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Abstract. One of the most common approaches for handling the multi-
class classification problem is to divise the original data set into binary
subclasses and to use a set of binary classifiers in order to solve the
binarization problem. A new method for solving multi-class classification
problems is proposed, by incorporating random resampling techniques in
the one-versus-all strategy. Specifically, the division used by the proposed
method is based on the one-versus-all binarization technique using ran-
dom resampling for handling the class-imbalance problem arising due
to the one-versus-all binarization. The method has been tested exten-
sively on several multiclass classification problems using Support Vector
Machines with four different kernels. Experimental results show that the
proposed method exhibits a better performance compared to the simple
one-versus-all.

Keywords: Multi-class classification · One-versus-all · Random sam-
pling

1 Introduction

Multi-class, also know as multinomial, classification refers to the problem of clas-
sifying patterns into three or more categories, whereas, binary classification is
the task of classifying patterns into two distinct categories. Some classification
algorithms like Decision Trees, Neural Networks and Bayesian Classifiers natu-
rally handle multi-class problems. On the other hand, some other, like Support
Vector Machines (SVMs) [4,16] are restricted to binary problems.

The most common approach for the generalization of binary classification
to solve multi-class problems is to decompose the problem into several binary
sub-problems [21]. Two of the most well-known approaches are: (a) the one-
versus-one (OVO) strategy and (b) the one-versus-all (OVA) strategy [27]. The
OVO strategy uses a binary classifier to discriminate piecewise the classes, while
the OVA strategy uses a binary classifier to distinguish a single class from the
rest classes.
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The OVO strategy, for a K class problem, trains K · (K − 1)/2 classifiers.
The most straightforward combination is the majority voting rule where each
classifier votes for the predicted class and the one with the largest amount of
votes is predicted. On the other hand in OVA, K binary classifiers are trained
and the decision is made by applying all binary classifiers to an unseen sample
x and by predicting the class label for which the corresponding classifier reports
the highest confidence score.

It is known that, the OVA strategy introduces class imbalance [26] during the
binary reduction, which may lead classifiers towards the new generated majority
class. In this research work a method that handles the problem of class imbalance
is presented and its performance is measured in several well-known and widely
used benchmark data sets.

The rest of the paper is organized as follows: In Sect. 2 similar works are
briefly discussed. In Sect. 3 the proposed method is presented and analysed. In
addition, experimental results obtained by using twenty multi-class benchmark
data sets are exhibited. The paper ends in Sect. 4 with a synopsis and concluding
remarks.

2 Related Work

The multi-class categorization problem [21] is one of the most known problems in
Computer Science. Allwein et al. [1] have proposed a unifying framework to solve
this problem by reducing it to various multiple binary problems. To achieve this,
they used a margin-based learning algorithm. Specifically, they unified the most
popular approaches: (a) each class is compared against all others, (b) all pairs
are compared to each other and (c) codes with error-corresponding properties.
In their paper, they have proposed a general method for combining the classifiers
generated on the binary problem applying to the most well-known classification
learning algorithms such as SVMs, AdaBoost, regression and others [17]. The
experimental results with SVMs and AdaBoost have shown that this scheme
provides an alternative solution to the mostly used multi-class algorithms.

Zadrozny and Elkan [30] have presented a method that solves the multi-class
classification problem through class membership probability estimates using the
probability estimates which are produced by binary classifiers. Their experimen-
tal results, using boosted naive Bayes, have shown that their method has similar
classification accuracy to the loss-based decoding method.

One of the biggest difficulties that we have to deal with is the mapping of the
multi-class problem onto a set of simpler binary classification problems, espe-
cially when we have to deal with hundreds of classes. Due to the fact that many
of the statistical classification models do not have natural multi-class extensions,
like SVMs, Rocha and Goldenstein [24] have introduced the correlation and joint
probability of base binary learners. They have grouped the binary learners based
on their independence and with Bayesian techniques they predict the class of new
instances. They have also focused on the reduction of the number of the required
learners and how to find new learners that complete the original set.
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Despite the progress that has been made recently, the extension of SVMs as
multi-class classification solvers is still ongoing. Most of the methods that have
been proposed build a multi-class classifier by combing several binary classifiers
or considering all classes at once. These kind of methods require to test on large-
scale problems, a fact that makes them computationally expensive. Hsu and Lin
[15], through their experimental work, have compared OVA, OVO and DAGSVM
methods and they have shown that the last two methods are more suitable for
practical use. In addition, they have indicated that SVM needs fewer vectors, in
the case where all classes are considered at once.

Over the last decade many efforts have been made to construct methods
with high classification efficiency for multi-class problems. Fei and Liu [9], have
proposed Binary Tress of SVM (BTS), a method which decreases the number
of binary classifiers without increasing the total complexity of the problem. The
results of their work have shown that BTS maintains comparable accuracy and
is much faster to be trained than DAGSVM or ECOC, especially in big problems
(with a big number of classes).

Wu et al. [29], have proposed two multi-class classification methods for
obtaining class probabilities. Both of them are easily implementable and more
stable than the voting and Hastie-Tibshirani method [13].

The main goal of so called “binarization strategies” is to divide the original
set into two classes, in order to address the multi-class classification problem as
well as for each class to train a different binary algorithm. For this scope, two
techniques are applied, namely: OVA and OVO. Hence, Galar et al. [11], have
developed an experimental study on these strategies, to examine the potential of
different classifiers, such as SVMs, Decision Trees, Instance Based Learning and
Rule Based Systems, as well as the performance and robustness of these tech-
niques, supported by several statistical tests. They have concluded that the best
binarization technique highly depends on the base classifier and its confidence
estimates.

In the attempt to exploit both the advantages of efficient computations and
high classification accuracy, Cheong et al. [2], have proposed a binary Decision
Tree architecture with SVMs classification. They have introduced a modified
version of SOM, the K-SOM, which assists to the achievement of the conversion
of multi-class problem into binary tree in order for the decision to be made by
SVM. Their method overcomes the performance of trees and maintains compa-
rable classification accuracy in comparison to OVA and OVO strategies.

Lorena et al. [21], have presented a survey of the main methods of binary clas-
sifiers that can be applied to multi-class classification problems. Another attempt
to tackle the multi-class classification problem has been made by Crammer and
Singer [5] who have focused on designing output codes and especially contin-
uous codes that have not been viewed as a constrained optimization problem.
More specifically, one of the aspects of their formulation was a scheme that built
SVMs.

In [12], Garćıa-Pedrajas and Ortiz-Boyer have presented many capable binary
classifier fusion methods for a multi-class classification problem. These methods
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require different assumptions, diverse influences and many aspects that need
further study, in order to find out which of those techniques are better for a given
multi-class classification problem. Following what we have mentioned above,
Duan and Keerthi [8] have conducted an experimental study, trying to conclude
on which multi-class SVM method is better.

In the literature, there are various other approaches for the above mentioned
issues [7,20,25,28]. Finally, we would like to dwell on the work of Chmielnicki
and Stapor [3] who have used instance balancing to improve the performance of
pairwise coupling, through the OVA strategy.

3 Proposed Method and Experimental Evaluation

Even in data sets where the patterns are equally distributed between the classes,
the OVA approach could lead to high imbalanced binary data sets for each
underlined classifier. For example, considering a ten class problem where the
patterns are equally distributed, the OVA approach would train binary classi-
fiers that would contain only 10% from the one class and 90% from the other.
It is known that many supervised learning algorithms tend to prefer the more
common classes using the prior knowledge of the training data set [26]. The
proposed approach tackles the problem of class imbalance in data level, inde-
pendently for each binary classifier, either by random over-sampling (ROS) the
minority classes or by random under-sampling (RUS) the majority class. The
proposed method is illustrated in Algorithm 1.

For the experiments twenty multi-class data sets have been chosen from the
UCI Machine Learning Repository [19]. In Table 1 the name, the number of
patterns, the number of input attributes, the number of different classes, as
well as the percentage of the majority class for each data set are exhibited. All
data sets have been preprocessed following the approach of [10]. Specifically, all
discrete input attributes have been transformed to numeric by using a simple
quantization. Each attribute has been scaled to have zero mean and standard
deviation one. Also, all missing values have been treated as zero.

The classifiers’ performance have been measured using the stratified 5-fold
cross-validation procedure. The whole data set has been divided into five mutu-
ally exclusive folds and for each fold the classifier has been trained on the union
of all of the other folds. The folds have been made by preserving the percentage
of patterns for each class. Then, cross-validation has been run five times for each
algorithm and the mean value of the five folds has been calculated. The perfor-
mance metric that is reported is the F1 score which is the weighted average of
the precision and recall and has been calculated as:

F1 = 2 · Precision ·Recall

Precision + Recall

All experiments have been conducted with Python using the available imple-
mentations from the scikit-learn [23] and imbalanced-learn [18] libraries.
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Algorithm 1
parameters

Random Sampling Method M
Base Classifier C
Ratio R

procedure Training(Data Set D)
f ← ∅
m ← getNumberOfClasses(D)
for i to m do

onesDataset ← ∅
allDataset ← ∅
for ∀ (x, y) ∈ D do

if y <> i then
y ← 0
allDataset ← allDataset ∪ {(x, y)}

else
y ← 1
onesDataset ← onesDataset ∪ {(x, y)}

end if
end for
if M == ‘ros‘ then

onesDataset ← randomOverSample(onesDataset, R)
else

allDataset ← randomUnderSample(allDataset,R)
end if
binaryDataset ← onesDataset ∪ allDataset
fi ← trainClassifier(C, binaryDataset)

end for
end procedure
procedure Classification(Data Set D)

for ∀ (x, y) ∈ D do
f(x) ← argmax

i
fi(x)

end for
end procedure

The experiments have been carried out using Support Vector Machines with
four different kernels. The linear, the polynomial (with degree of 3), the RBF as
well as the sigmoid kernel functions have been considered resulting to four differ-
ent classifiers. The standard OVA approach has been compared to the proposed
method using ROS and RUS with base classifier SVMs using the four different
kernels mentioned.

In Tables 2, 3, 4 and 5 the obtained results for each kernel are exhibited. The
best performer scheme for each data set is reported using boldface digits. It can
be easily seen that the proposed method using ROS is the out-performer across
all kernel functions, followed by the the RUS version.

The significance of the results have been examined using non-parametric sta-
tistical tests [6]. Particularly, the non-parametric Friedman Aligned Ranks [14]
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Table 1. Collection of 20 multiclass data sets from the UCI Machine Learning Reposi-
tory. The number of patterns (#patterns), the number of inputs (#inputs), the number
of classes (#classes) as well as the percentage of the majority class (%majority) for
each data set, are exhibited.

Data set #patterns #inputs #classes %majority

abalone 4177 8 3 34.6

arrhythmia 452 262 13 54.2

car 1728 6 4 70.0

contrac 1473 9 3 42.7

dermatology 366 34 6 30.6

ecoli 336 7 8 42.6

flags 194 28 8 30.9

glass 214 9 6 35.5

heart-cleveland 303 13 5 54.1

iris 150 4 3 33.3

lenses 24 4 3 62.5

libras 360 90 15 6.7

low-res-spect 531 100 9 51.9

nursery 12960 8 5 33.3

page-blocks 5473 10 5 89.8

seeds 210 7 3 33.3

steel-plates 1941 27 7 34.7

teaching 151 5 3 34.4

wine-quality-red 1599 11 6 42.6

wine-quality-white 4898 11 7 44.9

test has been performed because of the small number of the compared algorithms.
The null-hypothesis states that the performance of all the compared methods
are equivalent and therefore their ranks should be equal. In Table 6 the results
obtained by using the Friedman test is presented. The p-value in all the cases,
with the exception of the polynomial kernel, indicates that the null-hypotheses
should be rejected. This means that there are methods whose performance dif-
ference was statistically significant to the others. Therefore, post-hoc tests using
Nemenyi’s [6] procedure have been employed and the obtained results are pre-
sented in Table 7. In the case of the linear kernel it can be seen that the ROS
version outperforms both versions of the RUS and the standard approach, while
in RBF and sigmoid kernels, the standard approach of the OVA scheme has been
outperformed by both the ROS and RUS variation.
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Table 2. Macro-averaged F1 scores using as base classifier SVM with linear kernel.

Data set Standard-OVA ROS-OVA RUS-OVA

abalone 0.485 ± 0.02 0.626 ± 0.01 0.617 ± 0.02

arrhythmia 0.422 ± 0.08 0.407 ± 0.10 0.298 ± 0.05

car 0.441 ± 0.09 0.541 ± 0.09 0.475 ± 0.06

contrac 0.373 ± 0.03 0.490 ± 0.01 0.487 ± 0.02

dermatology 0.972 ± 0.03 0.967 ± 0.02 0.969 ± 0.02

ecoli 0.665 ± 0.15 0.609 ± 0.03 0.668 ± 0.12

flags 0.294 ± 0.06 0.289 ± 0.07 0.255 ± 0.09

glass 0.340 ± 0.13 0.483 ± 0.21 0.292 ± 0.11

heart-cleveland 0.283 ± 0.05 0.383 ± 0.08 0.379 ± 0.07

iris 0.831 ± 0.07 0.885 ± 0.04 0.885 ± 0.07

lenses 0.849 ± 0.17 0.773 ± 0.17 0.698 ± 0.21

libras 0.568 ± 0.10 0.564 ± 0.11 0.376 ± 0.07

low-res-spect 0.604 ± 0.13 0.606 ± 0.06 0.500 ± 0.08

nursery 0.518 ± 0.12 0.537 ± 0.12 0.429 ± 0.11

page-blocks 0.404 ± 0.11 0.507 ± 0.13 0.469 ± 0.10

seeds 0.909 ± 0.05 0.928 ± 0.04 0.919 ± 0.04

steel-plates 0.517 ± 0.08 0.578 ± 0.08 0.546 ± 0.09

teaching 0.405 ± 0.10 0.529 ± 0.08 0.513 ± 0.09

wine-quality-red 0.190 ± 0.03 0.271 ± 0.03 0.273 ± 0.02

wine-quality-white 0.175 ± 0.04 0.262 ± 0.07 0.248 ± 0.03

Table 3. Macro-averaged F1 scores using as base classifier SVM with polynomial
kernel.

Data set Standard-OVA ROS-OVA RUS-OVA

abalone 0.421 ± 0.03 0.555 ± 0.03 0.440 ± 0.05

arrhythmia 0.060 ± 0.01 0.294 ± 0.06 0.282 ± 0.08

car 0.448 ± 0.14 0.516 ± 0.12 0.495 ± 0.03

contrac 0.363 ± 0.01 0.468 ± 0.03 0.463 ± 0.02

dermatology 0.801 ± 0.09 0.616 ± 0.12 0.433 ± 0.12

ecoli 0.205 ± 0.03 0.446 ± 0.09 0.390 ± 0.09

flags 0.278 ± 0.10 0.126 ± 0.06 0.115 ± 0.04

glass 0.324 ± 0.07 0.361 ± 0.06 0.228 ± 0.03

heart-cleveland 0.155 ± 0.02 0.311 ± 0.04 0.324 ± 0.05

iris 0.532 ± 0.01 0.610 ± 0.14 0.699 ± 0.21

lenses 0.286 ± 0.08 0.621 ± 0.13 0.667± 0.24

libras 0.598 ± 0.12 0.338 ± 0.15 0.332 ± 0.15

low-res-spect 0.089 ± 0.01 0.463 ± 0.07 0.203 ± 0.07

nursery 0.524 ± 0.11 0.516 ± 0.11 0.428 ± 0.09

page-blocks 0.190 ± 0.00 0.432 ± 0.05 0.308 ± 0.06

seeds 0.540 ± 0.01 0.694 ± 0.16 0.699 ± 0.22

steel-plates 0.432 ± 0.09 0.489 ± 0.08 0.429 ± 0.05

teaching 0.468 ± 0.10 0.488 ± 0.07 0.487 ± 0.09

wine-quality-red 0.173 ± 0.02 0.081 ± 0.06 0.174 ± 0.04

wine-quality-white 0.191 ± 0.03 0.092 ± 0.03 0.109 ± 0.03
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Table 4. Macro-averaged F1 scores using as base classifier SVM with RBF kernel.

Data set Standard-OVA ROS-OVA RUS-OVA

abalone 0.462 ± 0.03 0.611 ± 0.03 0.603 ± 0.03

arrhythmia 0.060 ± 0.01 0.361 ± 0.08 0.309 ± 0.04

car 0.492 ± 0.18 0.637 ± 0.17 0.533 ± 0.06

contrac 0.391 ± 0.03 0.472 ± 0.02 0.470 ± 0.02

dermatology 0.966 ± 0.02 0.970 ± 0.03 0.948 ± 0.03

ecoli 0.549 ± 0.13 0.623 ± 0.04 0.690 ± 0.07

flags 0.258 ± 0.10 0.273 ± 0.05 0.293 ± 0.05

glass 0.261 ± 0.04 0.404 ± 0.17 0.262 ± 0.08

heart-cleveland 0.204 ± 0.03 0.345 ± 0.04 0.349 ± 0.06

iris 0.911 ± 0.08 0.926 ± 0.02 0.872 ± 0.04

lenses 0.663 ± 0.33 0.849 ± 0.17 0.849 ± 0.17

libras 0.578 ± 0.10 0.460 ± 0.08 0.456 ± 0.10

low-res-spect 0.373 ± 0.09 0.454 ± 0.06 0.343 ± 0.05

nursery 0.533 ± 0.10 0.568 ± 0.10 0.457 ± 0.08

page-blocks 0.311 ± 0.08 0.506 ± 0.11 0.493 ± 0.11

seeds 0.914 ± 0.06 0.914 ± 0.05 0.918 ± 0.05

steel-plates 0.484 ± 0.05 0.582 ± 0.08 0.519 ± 0.07

teaching 0.455 ± 0.11 0.505 ± 0.06 0.486 ± 0.09

wine-quality-red 0.177 ± 0.04 0.266 ± 0.02 0.259 ± 0.03

wine-quality-white 0.181 ± 0.04 0.271 ± 0.07 0.224 ± 0.01

Table 5. Macro-averaged F1 scores using as base classifier SVM with sigmoid kernel.

Data set Standard-OVA ROS-OVA RUS-OVA

abalone 0.453 ± 0.03 0.583 ± 0.03 0.572 ± 0.04

arrhythmia 0.006 ± 0.01 0.368 ± 0.08 0.304 ± 0.04

car 0.298 ± 0.01 0.411 ± 0.06 0.389 ± 0.06

contrac 0.393 ± 0.02 0.466 ± 0.02 0.459 ± 0.02

dermatology 0.957 ± 0.02 0.967 ± 0.01 0.935 ± 0.04

ecoli 0.493 ± 0.12 0.590 ± 0.06 0.611 ± 0.14

flags 0.248 ± 0.07 0.263 ± 0.05 0.269 ± 0.08

glass 0.248 ± 0.05 0.348 ± 0.17 0.244 ± 0.04

heart-cleveland 0.231 ± 0.04 0.392 ± 0.07 0.289 ± 0.03

iris 0.573 ± 0.06 0.626 ± 0.08 0.778 ± 0.05

lenses 0.286 ± 0.08 0.760 ± 0.18 0.849 ± 0.17

libras 0.441 ± 0.09 0.405 ± 0.13 0.367 ± 0.15

low-res-spect 0.281 ± 0.10 0.448 ± 0.08 0.265 ± 0.06

nursery 0.402 ± 0.07 0.465 ± 0.10 0.409 ± 0.10

page-blocks 0.260 ± 0.06 0.469 ± 0.11 0.481 ± 0.09

seeds 0.790 ± 0.03 0.898 ± 0.05 0.903 ± 0.04

steel-plates 0.451 ± 0.04 0.573 ± 0.09 0.491 ± 0.05

teaching 0.503 ± 0.07 0.488 ± 0.13 0.378 ± 0.03

wine-quality-red 0.154 ± 0.02 0.257 ± 0.04 0.243 ± 0.02

wine-quality-white 0.164 ± 0.02 0.245 ± 0.04 0.211 ± 0.02
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Table 6. Rankings of the algorithms using the Friedman Aligned Ranks test.

SVM-linear SVM-poly SVM-RBF SVM-sigmoid

ROS 42.42500 ROS 37.85000 ROS 42.95000 ROS 43.25000

RUS 25.32500 RUS 29.95000 RUS 31.82500 RUS 33.05000

Standard 23.75000 Standard 23.70000 Standard 16.72500 Standard 15.20000

Statistic 9.92085 Statistic 4.56181 Statistic 15.82051 Statistic 18.58499

p-value 0.00701 p-value 0.10219 p-value 0.00037 p-value 0.00009

Table 7. Post hoc comparisons using the Nemenyi’s procedure.

Comparison Statistic Adjusted p-value Result

SVM-linear

ROS vs RUS 3.09632 0.00588 H0 is rejected

ROS vs standard 3.38151 0.00216 H0 is rejected

Standard vs RUS 0.28519 1.00000 H0 is not rejected

SVM-RBF

ROS vs RUS 2.01442 0.13190 H0 is not rejected

ROS vs standard 4.74860 0.00001 H0 is rejected

Standard vs RUS 2.73418 0.01876 H0 is rejected

SVM-sigmoid

ROS vs RUS 1.84693 0.19427 H0 is not rejected

ROS vs standard 5.07906 0.00000 H0 is rejected

Standard vs RUS 3.23213 0.00369 H0 is rejected

4 Conclusions

An alternative scheme to the one-versus-all strategy for extending binary clas-
sifiers to multi-class cases is presented. The proposed scheme tackles the imbal-
anced problem that is introduced when the one-versus-all strategy decomposes a
multi-class problem to several binary ones. Therefore, before training each binary
classifier, the imbalanced problem is solved by the usage of a random resampling
strategy. Experiments on several standard well-known and widely used bench-
mark data sets show that the application either of RUS or ROS to each binary
classifier could enhance the performance compared to the standard one-versus-
all approach. Exploiting the adaptation of the proposed approach in multi-label
classification tasks [22], could be an interesting area for further research.
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