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In this contribution a new training method is proposed for neural networks that are based on 
neurons whose output can be in a particular state. This method minimises the well known least 
square criterion by using information concerning only the signs of the error function and inaccurate 
gradient values. The algorithm is based on a modified one-dimensional bisection method and it 
treats supervised training in networks of neurons with discrete output states as a problem of 
minimisation based on imprecise values. 
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1 Introduction 
Consider a Discrete Multilayer Neural Network (DMNN) consisting of L layers, 
in which the first layer denotes the input, the last one, L, is the output, and the 
intermediate layers are the hidden layers. It is assumed that the (/-1 )-th layer has 
N,-l units. These units operate according to the following equations: 

N,- 1 

t' ,,'-1,' 1-1 + 0' ne j = L...JWij Yi j' (1) 
;=1 

where net) is the net input to the jth unit at the Ith layer, w!jl,1 is the connection 
weight from the ith unit at the (I - 1 )-th layer to the jth unit at the Ith layer, Y! 
denotes the output ofthe ith unit belonging to the Ith layer, 0) denotes the threshold 
of the jth unit at the Ith layer, and u is the activation function. In this paper we 
consider units where u(netD is a discrete activation function. We especially focus 
on units with two output states, usually called binary or hard-limiting units [1], 
i.e. u l (net~) = "true", if net~ ;::: 0, and "false" otherwise. 
Although units with discrete activation function have been superseded to a large 
extent by the computationally more powerful units with analog activation function, 
still DMNNs are important in that they can handle many of the inherently binary 
tasks that neural networks are used for. Their internal representations are clearly 
interpretable, they are computationally simpler to understand than networks with 
sigmoid units and provide a starting point for the study of the neural network 
properties. Furthermore, when using hard-limiting units we can understand better 
the relationship between the size of the network and the complexity of the training 
[2]. In [3] it has been demonstrated that DMNNs with only one hidden layer, can 
create any decision region that can be expressed as a finite union of polyhedral sets 
when there is one unit in the input layer. Moreover, artificially created examples 
were given where these networks create non convex and disjoint decision regions. 
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Finally, discrete activation functions facilitate neural network implementations in 
digital hardware and are much less costly to fabricate. 
The most common feed forward neural network (FNN) training algorithm, the 
back-propagation (BP) [4] that makes use of the gradient descent, cannot be ap­
plied directly to networks of units with discrete output states, since discrete ac­
tivation functions (such as hardlimiters) are non-differentiable. However, various 
modifications of the gradient descent have been presented [5, 6, 7]. In [8] an approx­
imation to gradient descent, the so-called pseudo-gradient training method, was 
proposed. This method uses the gradient of a sigmoid as a heuristic hint instead of 
the true gradient. Experimental results validated the effectiveness of this approach. 
In this paper, we derive and apply a new training method for DMNNs that makes 
use of the gradient approximation introduced in [8]. Our method exploits the impre­
cise information regarding the error function and the approximated gradient, like 
the pseudo-gradient method does, but it has an improved convergence speed and 
has potential to train DMNNs in situations where, according to our experiments, 
the pseudo-gradient method fails to converge. 

2 Problem Formulation and Proposed Solution 
We consider units with two discrete output states and we shall use the convention 
f (or - J) for ''false'' and t (or +t) for "true", where f, t are real positive numbers 
and f < t, instead of the classical 0 and 1 (or -1, and +1). Real positive values 
prevent units from saturating, give to the logic ''false'' some power of influence 
over the next layer of the DMNN, and help the justification of the approximated 
gradient value which we shall employ. 
First, let us define the error for a discrete unit as follows: ej(t) = dj(t) - yf(t), 
for j = 1,2, ... , NL, where dj(t) is the desired response at the jth neuron of the 
output layer at the input pattern t, yf(t) is the output at the kth neuron of the 
output layer L. For a fixed, finite set of input-output cases, the square error over 
the training set which contains T representative cases is: 

T T NL 

E = EE(t) = E EeJ(t). (2) 
t=1 t=1 j=1 

The idea of the pseudo-gradient was first introduced in training discrete recurrent 
neural networks [9, 10] and extended to DMNNs [8]. The method approximates 
the true gradient of the error function with respect to the weights, i.e. V'E(w), by 
introducing an analog set of values for the outputs of the hidden layer units and 
the output layer units. 

Thus, it is assumed that y; in (1) can be written as YJ = ul(s(net})), where 

u(x)= ''true'' if x~ 0.5, and "false" otherwise, if s(·) is defined in [0,1]. If s(·) is 
defined in [-1,1] then u(x)= ''true'' if x~ 0, and "false" otherwise. 
Using the chain rule, the pseudo-gradient is computed: 

BE _ 'P 1-1 (3) 
B 1-1,1 - jYi , 

Wij 

where the back-propagating error signal g for the output layer is of (dj -

s( netf)) . s' (netf) and for the hidden layers (I E [2, L - 1]) is ~ = s' (net} ) 
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En w~,~+16~+1 . In these relations s' (net)) is the derivative of the analog activation 
function. 
By using real positive values for "true" and "false" we ensure that the pseudo­
gradient will not reduce to zero when the output is "false". Note also that we do 
not use (1" which is zero everywhere and non-existent at zero. Instead, we use s' 
which is always positive, so 6j gives an indication of the direction (and magnitude 
of a step up or down as a function of net~ in the error surface E. 
However, as pointed out in [8], the value of the pseudo-gradient is not accurate 
enough, so gradient descent based training in DMNNs is considerably slow when 
compared with BP training in FNNs. 
In order to alleviate this problem we propose an alternative to the pseudo-gradient 
training method procedure. To be more specific, we propose to solve the one­
dimensional equation : 

E( 0 0 0 0) E( 0 0 0 0 0) 0 WI,···, Wi-I, Wi' Wi+l,"" Wn - WI"'" Wi_I' Wi' Wi+l,"" Wn = , 
for WI keeping all o1iher components of the weight vector in their constant values. 
Now, if WI is the solution of the above equation, then the point defined by the 
vector (WI, wg, ... , W~) possesses the same error function value with the point WO, 
so it belongs to the same contour line of wo. Assuming that the error function 
curves up from w· in all directions, we can claim that any point which belongs to 
the line with endpoints WO and (WI, wg, ... , w~) possesses smaller error function 
value than these endpoints. With this fact in mind we can now choose such a point, 
say, for example wi = w~ + 'Y (Wl - wn, 'Y E (0,1), and solve the one-dimensional 
equation: 
E( 1 0 0 0 0) E( 1 0 0 0 0 0) 0 wl,W2"",wi_l,wi,wi+l"",wn - wl,w2"",wi_l,wi,wi+l"",wn = , 
for W2 keeping all other components in their constant values. If W2 is the solution 
of this equation then we can obtain a better approximation for this component by 
taking w~ = wg + 'Y (W2 - wg), 'Y E (0,1). 
Continuing in a similar way with the remaining components of the weight vector 
we obtain the new vector wl = (wi, . .. , w~) and replace the initial vector wO by 
w l . The procedure can then be repeated to compute w2 and so on until the final 
estimated point is computed according to a predetermined accuracy. So, in general 
we want to find the parameter x (a weight or threshold) that satisfies: 

E( k+l k+1 k k) E( Hl Hl k k k) - 0 Xl ""'Xi_l'X'Xi+l""'Xn - Xl ""'Xi_l'Xi'Xi+l""'Xn - , 
by applying the modified bisection (see [12, 13]) in the interval (ai, bi) within accu­
racy d: 

xf+l = xf + C sgn (E(zP) - E(zO)) /2P+1, P = 0,1, ... , rlog2((bi - ai) d- l )l, 

where the notation r'l refers to the smallest integer not less than the real number 
quoted and zO = (x~+l, ... , x~~t, ai, xf+1' ... , X~), zP = (x~+l, ... , x~~t, xf, Xf+l' 

... , X~), C = sgnE(zO)(bi - ai), ai = xf - HI + sgno;E(xk)}h;, bi = ai + hi. If an 
iteration of the algorithm fails we switch to the pseudo-gradient training method. 
So, the justification of the new procedure is based on the heuristic justification of the 
pseudo-gradient which can be found in anyone of [8,9,10]. A formal justification 
of the proposed procedure in case of differentiable objective functions can be found 
in [11]. 
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BP New method 
MN STD MNE MN STD MNE MAS SAS 

a) 561 550.4 0.0396 40.6 4.2 0.0000008 239.6 54.12 
b) 18121 3048.7 0.49 28.5 13.43 0.45 20673 9310.9 

Table 1 Experimental results a) XOR, b) sinxcos2x. 

3 Experimental Results 
Here we present and compare the behaviour of the new training method with the 
BP [4] and the pseudo-gradient training method [8] for the XOR problem and 
training an 1-10-1 network to approximate the function sinx cos 2x (Table 1). In all 
problems'Y = 0.5, d = 10-10 ,11, = 10 and no pseudo-gradient subprocedure has been 
applied with the proposed method in order to get more fair evaluation. MN indicates 
the mean number of iterations; STD the standard deviation of iterations; MNE the 
mean value of the error; MAS the mean number of algebraic signs required for the 
bisection scheme and SAS the standard deviation of the required algebraic signs. 
The results are for 10 simulation runs, for the same initial weights; the maximum 
number of iterations was set to 2000, the weights were initialised in the interval 
[-10,10] and the step size for BP was set to the standard value 0.75. For the XOR 
the thresholds were set as follows: "true" = 0.8 and "false" = 0.2. Under the 
same conditions the pseudo-gradient training needed more than 2000 iterations to 
converge. The frequency with which the algorithm became trapped in local minima 
seems to be about the same as for BP for binary tasks. We also used the new 
method in training DMNN to learn smooth functions. One hidden layer of hard­
limiting units and one output unit with linear activation function was used in all 
our experiments. We did not manage to train DMNNs using the pseudo-gradient 
training method due to oscillations, although various step sizes and different discrete 
activation functions have been tried. With the new algorithm and discrete activation 
functions such as 0.5 for "true" and -0.5 for "false" DMNNs were trained as fast 
as, and often faster than, BP trained FNNs until E ::; 0.5 (over 21 input/output 
cases). After this error bound, the convergence speed was reduced due to saturation 
problems. 
However, it is worth noticing the difference in the behaviour between BP and the 
new method. Back-propagation trained FNNs exhibit a greater tendency to fit 
closely data with higher variation than data with low variation. On the other hand, 
although DMNNs do not produce smooth functions, they learn the general trend of 
the data values and therefore might be more useful than FNNs when there is noise 
in the data and the error goal can be set so high that the network does not have 
to fit all the target values perfectly. Situations like this usually occur in system 
identification and control (see [14]). 

4 Conclusion and Further Improvements 
This paper describes a new training method for DMNNs. The method does not 
directly perform gradient evaluations. Since it uses the modified one-dimensional 
bisection method it requires only that the algebraic signs of the function and gra-
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dient values be correct; so it can be applied to problems with imprecise function 
and gradient values. The method can also be used in training with block of network 
parameters, for example train the entire network, then the weights to the output 
layer and the thresholds of the hidden units, etc. We have tested such configurations 
and the results were very promising, providing faster training. 
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