%) 60.0
IUC DE2 1600.0 (100.0%) 0.0 2761.0 (100.0%) 0.0 14447.0 (96.3%) 596.7 14971.9 (99.8%) 13.0
IUC DE3 1600.0 (100.0%) 0.0 2761.0 (100.0%) 0.0 14383.9 (95.9%) 551.3 14977.7 (99.9%) 25.0
IUC DE4 1600.0 (100.0%) 0.0 2761.0 (100.0%) 0.0 14484.2 (96.6%) 247.7 14971.1 (99.8%) 18.5
IUC DE5 1600.0 (100.0%) 0.0 2761.0 (100.0%) 0.0 14575.8 (97.2%) 176.6 14953.4 (99.7%) 24.2

DEUC DE1 1540.2 (96.3%) 52.6 2524.0 (91.4%) 32.7 13633.3 (90.9%) 300.9 14332.6 (95.6%) 394.7
DEUC DE2 1545.9 (96.6%) 47.2 2516.5 (91.2%) 27.5 13671.7 (91.1%) 303.3 14281.2 (95.2%) 402
DEUC DE3 1527.6 (95.5%) 51.6 2527.2 (91.5%) 30.9 13703.0 (91.3%) 243.5 14336.6 (95.6%) 381.9
DEUC DE4 1532.4 (95.8%) 49.5 2520.0 (91.3%) 30.4 13516.2 (90.0%) 291.6 14306.9 (95.4%) 406.8
DEUC DE5 1541.7 (96.4%) 54.1 2522.8 (91.4%) 27.8 13535.0 (90.0%) 313.8 14303.4 (95.4%) 426.1

k-means 1600.0 (100.0%) 0.0 2761.0 (100.0%) 0.0 15000.0 (100.0%) 0.0 15000 (100%) 0
k-windows 1587.1 (99.2%) 46.4 2646.0 (95.8%) 20.4 14755.01 (98.4%) 47.6 14958.1 (99.7%) 86
DBSCAN 1587 (99.2%) — 2761 (100.0%) — 14887 (99.2%) — 15000 (100%) —




