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Abstract. The purpose of this report is to review a new class of methods we have proposed for solving
systems of nonlinear equations and optimization problems, named Dimension Reducing Methods. These
methods are based on reduction to simpler one-dimensional nonlinear equations. Although these methods
use reduction to simpler one, they converge quadratically, and incorporate the advantages of nonlinear
SOR and Newton’s algorithms. Moreover, since they do not directly perform function evaluations, they
can be applied to problems with imprecise function values.
Keywords: Dimension–reducing method, systems of nonlinear equations, unconstrained optimization,
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1 INTRODUCTION
Suppose that F = (f1, . . . , fn) : D ⊂ Rn → Rn is a continuously differentiable mapping on an open
neighborhood D∗ ⊂ D of a solution x∗ ∈ D of the system of nonlinear equations

F (x) = Θn = (0, 0, . . . , 0). (1)

There is a class of methods for the numerical solution of the above system which arise from iterative
procedures used for systems of linear equations[15, 17]. These methods use reduction to simpler one–
dimensional nonlinear equations for the components f1, f2, . . . , fn of F . The best–known method of this
type is the nonlinear successive overrelaxation (SOR) method which solves the one–dimensional equation

fi(x
p+1
1 , . . . , xp+1

i−1 , xi, x
p
i+1, . . . , x

p
n) = 0, (2)

for xi and then sets

xp+1
i = xp

i + ω(xi − xp
i ), i = 1, . . . , n, p = 0, 1, . . . , (3)

provided that ω ∈ (0, 1]. The above process is independent of the value of ω and is called SOR process
even though this nomenclature is sometimes reserved for the case ω > 1. Now, a large variety of combined
methods can be constructed depending on the secondary iteration and the number of steps required
for solving (2). Thus, for example, one can obtain the exact nonlinear SOR or m–step SOR–Newton
process[15, 17] and so on. If the Jacobian of F at the solution x∗ of (1) is an M–matrix[15] the iterates of
the above processes will converge linearly to x∗ provided that ω ∈ (0, 1][15]. Another well–known method
is the Newton’s method which, starting with an initial guess x0 for the attainment of an approximation
of the solution x∗ of (1), is given by

xp+1 = xp − F (́xp)−1F (xp), p = 0, 1, . . . (4)

If the Jacobian F (́x∗) is nonsingular and F (́x) is Lipschitz continuous then the iterates (4) converge
quadratically to x∗ provided the initial guess x0 is sufficiently close to x∗. The quadratic convergence
of Newton’s method is attractive. However, the method depends on a good initial approximation[5] and
requires, in general, n2 + n function evaluations per iteration, besides the solution of an n × n linear
system. Moreover, the behavior of Newton’s method is problematic when F (́x∗) is singular, since, in
that case, it does not converge quadratically and, in general, is not appropriate for approximations of
x∗ with a high accuracy. For this reason there are procedures[25, 26] which, under some assumptions
(such as rank F (́x∗) = n − 1), can attain a highly accurate solution x∗ by enlarging the system (1) to
one which is at least (2n + 1)–dimensional[25, 26]. Also, Newton’s method remains problematic when the
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values of F can not be accurately achieved. Of course, this problem is common to all iterative procedures
which directly depend on function evaluations. To overcome it, one may resort to generalized bisection
methods[4, 11, 12, 20, 21, 22, 23] since they only make use of the algebraic sign of the function involved in
the equations. However, these methods do not generally attain a quadratic convergence.
Recently, we have proposed methods[6, 7, 8, 9] for the numerical solution of a system of nonlinear algebraic
and/or transcendental equations (1). These methods incorporate the advantages of Newton and nonli-
near SOR algorithms[15]. Specifically, although these methods use reduction to simpler one–dimensional
nonlinear equations, they converge quadratically.
At first, we have proposed the iterative procedure, DR-method[7], for the solution of a system of nonlinear
algebraic and/or transcendental equations in Rn, which generates a quadratically converging sequence of
points in Rn−1 which converges to the n− 1 components of the solution while the remaining component
of the solution is evaluated separately using the final approximations of the others. For this component
an initial guess is not necessary and it is at the user’s disposal to choose which will be the remaining
component, according to the problem. Also this method does not directly need any function evaluation
and it compares favorably with quadratically convergent methods. Moreover, it compares favorably with
Newton’s method when the Jacobian at the solution is singular (without making any enlargement of the
system), or when it is difficult to evaluate the function values accurately.
Also, we have proposed a modification of the DR method which maintains the advantages of DR method.
Specifically, we have proposed the method of Rotating Hyperplanes (RM)[8], which uses a “rotating”
hyperplane in Rn+1, whose rotation axis depends on the current approximation of n− 1 components of
the solution. This procedure has been applied on the traditional Newton’s algorithm as well as on the DR
method, whence two modified schemes have been obtained, the Modified Newton Method (MNM) and
the Modified Dimension Reducing Method (MDR). We have proven that both of them hold the quadratic
convergence.
The idea behind the other proposed method, the Perturbed Dimension Reducing Method (PDR)[9], is the
reduction of the dimensionality of the system as well as the perturbation of the Jacobian of the reduced
system, by using proper perturbation parameters A′

j , j = 1, ..., n − 1. Also, PDR method converges
quadratically, while a proper choice of the parameters A′

j accelerates the convergence even further.
In Optimization Problems there is a large variety of methods for unconstrained optimization of functions :

f : D ⊂ Rn → R, (5)

which require precise function and gradient values. However, in many optimization problems of practical
interest the values of the objective functions and the corresponding gradients are known only imprecisely.
For example, when the function and gradient values depend on the results of numerical simulations, then
it may be difficult or impossible to obtain very precise values. Or, in other cases, it may be necessary
to integrate numerically a system of differential equations in order to obtain a function value, so the
precision of the computed value is limited[13].
The basic idea of DR method can successfully be applied for the computation of an unconstrained
optimum of functions (5), so we have presented a suitable iterative procedure named Dimension Reducing
Optimization Method (DROPT)[10] to solve optimization problems. Of course this method is also based
on the methods studied in[6, 7, 8, 9] and it incorporates the advantages of DR algorithms. This method
does not directly need any gradient evaluation and it compares favorably with quadratically convergent
optimization methods. Moreover, we have perturbed the matrix obtained by the DR procedure in order
to transform it into a symmetric as well as into a diagonal one. Finally, we have presented the DROPT
method utilizing finite difference approximations.
The convergence of all DR methods have been studied. The numerical results obtained by applying all
the above DR methods for solving systems and optimization problems are very promising.

2 DIMENSION REDUCING METHODS FOR SOLVING SYSTEMS OF NONLINEAR
EQUATIONS IN Rn

2.1 The Dimension Reducing Method – DR-method
By applying the known Implicit Function Theorem[3, 15] we have derived a method for solving systems
of nonlinear algebraic and/or transcendental equations in Rn, named Dimension Reducing Method (DR
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method)[7]. To do this, assume that F = (f1, . . . , fn) : D ⊂ Rn →Rn is twice–continuously differentiable
on an open neighborhood D∗ ⊂ D of a solution x∗ = (x∗1, . . . , x

∗
n) ∈ D of the system of nonlinear

equations. Our interest lies in obtaining an approximation of x∗. So, we consider the sets Bi, i = 1, . . . , n
to be those connected components of f−1

i (0) containing x∗ on which ∂nfi 6= 0, for i = 1, . . . , n respectively.
Next, applying the Implicit Function Theorem [15] for each one of the components fi, i = 1, . . . , n of F
we can find open neighborhoods A∗

1 ⊂ Rn−1 and A∗
2,i ⊂ R, i = 1, . . . , n of the points y∗ = (x∗1, . . . , x

∗
n−1)

and x∗n respectively, such that for any y = (x1, . . . , xn−1) ∈ Ā∗
1 there exist unique mappings ϕi defined

and continuous in A∗
1 such that xn = ϕi(y) ∈ Ā∗

2,i, i = 1, . . . , n , and fi

(
y;ϕi(y)

)
= 0, i = 1, . . . , n.

Moreover, the partial derivatives ∂jϕi, j = 1, . . . , n− 1 exist in A∗
1 for each ϕi, i = 1, . . . , n , they are

continuous in Ā∗
1 and they are given by ∂jϕi(y) = −∂jfi

(
y;ϕi(y)

)
/∂nfi

(
y;ϕi(y)

)
, i = 1, . . . , n, j =

1, . . . , n− 1 . We utilize Taylor’s formula to expand the ϕi(y), i = 1, . . . , n about yp. By straightforward
calculations we can obtain the following iterative scheme for the computation of the n − 1 components
of x∗

yp+1 = yp + A−1
p Vp, p = 0, 1, . . . , (6)

where

yp = [xp
i ], i = 1, . . . , n− 1 ,

Ap = [aij ] = [∂jfi(yp;xp,i
n )/∂nfi(yp;xp,i

n )
− ∂jfn(yp;xp,n

n )/∂nfn(yp;xp,n
n )], i, j = 1, . . . , n− 1 ,

Vp = [vi] = [xp,i
n − xp,n

n ], i = 1, . . . , n− 1 . (7)

Finally, after a desirable number of iterations of the above scheme, say p = m, we can approximate the
nth component of x∗ by means of the following relationship

xm+1
n = xm,n

n −
n−1∑
j=1

(xm+1
j − xm

j )∂jfn(ym;xm,n
n )/∂nfn(ym;xm,n

n ) . (8)

Of course, relative procedures for obtaining x∗ can be constructed by replacing xn with any one of the
components x1, . . . , xn−1, for example xi, and taking y = (x1, . . . , xi−1, xi+1, . . . , xn).

Theorem 2.1 Suppose that F = (f1, . . . , fn) : D ⊂ Rn → Rn is twice–continuously differentiable on an
open neighborhood D∗ ⊂ D of a point x∗ = (x∗1, . . . , x

∗
n) ∈ D for which F (x∗) = Θn. Let Bi, i = 1, . . . , n be

those connected components of f−1
i (0), containing x∗ on which ∂nfi 6= 0 for i = 1, . . . , n respectively. Then

the iterates of (6) and the relationship (8) will converge to x∗ provided the matrix A∗ which is obtained
from the matrix Ap of (6) at x∗ is nonsingular and also provided the initial guess y0 = (x0

1, . . . , x
0
n−1)

is sufficiently close to y∗ = (x∗1, . . . , x
∗
n−1). Moreover the iterates yp, p = 0, 1, . . . of (6) have order of

convergence two.

Proof : See[7]

Notation 2.1 We would like to mention here that the above process does not require the expressions
ϕi but only the values xp,i

n which are given by the solution of the one–dimensional equations fi(x
p
1, . . . ,

xp
n−1, ·) = 0. So, by holding yp = (xp

1, . . . , x
p
n−1) fixed we can solve the equations

fi(yp; rp
i ) = 0, i = 1, . . . , n , (9)

for rp
i in the inteval (α, α+β) with an accuracy δ. Of course, we can use any one of the well–known one–

dimensional methods[15, 17, 19] to solve the above equations. Here we use the one–dimensional bisection
(see[4, 18] for a discussion of its advantages), since frequently the steps β are long and also a few significant
digits are required for the computations of the roots of the equations (9). Specifically here we use a
simplified version of the bisection method, which can be found in[20, 21, 22, 23]. It requires only that the
algebraic signs of the function values be correct, so it can be applied to problems with imprecise function
values.
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2.2 Solving Systems of Nonlinear Equations in Rn Using a Rotating Hyperplane in Rn+1

The Method of Rotating Hyperplane – the RM-method

We have proposed in[8] a procedure which can accelerate the convergence of other algorithms used for the
numerical solution of nonlinear systems. We have used a rotating hyperplane to bring the approximations
of solution closer to the solution of the system and thus to achieve a more rapid convergence of the
iterations.
We have introduced a rotating hyperplane, whose rotation axis depends on the current approximation of
(n− 1) components of the solution. We have derived and determined this plane in[8] by:

xn+1 =
n−1∑
i=1

Aí(x0
i − xi), for Aí = Ai/An+1 , i = 1, . . . , n− 1 , (10)

with n− 1 free parameters Aí i = 1, . . . , n− 1 and assuming that An+1 6= 0.
The above rotating hyperplane has been applied on the traditional Newton’s algorithm as well as on the
proposed method DR, whence two modified schemes have been obtained, MN method and MDR method,
correspondingly.

The Modified Newton Method–MN method

To derive the Modified Newton method we have replaced in (4) the usual hyperplane xn+1 = 0, at every
iteration, by the above hyperplane (10) to get:

F (xp) + F (́xp)(x− xp) =


∑n−1

i=1 Aí(x
p
i − xi)

...∑n−1
i=1 Aí(x

p
i − xi)


So, after some matrix manipulations we end up with the following modified Newton’s scheme

xp+1 = xp −G (́xp)−1F (xp), p = 0, 1, . . . . (11)

where G (́xp) = F (́xp) + Ξ and Ξ = [ξij ] is the rank–1 n× n matrix with

ξij =

{
A′

j if j 6= n

0 if j = n

Theorem 2.2 Suppose that F = (f1, . . . , fn) : D ⊂ Rn → Rn is twice–continuously differentiable on an
open neighborhood D∗ ⊂ D of a point x∗ = (x∗1, . . . , x

∗
n) ∈ D for which F (x∗) = Θn and F (́x∗) nonsin-

gular. Let Ξ = [ξij ] be the above rank–1 n×n matrix where the vector A´ = [Aj́ ], j = 1, . . . , n , Ań = 0
determine the parameters of the rotating hyperplane (10) such that the inner product 〈x,A 〉́ = 0 ∀ x ∈ D∗

and that ‖F (́x∗)−1‖ ‖Ξ‖ < 1. Then the iterates xp, p = 0, 1, . . . of (11) will converge to x∗ provided the
initial guess x0 is sufficiently close to x∗. Moreover the order of convergence will be two.

Proof : See[8]

The Modified Dimension Reducing Method–MDR method

We have also used the rotating hyperplane (10) to derive a modified scheme of the above mentioned
DR method. This scheme is derived in such a way that it can incorporate the advantages of nonlinear
SOR and Newton’s method. It is important to note that, although we have used reduction to simpler
one–dimensional nonlinear equations, we have produced a quadratically converging sequence of points in
Rn−1.
We have defined the mapping

G = (g1, . . . , gn) : D ⊂Rn → Rn, by gi(x1, . . . , xn) = fi(x1, . . . , xn) +
n−1∑
j=1

Aj́xj . (12)
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It is evident that the solutions of the equations gi(x
p
1, . . . , x

p
n−1, ·) = 0, for i = 1, . . . , n are identical with

the corresponding solutions of fi(x
p
1, . . . , x

p
n−1, ·) = 0 in D∗. Moreover, it is obvious that gi(x∗1, . . . , x

∗
n) =

fi(x∗1, . . . , x
∗
n) = 0 for i = 1, . . . , n. Working exactly as in[7], we have obtained the following iterative

scheme for the computation of the n− 1 components of x∗

yp+1 = yp + U−1
p Vp, p = 0, 1, . . . , (13)

where

yp = [xp
i ], i = 1, . . . , n− 1 ,

Up = [aij ] = [
(
∂jfi(yp;xp,i

n ) + Aj́

)
/∂nfi(yp;xp,i

n )

−
(
∂jfn(yp;xp,n

n ) + Aj́

)
/∂nfn(yp;xp,n

n )], i, j = 1, . . . , n− 1 , (14)

Vp = [vi] = [xp,i
n − xp,n

n ], i = 1, . . . , n− 1 .

Finally, after a desired number of iterations of the above scheme, say p = m, we can approximate the
nth component of x∗ using the following relationship

xm+1
n = xm,n

n −
n−1∑
j=1

{(xm+1
j − xm

j )
(
∂jfn(ym;xm,n

n ) + Aj́

)
/∂nfn(ym;xm,n

n } . (15)

Theorem 2.3 Suppose that F = (f1, . . . , fn) : D ⊂ Rn → Rn is twice–continuously differentiable on an
open neighborhood D∗ ⊂ D of a point x∗ = (x∗1, . . . , x

∗
n) ∈ D for which F (x∗) = Θn. Let Bi, i = 1, . . . , n

be those connected components of g−1
i (0), containing x∗ on which ∂ngi 6= 0 for i = 1, . . . , n respectively

where the function gi are defined in (12). Then the iterates of (13) and the relationship (15) will converge
to x∗ provided the matrix U∗ which is obtained from the matrix Up of (14) at x∗ is nonsingular and also
provided the initial guess y0 = (x0

1, . . . , x
0
n−1) is sufficiently close to y∗ = (x∗1, . . . , x

∗
n−1). Moreover the

iterates yp, p = 0, 1, . . . of (13) have order of convergence two.

Proof: See[8]

2.3 The Perturbed Dimension Reducing Method – PDR-method
To accelerate further the convergence of DR method we have proposed in[9] a modified method, named
Perturbation Dimension Reducing method (PDR method), in which we have perturbed the corresponding
Jacobian matrix using proper perturbation parameters Aj́ , j = 1, . . . , n − 1. So we have proposed the
following iterative scheme for the computation of the n− 1 components of x∗ :

yp+1 = yp + U−1
p Vp, p = 0, 1, . . . (16)

where :

yp = [xp
i ], i = 1, . . . , n− 1 ,

Up = [aij ] = [∂jfi(yp;xp,i
n )/∂nfi(yp;xp,i

n )
− ∂jfn(yp;xp,n

n )/∂nfn(yp;xp,n
n ) + Aj́ ], i, j = 1, . . . , n− 1 , (17)

Vp = [vi] = [xp,i
n − xp,n

n ], i = 1, . . . , n− 1 .

Finally, after a desired number of iterations of the above scheme, say p = m, we can approximate the
nth component of x∗, as in DR method, using Relation (8).

Remark 2.1 The perturbation parameters Aj́ , j = 1, . . . , n− 1, can be estimated in each iteration from
the equation : 〈xp, A 〉́ = 0, p = 0, 1, . . . , by choosing n− 2 arbitrary parameters and calculating at each
iteration the (n− 1)th parameter from this equation.
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Theorem 2.4 Suppose that F = (f1, . . . , fn) : D ⊂ Rn → Rn is twice–continuously differentiable on an
open neighborhood D∗ ⊂ D of a point x∗ = (x∗1, . . . , x

∗
n) ∈ D for which F (x∗) = Θn. Let Bi, i = 1, . . . , n

be those connected components of f−1
i (0) containing x∗ on which ∂nfi 6= 0 for i = 1, . . . , n, respectively.

Suppose further that the matrix A∗, which is obtained from the matrix Ap of (7) at y∗ = (x∗1, . . . , x
∗
n−1), is

nonsingular and that Ξ = [ξij ] = Aj́ is the rank–1 (n−1)×(n−1) matrix where the vector A´ = [Aj́ ], j =
1, . . . , n− 1, determines the perturbation parameters so that the inner product 〈x,A 〉́ = 0, ∀ x ∈ D∗ and
‖A−1

∗ ‖‖Ξ‖ < 1. Then the iterates of (16) and Relation (8) will converge to x∗, provided the initial guess
y0 = (x0

1, . . . , x
0
n−1) is sufficiently close to y∗. Moreover, the iterates yp, p = 0, 1, . . . , of (16) have order

of convergence two.

Proof : See[9]

3 THE DIMENSION REDUCING METHODS FOR UNCONSTRAINED OPTIMIZA-
TION

3.1 The Dimension Reducing Optimization Method – DROPT-method
We have derived and applied in[10] an iterative procedure, for the computation of an unconstrained
optimum of functions (1), named Dimension Reducing Optimization Method (DROPT). This method
is also based on the methods studied in[6, 7, 8, 9] and it incorporates the advantages of DR algorithms.
This method does not directly need any gradient evaluation and it compares favorably with quadratically
convergent optimization methods.
Specifically, to obtain a sequence {xp}, p = 0, 1, . . . of points in Rn which converges to a local opti-
mum (critical) point x∗ = (x∗1, . . . , x

∗
n) ∈ D of the function (1), we have applied the Implicit Function

Theorem[15] for each one of the components gi, i = 1, . . . , n, where g = (g1, g2 . . . , gn) indicates the gradie-
nt of the objective function. So we have introduced[10] the following iterative scheme, for the computation
of the n− 1 components of x∗ :

yp+1 = yp + A−1
p Vp, p = 0, 1, . . . (18)

where :

yp = [xp
i ], i = 1, . . . , n− 1 ,

Ap = [aij ] =

[
∂jgi(yp;xp,i

n )
∂ngi(yp;xp,i

n )
− ∂jgn(yp;xp,n

n )
∂ngn(yp;xp,n

n )

]
, i, j = 1, . . . , n− 1 ,

Vp = [vi] = [xp,i
n − xp,n

n ], i = 1, . . . , n− 1 , (19)

with xp,i
n = ϕi(yp). After a desired number of iterations of (18), say p = m, the nth component of x∗ is

approximated by means of the following relation :

xm+1
n = xm,n

n −
n−1∑
j=1

{
(xm+1

j − xm
j )

∂jgn(ym;xm,n
n )

∂ngn(ym;xm,n
n )

}
. (20)

The proposed method is illustrated in the following algorithm in pseudo–code where x0 is the starting
point, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) indicate the endpoints in each coordinate direction which
are used for the one–dimensional bisection method[10, 20, 21, 22, 23], δ the predetermined accuracy for
applying this procedure, MIT the maximum number of iterations required and ε1, ε2 the predetermined
desired accuracies.
Algorithm 1 : Dimension–Reducing Optimization (DROPT).

1. Input {x0; a; b; δ; MIT ; ε1; ε2}.
2. Set p = −1.

3. If p < MIT replace p by p + 1 and go to next step; otherwise, go to Step 14.

4. If ‖g(xp)‖ ≤ ε1 go to Step 14.
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5. Find a coordinate int such that the following relation holds :

sgn gi(x
p
1, . . . , x

p
int−1, aint, x

p
int+1, . . . , x

p
n) · sgn gi(x

p
1, . . . , x

p
int−1, bint, x

p
int+1, . . . , x

p
n) = −1,

for all i = 1, 2, . . . , n. If this is impossible, apply Armijo’s method (see[1, 10, 24]) and go to Step 4.

6. Compute the approximate solutions ri for all i = 1, 2, . . . , n of the equation

gi(x
p
1, . . . , x

p
int−1, ri, x

p
int+1, . . . , x

p
n) = 0,

by applying the one–dimensional bisection method[10, 20, 21, 22, 23] in (aint, bint) within accuracy δ.
Set xp,i

int = ri.

7. Set yp = (xp
1, . . . , x

p
int−1, x

p
int+1, . . . , x

p
n).

8. Set the elements of the matrix Ap of Relation (19) using xint instead of xn.

9. Set the elements of the vector Vp of Relation (19) using xint instead of xn.

10. Solve the (n− 1)× (n− 1) linear system Aps
p = −Vp for sp.

11. Set yp+1 = yp + sp.

12. Compute xint by virtue of Relation (20) and set xp = (yp;xint).

13. If ‖sp‖ ≤ ε2 go to Step 14; otherwise return to Step 3.

14. Output {xp}.

Theorem 3.1 Suppose that the objective function f : D ⊂ Rn → R is twice–continuously differentiable in
an open neighborhood D∗ ⊂ D of a point x∗ = (x∗1, . . . , x

∗
n) ∈ D for which g(x∗) = Θn. Let Bi, i = 1, . . . , n

be those connected components of g−1
i (0), containing x∗ on which ∂ngi 6= 0 for i = 1, . . . , n respectively.

Then the iterations of (18) and the relationship (20) will converge to x∗ provided the Hessian of f at
x∗ is nonsingular and also provided the initial guess y0 = (x0

1, . . . , x
0
n−1) is sufficiently close to y∗ =

(x∗1, . . . , x
∗
n−1). Moreover the iterations yp, p = 0, 1, . . . of (18) have order of convergence two.

Proof. See[10]

3.2 A Perturbed Dimension–Reducing Optimization Method – PDROPT-method
The above mentioned DROPT method computes any critical point x∗ of f (minimum, maximum or
saddle) and it minimizes it if the matrix Ap of (19) is symmetric and positive definite so that the critical
point is a minimizer. But, in general, this matrix is not symmetric. A case where it is symmetric is given
by the following Lemma :

Lemma 3.1 If the elements Hin, i = 1, . . . , n−1 of the Hessian are equal to each other, then the matrix
Ap defined by Relation (19) is symmetric.

Proof. See [10]

In the sequel we have perturbed the matrix Ap using proper perturbation parameters ∆ij , i, j = 1, . . . , n−
1 in order to transform it to a symmetric one. To this end we have considered the mapping :

W = (w1, . . . , wn−1) : Ā∗
1 ⊂ Rn−1 → Rn−1, with

wi(y) = −ϕi(y) + ϕn(y) +
n−1∑
j=1

∆ijxj , i = 1, . . . , n− 1 , (21)

where the matrix ∆ = ∆ij of the perturbation parameters is taken such that the inner products :

〈x, ∆i〉 = 0, ∀ x ∈ Ā∗
1 and ∀ i = 1, . . . , n− 1, (22)

with ∆i = (∆i1, . . . ,∆i,n−1).
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By choosing n(n− 1)/2 arbitrary parameters ∆ij , i > j and taking :

∆ij = aji + ∆ji − aij , i < j, (23)

while the remaining parameters ∆ii are computed so that 〈x,∆i〉 = 0, the matrix Ap = [aij ] is transformed
into a symmetric one. Since ∆ij , i > j are arbitrarily chosen, we are able to transform Ap to a diagonal
one. Thus, by taking :

∆ij = −aij =

[
− ∂jgi(yp;xp,i

n )
∂ngi(yp;xp,i

n )
+

∂jgn(yp;xp,n
n )

∂ngn(yp;xp,n
n )

]
, i = 1, . . . , n− 1, i > j, (24)

from Relations (23) and (22) our method becomes :

yp+1 = yp −D−1
p Mp, p = 0, 1, . . . , (25)

where Dp is a diagonal matrix with elements dii, i = 1, . . . , n− 1, given by :

dii = aii + ∆ii =

[
∂igi(yp;xp,i

n )
∂ngi(yp;xp,i

n )
− ∂ign(yp;xp,n

n )
∂ngn(yp;xp,n

n )

]
+

+
1
xi

n−1∑
j=1
j 6=i

{
xj

[
∂jgi(yp;xp,i

n )
∂ngi(yp;xp,i

n )
− ∂jgn(yp;xp,n

n )
∂ngn(yp;xp,n

n )

]}
. (26)

Finally, after a desired number of iterations of the above scheme, say p = m, the nth component of x∗ is
approximated using Relation (20).

Theorem 3.2 Suppose that the objective function f : D ⊂ Rn → R is twice–continuously differentiable in
an open neighborhood D∗ ⊂ D of a point x∗ = (x∗1, . . . , x

∗
n) ∈ D for which g(x∗) = Θn. Let Bi, i = 1, . . . , n

be those connected components of w−1
i (0), containing x∗ on which ∂nwi 6= 0 for i = 1, . . . , n respectively

where the functions wi are defined by (21). Suppose further that

‖A−1
∗ ‖ ‖∆‖ < 1 , (27)

where the matrix A∗, is obtained from the matrix Ap of (19) at x∗ and ∆ is the perturbation matrix. Then
the iterations (25) and Relation (20) will converge to x∗ provided the Hessian of f at x∗ is nonsingular and
the initial guess y0 = (x0

1, . . . , x
0
n−1) is sufficiently close to y∗ = (x∗1, . . . , x

∗
n−1). Moreover the iterations

yp, p = 0, 1, . . . of (25) have order of convergence two.

Proof. See[10]

3.3 A Finite–Difference Derivative Dimension–Reducing Optimization Method –
FDDROPT-method

Finally we have proposed the dimension–reducing method for unconstrained optimization (FDDROPT
method) using finite difference gradients and Hessian.
For a detail development of FDDROPT method see[10].

Notation 3.1 For a geometric interpretation of the Dimension–Reducing methods and a corresponding
illustration of the main differences between Newton’s method and the Dimension–Reducing methods, we
refer the interested reader to [6].
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4 NUMERICAL RESULTS
The proposed DR, Modified DR, Modified Newton method and PDR methods for solving nonlinear
systems and the proposed DROPT, PDROPT and FDDROPT methods for optimization problems have
been applied to problems of various dimensions. Our experience is that the procedures behave predictably
and reliably and the results are quite satisfactory. In this report we suggestively give the results of two
examples, one for systems of nonlinear equations and one for optimization problems. For more examples
see[6, 7, 8, 9, 10].
Firstly, in Table 1 we present the results obtained by Newton’s method and the iterative procedure DR
applied to the following system (the Jacobian of this system is singular at the root r)

f1(x1, x2, x3) = x1x3 − x3e
x2
1 + 10−4 = 0

f2(x1, x2, x3) = x1(x2
1 + x2

2) + x2
2(x3 − x2) = 0 (28)

f3(x1, x2, x3) = x3
1 + x3

3 = 0

Next, in Table 2 we present the results obtained by applying DROPT method and known optimization
and rootfinding methods (Fletcher – Reeves (FR)[16], Polak – Ribiere (PR)[16] and Broyden – Fletcher
– Goldfarb – Shanno (BFGS)[2], Brown’s method, a Brent – Gay modification of Brown’s method, spe-
cifically the modification of Brown’s method suggested by Brent and followed by Gay (BBG), as well as
with Brent and Choleski – Newton method (CN)[16]), for the following optimization problem:

Example Rosenbrock function[14]. We calculate the optimum of the following objective function f :

f(x) =
2∑

i=1

fi
2(x), where f1(x) = 10(x2 − x2

1), f2(x) = 1− x1

Newton’s method DR method

x0
1 x0

2 x0
3 ε = 10−7 ε = 10−14 ε = 10−7 ε = 10−14

IT FE IT FE IT FE AS IT FE AS

-2 -2 -2 34 408 35 420 3 27 90 4 36 120
-1 -1 -1 30 360 31 372 2 18 60 3 27 90
-1 1 1 42 504 43 516 7 63 210 8 72 240

-0.5 -0.5 -0.5 31 372 32 384 2 18 60 3 27 90
-0.5 -0.5 0.1 23 276 26 312 2 18 60 3 27 90
0.5 0.5 0.1 44 528 45 540 2 18 60 3 27 90
0.5 0.5 0.5 28 336 30 360 2 18 60 3 27 90

1 -2 1 39 468 40 480 3 27 90 4 36 120
1 -1 1 37 444 38 456 7 63 210 8 72 240
1 1 1 46 552 47 564 6 54 180 7 63 210
2 -2 2 41 492 42 504 6 54 180 7 63 210
2 2 2 47 564 48 576 2 18 60 3 27 90

Table 1: Comparison of DR method with Newton’s method
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Armijo FR PR BFGS DROPT
x0 IT FE IT FE IT FE IT FE IT FE ASG

(−1.2, 1)α 1881 21396 142 2545 19 364 22 343 1 4 20
(−3, 6) 5960 74560 194 4462 23 455 28 436 4 16 80
(−2,−2) 1828 20852 29 480 15 290 20 305 4 16 80
(3, 3) 5993 74364 130 2939 26 509 25 384 4 16 80
(1, 20) D D 259 5732 32 689 32 689 1 4 20
(10, 10) 18416 251611 310 7469 26 526 32 505 4 16 80
(100, 100) D D D D 33 746 54 822 2 8 40
(−2000,−2000) 2542 35743 D D 93 2466 173 2667 2 8 40

Brown BBG Brent CN DROPT
x0 IT FE IT FE IT FE IT FE IT FE ASG

(−1.2, 1)α 22 110 16 80 17 85 8 48 1 4 20
(−7, 1) D D 31 155 29 145 6 36 1 4 20
(−3, 45) D D D D D D 7 42 4 16 80
(10, 10) 70 350 29 145 27 135 6 36 4 16 80
(−100, 1) D D D D 46 230 6 36 1 4 20
(100,−100) D D 50 250 43 215 6 36 2 8 40
(100, 100) D D 49 245 41 205 6 36 2 8 40
(−2000,−2000) D D D D D D 6 36 2 8 40

Table 2: Comparison of DROPT method with other known optimization and rootfinding methods
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PERILHYH
Skopìc thc ergasÐac aut c eÐnai na k�noume mia anaskìpish se mia nèa kl�sh mejìdwn, pou onom�zontai
Mèjodoi El�ttwshc Di�stashc, tic opoÐec èqoume proteÐnei gia sust mata mh grammik¸n exis¸sewn kai
gia probl mata beltistopoÐhshc. Oi mèjodoi autèc basÐzontai sthn anagwg  tou arqikoÔ sust matoc
se aploÔsterec monodi�statec mh grammikèc exis¸seic. An kai oi mèjodoi autèc qrhsimopoioÔn el�ttwsh
di�stashc sugklÐnoun tetragwnik� kai enswmat¸noun ètsi ta pleonekt mata twn mh grammik¸n SOR
algorÐjmwn kai thc mejìdou Newton. Epiplèon, den apaitoÔn apeujeÐac sunarthsiakoÔc upologismoÔc, me
apotèlesma na mporoÔn na efarmostoÔn se probl mata me mh akribeÐc sunarthsiakèc timèc.
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