
A TRAINING METHOD FOR DISCRETE

MULTILAYER NEURAL NETWORKS

G.D. Magoulas, M.N. Vrahatis*,

T.N. Grapsa* and G.S. Androulakis*
Department of Electrical and Computer Engineering, University of Patras,

GR-261.10, Patras, Greece. Email: magoulas@ee-gw.ee.upatras.gr
* Department of Mathematics, University of Patras,

GR-261.10 Patras, Greece. Email: vrahatis-grapsa-gsa@math.upatras.gr

In this contribution a new training method is proposed for neural networks that are based on
neurons whose output can be in a particular state. This method minimises the well known least
square criterion by using information concerning only the signs of the error function and inaccurate
gradient values. The algorithm is based on a modified one-dimensional bisection method and it
treats supervised training in networks of neurons with discrete output states as a problem of
minimisation based on imprecise values.
Subject classification: AMS(MOS) 65KlO, 49DlO, 68T05, 68G05.

Keywords: Numerical analysis, imprecise function and gradient values, hard-limiting threshold

units, feed forward neural networks, supervised training, back-propagation of error.

1 Introduction
Consider a Discrete Multilayer Neural Network (DMNN) consisting of L layers,
in which the first layer denotes the input, the last one, L, is the output, and the
intermediate layers are the hidden layers. It is assumed that the (/-1)-th layer has
N,-l units. These units operate according to the following equations:

N,- 1

t' ,,'-1,' 1-1 + 0' ne j = L...JWij Yi j' (1)
;=1

where net) is the net input to the jth unit at the Ith layer, w!jl,1 is the connection
weight from the ith unit at the (I - 1)-th layer to the jth unit at the Ith layer, Y!
denotes the output ofthe ith unit belonging to the Ith layer, 0) denotes the threshold
of the jth unit at the Ith layer, and u is the activation function. In this paper we
consider units where u(netD is a discrete activation function. We especially focus
on units with two output states, usually called binary or hard-limiting units [1],
i.e. u l (net~) = "true", if net~ ;::: 0, and "false" otherwise.
Although units with discrete activation function have been superseded to a large
extent by the computationally more powerful units with analog activation function,
still DMNNs are important in that they can handle many of the inherently binary
tasks that neural networks are used for. Their internal representations are clearly
interpretable, they are computationally simpler to understand than networks with
sigmoid units and provide a starting point for the study of the neural network
properties. Furthermore, when using hard-limiting units we can understand better
the relationship between the size of the network and the complexity of the training
[2]. In [3] it has been demonstrated that DMNNs with only one hidden layer, can
create any decision region that can be expressed as a finite union of polyhedral sets
when there is one unit in the input layer. Moreover, artificially created examples
were given where these networks create non convex and disjoint decision regions.

250
S. W. Ellacott et al. (eds.), Mathematics Of Neural Networks
© Kluwer Academic Publishers 1997

Magoulas et al.: A New Training Method for DMNNs 251

Finally, discrete activation functions facilitate neural network implementations in
digital hardware and are much less costly to fabricate.
The most common feed forward neural network (FNN) training algorithm, the
back-propagation (BP) [4] that makes use of the gradient descent, cannot be ap­
plied directly to networks of units with discrete output states, since discrete ac­
tivation functions (such as hardlimiters) are non-differentiable. However, various
modifications of the gradient descent have been presented [5, 6, 7]. In [8] an approx­
imation to gradient descent, the so-called pseudo-gradient training method, was
proposed. This method uses the gradient of a sigmoid as a heuristic hint instead of
the true gradient. Experimental results validated the effectiveness of this approach.
In this paper, we derive and apply a new training method for DMNNs that makes
use of the gradient approximation introduced in [8]. Our method exploits the impre­
cise information regarding the error function and the approximated gradient, like
the pseudo-gradient method does, but it has an improved convergence speed and
has potential to train DMNNs in situations where, according to our experiments,
the pseudo-gradient method fails to converge.

2 Problem Formulation and Proposed Solution
We consider units with two discrete output states and we shall use the convention
f (or - J) for ''false'' and t (or +t) for "true", where f, t are real positive numbers
and f < t, instead of the classical 0 and 1 (or -1, and +1). Real positive values
prevent units from saturating, give to the logic ''false'' some power of influence
over the next layer of the DMNN, and help the justification of the approximated
gradient value which we shall employ.
First, let us define the error for a discrete unit as follows: ej(t) = dj(t) - yf(t),
for j = 1,2, ... , NL, where dj(t) is the desired response at the jth neuron of the
output layer at the input pattern t, yf(t) is the output at the kth neuron of the
output layer L. For a fixed, finite set of input-output cases, the square error over
the training set which contains T representative cases is:

T T NL

E = EE(t) = E EeJ(t). (2)
t=1 t=1 j=1

The idea of the pseudo-gradient was first introduced in training discrete recurrent
neural networks [9, 10] and extended to DMNNs [8]. The method approximates
the true gradient of the error function with respect to the weights, i.e. V'E(w), by
introducing an analog set of values for the outputs of the hidden layer units and
the output layer units.

Thus, it is assumed that y; in (1) can be written as YJ = ul(s(net})), where

u(x)= ''true'' if x~ 0.5, and "false" otherwise, if s(·) is defined in [0,1]. If s(·) is
defined in [-1,1] then u(x)= ''true'' if x~ 0, and "false" otherwise.
Using the chain rule, the pseudo-gradient is computed:

BE _ 'P 1-1 (3)
B 1-1,1 - jYi ,

Wij

where the back-propagating error signal g for the output layer is of (dj -

s(netf)) . s' (netf) and for the hidden layers (I E [2, L - 1]) is ~ = s' (net})

252 CHAPTER 42

En w~,~+16~+1 . In these relations s' (net)) is the derivative of the analog activation
function.
By using real positive values for "true" and "false" we ensure that the pseudo­
gradient will not reduce to zero when the output is "false". Note also that we do
not use (1" which is zero everywhere and non-existent at zero. Instead, we use s'
which is always positive, so 6j gives an indication of the direction (and magnitude
of a step up or down as a function of net~ in the error surface E.
However, as pointed out in [8], the value of the pseudo-gradient is not accurate
enough, so gradient descent based training in DMNNs is considerably slow when
compared with BP training in FNNs.
In order to alleviate this problem we propose an alternative to the pseudo-gradient
training method procedure. To be more specific, we propose to solve the one­
dimensional equation :

E(0 0 0 0) E(0 0 0 0 0) 0 WI,···, Wi-I, Wi' Wi+l,"" Wn - WI"'" Wi_I' Wi' Wi+l,"" Wn = ,
for WI keeping all o1iher components of the weight vector in their constant values.
Now, if WI is the solution of the above equation, then the point defined by the
vector (WI, wg, ... , W~) possesses the same error function value with the point WO,
so it belongs to the same contour line of wo. Assuming that the error function
curves up from w· in all directions, we can claim that any point which belongs to
the line with endpoints WO and (WI, wg, ... , w~) possesses smaller error function
value than these endpoints. With this fact in mind we can now choose such a point,
say, for example wi = w~ + 'Y (Wl - wn, 'Y E (0,1), and solve the one-dimensional
equation:
E(1 0 0 0 0) E(1 0 0 0 0 0) 0 wl,W2"",wi_l,wi,wi+l"",wn - wl,w2"",wi_l,wi,wi+l"",wn = ,
for W2 keeping all other components in their constant values. If W2 is the solution
of this equation then we can obtain a better approximation for this component by
taking w~ = wg + 'Y (W2 - wg), 'Y E (0,1).
Continuing in a similar way with the remaining components of the weight vector
we obtain the new vector wl = (wi, . .. , w~) and replace the initial vector wO by
w l . The procedure can then be repeated to compute w2 and so on until the final
estimated point is computed according to a predetermined accuracy. So, in general
we want to find the parameter x (a weight or threshold) that satisfies:

E(k+l k+1 k k) E(Hl Hl k k k) - 0 Xl ""'Xi_l'X'Xi+l""'Xn - Xl ""'Xi_l'Xi'Xi+l""'Xn - ,
by applying the modified bisection (see [12, 13]) in the interval (ai, bi) within accu­
racy d:

xf+l = xf + C sgn (E(zP) - E(zO)) /2P+1, P = 0,1, ... , rlog2((bi - ai) d- l)l,

where the notation r'l refers to the smallest integer not less than the real number
quoted and zO = (x~+l, ... , x~~t, ai, xf+1' ... , X~), zP = (x~+l, ... , x~~t, xf, Xf+l'

... , X~), C = sgnE(zO)(bi - ai), ai = xf - HI + sgno;E(xk)}h;, bi = ai + hi. If an
iteration of the algorithm fails we switch to the pseudo-gradient training method.
So, the justification of the new procedure is based on the heuristic justification of the
pseudo-gradient which can be found in anyone of [8,9,10]. A formal justification
of the proposed procedure in case of differentiable objective functions can be found
in [11].

Magoulas et al.: A New Training Method for DMNNs 253

BP New method
MN STD MNE MN STD MNE MAS SAS

a) 561 550.4 0.0396 40.6 4.2 0.0000008 239.6 54.12
b) 18121 3048.7 0.49 28.5 13.43 0.45 20673 9310.9

Table 1 Experimental results a) XOR, b) sinxcos2x.

3 Experimental Results
Here we present and compare the behaviour of the new training method with the
BP [4] and the pseudo-gradient training method [8] for the XOR problem and
training an 1-10-1 network to approximate the function sinx cos 2x (Table 1). In all
problems'Y = 0.5, d = 10-10 ,11, = 10 and no pseudo-gradient subprocedure has been
applied with the proposed method in order to get more fair evaluation. MN indicates
the mean number of iterations; STD the standard deviation of iterations; MNE the
mean value of the error; MAS the mean number of algebraic signs required for the
bisection scheme and SAS the standard deviation of the required algebraic signs.
The results are for 10 simulation runs, for the same initial weights; the maximum
number of iterations was set to 2000, the weights were initialised in the interval
[-10,10] and the step size for BP was set to the standard value 0.75. For the XOR
the thresholds were set as follows: "true" = 0.8 and "false" = 0.2. Under the
same conditions the pseudo-gradient training needed more than 2000 iterations to
converge. The frequency with which the algorithm became trapped in local minima
seems to be about the same as for BP for binary tasks. We also used the new
method in training DMNN to learn smooth functions. One hidden layer of hard­
limiting units and one output unit with linear activation function was used in all
our experiments. We did not manage to train DMNNs using the pseudo-gradient
training method due to oscillations, although various step sizes and different discrete
activation functions have been tried. With the new algorithm and discrete activation
functions such as 0.5 for "true" and -0.5 for "false" DMNNs were trained as fast
as, and often faster than, BP trained FNNs until E ::; 0.5 (over 21 input/output
cases). After this error bound, the convergence speed was reduced due to saturation
problems.
However, it is worth noticing the difference in the behaviour between BP and the
new method. Back-propagation trained FNNs exhibit a greater tendency to fit
closely data with higher variation than data with low variation. On the other hand,
although DMNNs do not produce smooth functions, they learn the general trend of
the data values and therefore might be more useful than FNNs when there is noise
in the data and the error goal can be set so high that the network does not have
to fit all the target values perfectly. Situations like this usually occur in system
identification and control (see [14]).

4 Conclusion and Further Improvements
This paper describes a new training method for DMNNs. The method does not
directly perform gradient evaluations. Since it uses the modified one-dimensional
bisection method it requires only that the algebraic signs of the function and gra-

254 CHAPTER 42

dient values be correct; so it can be applied to problems with imprecise function
and gradient values. The method can also be used in training with block of network
parameters, for example train the entire network, then the weights to the output
layer and the thresholds of the hidden units, etc. We have tested such configurations
and the results were very promising, providing faster training.

REFERENCES
[1) W. McCullough, W. H. Pitts, A logical calculus of the ideas imminent in nervous activity,

Bulletin Mathematical Biophysics, Vol. 5 (1943), pp115-133.
[2) S. E. Hampson, D. J. Volper, Representing and learning boolean functions of multivalued

features, IEEE Trans. Systems, Man & Cybernetics, Vol. 20 (1990), pp67-80.
[3) G. J. Gibson, F. N. Cowan, On the decision regions of multi-layer perceptrons, Proc. IEEE,

Vol. 78 (1990), ppI590-1594.
[4) D. E. Rumelhart and J. L. McClelland eds., Parallel Distributed Processing: Explorations in

the Microstructure 0/ Cognition, Vol. 1, MIT Press (1986), pp318-362.
[5) B. Widrow, R. Winter, Neural nets for adaptive filtering and adaptive pattern recognition,

IEEE Computer (March 1988), pp25-39.
[6) D. J. Tom, Training binary node feed forward neural networks by back-propagation of error,

Electronics Letters, Vol. 26 (1990), ppI745-1746.
[7) E. M. Gorwin, A. M. Logar, W. J. B. Oldham, An iterative method for training multilayer

networks with threshold functions, IEEE Trans. Neural Networks, Vol. 5 (1994), pp507-508.
[8) R. Goodman, Z. Zeng, A learning algorithm for multi-layer perceptrons with hard-limiting

threshold units, in: Proc. IEEE Neural Networks for Signal Processing (1994), pp219-228.
[9) Z. Zeng, R. Goodman, P. Smyth, Learning finite state machines with self-clustering recurrent

networks, Neural Computation, Vol. 5 (1993), pp976-990.
[10) Z. Zeng, R. Goodman, P. Smyth, Discrete recurrent neural networks for grammatical infer­

ence, IEEE Trans. Neural Networks, Vol. 5 (1994), pp32Q-330.
[11) M. N. Vrahatis, G. S. Androulakis, G. E. Manoussakis, A new unconstrained optimization

method for imprecise function and gradient values, J. Mathematical Analysis & Applications,
Vol. 197 (1996), pp586--607.

[12) M. N. Vrahatis, Solving systems of non-linear equations using the non zero value of the
topological degree, ACM Trans. Math. Software, Vol. 14 (1988), pp312-329.

[13) M. N. Vrahatis, CHABIS: A mathematical software package for locating and evaluating
roots of systems of non-linear equations, ACM Trans. Math. Software, Vol. 14 (1988), pp330-
336.

[14) H. J. Sira-Ramirez, S. H. Zak, The adaptation of perceptrons with applications to inverse
dynamics identification of unknown dynamic systems, IEEE Trans. Systems, Man & Cyber­
netics, Vol. 21 (1991), pp634-643.

