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ABSTRACT
In this paper we study the performance of the recently pro-
posed Particle Swarm optimization method in the presence
of noisy and continuously changing environments. Exper-
imental results for well known and widely used optimiza-
tion test functions are given and discussed. Conclusions for
its ability to cope with such environments as well as real–
life applications are also derived.
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1. INTRODUCTION

Optimization techniques are of undisputed importance in
science and technology. They can be used for many pur-
poses: optimal design of systems, optimal operation of sys-
tems, determination of performance limitations of systems,
or simply the solution of sets of equations. Many recent
advances in science, economics and engineering rely on
numerical techniques for computing globally optimal so-
lutions to corresponding optimization problems [8]. Due to
the existence of multiple local and global optima all these
problems cannot be solved by classical nonlinear program-
ming techniques.

During the past three decades, however, many new
algorithms have been evolved and new approaches have
been implemented, resulting to powerful optimization al-
gorithms such as the Evolutionary Algorithms [11]. Dif-
ferently from other adaptive algorithms, evolutionary tech-
niques work on a set of potential solutions, which is called
population, and find the optimal solution through coopera-
tion and competition among the potential solutions. These
techniques can often find optima in complicated optimiza-
tion problems more quickly than traditional optimization
methods. The most commonly used population–based evo-
lutionary computation techniques, such as Genetic Algo-
rithms and Artificial Life methods, are motivated from the
evolution of nature and the social behavior of humans and
insects.

It is worth noticing that, in general, Global Optimiza-
tion (GO) strategies possess strong theoretical convergence
properties, and, at least in principle, are straightforward

to implement and apply. Issues related to their numeri-
cal efficiency are considered by equipping GO algorithms
with a “traditional” local optimization phase. Global con-
vergence, however, needs to be guaranteed by the global–
scope algorithm component which, theoretically, should be
used in a complete, “exhaustive” fashion. These remarks
indicate the inherent computational demand of the GO al-
gorithms, which increases non–polynomially, as a function
of problem–size, even in the simplest cases.

In practical applications, most of the above–
mentioned methods can detect justsub–optimal solutions
of the objective function. In many cases these sub–optimal
solutions are acceptable but there are applications where an
optimal solution is not only desirable but also indispens-
able. Moreover, in many applications there are imprecise
values for the input data as well as for the function val-
ues. Therefore, the development of robust and efficient GO
methods for dynamic environments such as the aforemen-
tioned, is a subject of considerable ongoing research [22].

Recently, Eberhart and Kennedy (1995) proposed
the Particle Swarm Optimization(PSO) algorithm [9]: a
new, simple evolutionary algorithm, which differs from
other evolution–motivated evolutionary computation tech-
niques in that it is motivated from the simulation of birds’
social behavior. Although, in general, PSO results in
global solutions even in high–dimensional and multimodal
spaces [15, 16, 17], there are not many results about its
behavior in the presence of noise, i.e. the performance of
the method when noise is inserted into the function values
and/or the landscape is continuously changing.

The remaining of the paper is organized as follows:
in Section 2 we give a discussion of optimization of noisy
functions as well as a simulation of the influence of noise
(proportional to a Gaussian distributed random number
with zero mean and various variances). In Section 3 a brief
overview of the PSO method is presented, while in Sec-
tion 4 numerical results are presented. Finally, in Section 5,
we give some concluding remarks.



2. OPTIMIZATION OF NOISY FUNC-
TIONS

Several methods for finding the extrema of a function
f :D � Rn ! R, whereD is open and bounded, have
been proposed, with many applications in different scien-
tific fields (mathematics, physics, engineering, computer
science etc.). Most of them require precise function and
gradient values. In many applications though, precise val-
ues are either impossible or time consuming to obtain. For
example, when the function and gradient values depend on
the results of numerical simulations, then it may be difficult
or impossible to get very precise values. Or, in other cases,
it may be necessary to integrate numerically a system of
differential equations in order to obtain a function value, so
that the precision of the computed value is limited. Further-
more, in many problems the accurate values of the func-
tion to be minimized are computationally expensive. Such
problems are common in real life applications as in the op-
timization of parameters in chemical experiments or finite
element calculations. With such applications in mind, ro-
bust methods are needed, which make good progress with
the fewest possible number of function evaluations.

The problem of optimization of noisy or imprecise
(not exactly known) functions occurs in various applica-
tions, as, for instance, in the task of experimental optimiza-
tion. Also, the problem of locating local maxima and min-
ima of a function from approximate measurement results is
vital for many physical applications. In spectral analysis,
chemical species are identified by locating local maxima of
the spectra. In radioastronomy, sources of celestial radio
emission and their subcomponents are identified by locat-
ing local maxima of the measured brightness of the radio
sky. Elementary particles are identified by locating local
maxima of the experimental curves.

The theory of local optimization provides a large va-
riety of efficient and effective methods for the computa-
tion of an optimizer of a smooth functionf . For exam-
ple, Newton–type and quasi–Newton methods show super-
linear convergence in the vicinity of a nondegenerate op-
timizer. However, these methods require the Hessian or
the gradient, respectively, in contrast to other optimiza-
tion procedures, like the simplex method [13], the direction
set method of Powell [7], or some other recently proposed
methods [5, 6, 23].

In some applications, however, the function to be min-
imized is only known within some (often unknown and
low) precision. This might be due to the fact that evaluation
of the function means measuring some physical or chemi-
cal quantity or performing a finite element calculation in
order to solve partial differential equations. The function
values obtained are corrupted by noise, namely stochastic
measurement errors or discretization errors. This means
that, although the underlying function is smooth, the func-
tion values available show a discontinuous behavior. More-
over, no gradient information is available. For small vari-
ances in a neighborhood of a point the corresponding func-

tion values reflect the local behavior of the noise rather than
that of the function. Thus, a finite–difference procedure to
estimate the gradient fails [5].

The traditional method for optimizing noisy func-
tions is the simplex or polytope method by Nelder and
Mead [7, 13, 14, 19]. This method surpasses other well–
known optimization methods when dealing with the large
noise case. However, this is not valid in the noiseless case.
The ability of this method to cope with noise is due to the
fact that it proceeds solely by comparing the relative size
of the function values, as the proposed method does. The
Simplex method does not use a local model of the func-
tion f and works without the assumption of continuity. Al-
though this method has poor convergence properties (for a
convergence proof of a modified version see [21]), it has
been a useful method in many sequential applications, but
it is difficult and inefficient to implement in parallel. The
method can be deficient when the current simplex is very
“flat”. This can be avoided by suitable variants (see for ex-
ample [21]). More sophisticated methods in this direction
are discussed by Powell [20].

To study the influence of the imprecise information
(regarding the values of the objective function), we simu-
late imprecisions with the following approach. Information
aboutf(x) is obtained in the form off �(x), wheref�(x)
is an approximation to the true function valuef(x), con-
taminated by a small amount of noise�. Specifically, the
function values are obtained as [6]:

f�(x) = f(x)(1 + �); � � N(0; �2); (1)

where� � N(0; �2) denotes a Gaussian distributed ran-
dom variable with zero mean and variance� 2, i.e., relative
stochastic errors are used for the test problems. To obtain�,
we apply the method of Box and Muller [2], using various
values of the variance�2.

3. THE PARTICLE SWARM OPTIMIZER

As already mentioned, PSO is different from other evolu-
tionary algorithms. Indeed, in PSO the population dynam-
ics simulates a “bird flock’s” behavior where social sharing
of information takes place and individuals can profit from
the discoveries and previous experience of all other com-
panions during the search for food. Thus, each compan-
ion, calledparticle, in the population, which is now called
swarm, is assumed to “fly” over the search space in order
to find promising regions of the landscape. For example,
in the minimization case, such regions possess lower func-
tion values than other visited previously. In this context,
each particle is treated as a point in aD–dimensional space
which adjusts its own “flying” according to its flying ex-
perience as well as the flying experience of other particles
(companions).

There are many variants of the PSO proposed so far,
after Eberhart and Kennedy introduced this technique [4,
9]. In our experiments we used a new version of this algo-
rithm, which is derived by adding a new inertia weight to



the original PSO dynamics [3]. This version is described in
the following paragraphs.

First let us define the notation adopted in this pa-
per: thei-th particle of the swarm is represented by the
D–dimensional vectorXi = (xi1; xi2; : : : ; xiD) and the
best particle in the swarm, i.e. the particle with the small-
est function value, is denoted by the indexg. The best
previous position (the position giving the best function
value) of thei-th particle is recorded and represented as
Pi = (pi1; pi2; : : : ; piD), and the position change (veloc-
ity) of the i-th particle isVi = (vi1; vi2; : : : ; viD).

The particles are manipulated according to the equa-
tions

vid = wvid + c1r1(pid � xid) + c2r2(pgd � xid); (2)

xid = xid + vid; (3)

whered = 1; 2; : : : ; D; i = 1; 2; : : : ; N andN is the size
of the population;w is the inertia weight;c1 andc2 are two
positive constants;r1 andr2 are two random values into
the range[0; 1].

The first equation is used to calculatei-th particle’s
new velocity by taking into consideration three terms: the
particle’s previous velocity, the distance between the par-
ticle’s best previous and current position, and, finally, the
distance between swarm’s best experience (the position of
the best particle in the swarm) andi-th particle’s current po-
sition. Then, following the second equation, thei-th parti-
cle flies toward a new position. In general, the performance
of each particle is measured according to a predefined fit-
ness function, which is problem–dependent.

The role of the inertia weightw is considered very im-
portant in PSO convergence behavior. The inertia weight
is employed to control the impact of the previous his-
tory of velocities on the current velocity. In this way,
the parameterw regulates the trade–off between the global
(wide–ranging) and local (nearby) exploration abilities of
the swarm. A large inertia weight facilitates global ex-
ploration (searching new areas), while a small one tends
to facilitate local exploration, i.e. fine–tuning the current
search area. A suitable value for the inertia weightw usu-
ally provides balance between global and local exploration
abilities and consequently a reduction on the number of it-
erations required to locate the optimum solution. A general
rule of thumb suggests that it is better to initially set the
inertia to a large value, in order to make better global ex-
ploration of the search space, and gradually decrease it to
get more refined solutions, thus a time decreasing inertia
weight value is used. The initial population can be gener-
ated either randomly or by using a Sobol sequence gener-
ator which ensures that theD-dimensional vectors will be
uniformly distributed into the search space [18].

From the above discussion it is obvious that PSO, to
some extent, resembles evolutionary programming. How-
ever, in PSO, instead of using genetic operators, each indi-
vidual (particle) updates its own position based on its own
search experience and other individuals (companions) ex-
perience and discoveries. Adding the velocity term to the

current position, in order to generate the next position, re-
sembles the mutation operation in evolutionary program-
ming. Note that in PSO, however, the “mutation” opera-
tor is guided by the particle’s own “flying” experience and
benefits by the swarm’s “flying” experience. In another
words, PSO is considered as performing mutation with a
“conscience”, as pointed out by Eberhart and Shi [3].

4. EXPERIMENTAL RESULTS OF
THE PSO METHOD IN CHANGING
SEARCH SPACES

We consider three simple and well-known optimization
test problems [12] to check the performance of the PSO
method. During the evolution of the swarm we add noise
in terms of multiplying the population by a rotation ma-
trix (and thus rotating the whole search space including the
global minimizer) and adding a Gaussian distributed ran-
dom term to the function values, according to Relation (1).
The rotation angle is taken randomly between0 and360

degrees, and the standard deviation� of the random term
added to the function values increases from0 to 0:9. For
each test function, a population of size20 and default val-
ues for the parametersc1 andc2 of PSO have been used:
c1 = c2 = 0:5. There have been done100 runs for each
different value of the noise’s standard deviation. A time de-
creasing inertia weight value, i.e. starting from1 and grad-
ually decreasing towards0:4, has been found to work bet-
ter than using a constant value. This is because large iner-
tia weights help to find good seeds at the beginning of the
search, while, later, small inertia weights facilitate a finer
search. The desired accuracy for finding the global mini-
mum has been10�3.

The first test function considered is theRosenbrock
function which is defined by the formula [12]:

f(x1; x2) = (10
4x1x2 � 1)

2
+ (1� x1)

2; (4)

and has the global minimizerx� = (1; 1) with function
valuef(x�) = 0. The initial population has been taken into
the interval[0; 2]2 for each run and the results are given
in Table 1. Each row of the Table contains the success

Noise’s St. Dev.� Success Rate Mean Cycles
0 100% 406.90

0.1 76% 2222.84
0.2 88% 2159.95
0.3 88% 2064.81
0.4 76% 1623.21
0.5 60% 2136.86
0.7 40% 2030.40
0.9 76% 1684.57

Table 1. Analysis of the results for the minimization of the
Rosenbrock function.

rate and the mean number of PSO cycles needed to detect



the global minimizer of the function for the corresponding
values of noise standard deviation�. The zero value of
standard deviation in the first row of Table 1, denotes the
plain PSO performance (without noise addition and rota-
tion). The rest columns refer to results obtained by adding
noise with standard deviation values between0:1 and0:9,
while simultaneously rotating the search space by a random
angle. It is clear that increasing the noise standard devia-
tion causes no serious instability to the method and does
not decrease significantly the success rate, except for some
values of the variance between0:5 and 0:7, where a re-
markable decrease at the success rate is observed. Failures
denote that PSO has not been able to find the global min-
imizer into the maximum number of iterations (cycles of
the method) which has been set to5000. From these results
one suspects that PSO is a well noise tolerant method.

The same good behaviour is observed for theLevy
No.5function, which is given by the formula [10]:

f(x) =
5X

i=1

i cos[(i+ 1)x1 + i]�
5X

j=1

j cos[(j + 1)x2 + j] +

+(x1 + 1:42513)2 + (x2 + 0:80032)2 ; (5)

where �10 � xi � 10; i = 1; 2. There are
about 760 local minimizers and one global minimizer
x� = (�1:3068;�1:4248) with function valuef(x�) =

�176:1375. The large number of local optimizers makes
extremely difficult for various methods to locate the global
minimizer. The results for this function are given in Ta-
ble 2. The initial population has been taken into the inter-

Noise’s St. Dev.� Success Rate Mean Cycles
0 100% 624.03

0.1 100% 992.00
0.2 100% 1393.60
0.3 96% 894.79
0.4 100% 984.64
0.5 96% 1255.83
0.7 100% 1204.20
0.9 96% 1498.33

Table 2. Analysis of the results for the minimization of the
Levy No.5 function.

val [�2; 2]2 for each run. As can be seen, addition of noise
even of large standard deviation does not affect the success
rate of the method significantly and in some cases it helps
avoiding local minima of the objective function.

Proportional results are obtained in the third experi-
ment. The test function considered here is theBealefunc-
tion [12]:

f(x1; x2) = [y1 � x1(1� x2)]
2
+ [y2 � x1(1� x

2

2)]
2
+

+[y3 � x1(1� x
3

2)]
2
; (6)

wherey1 = 1:5; y2 = 2:25 andy3 = 2:625. This function
has a global minimizerx� = (3; 0:5) with function value

Noise’s St. Dev.� Success Rate Mean Cycles
0 90% 1807.92

0.1 96% 1963.29
0.2 96% 1543.04
0.3 88% 2125.31
0.4 88% 2153.00
0.5 68% 1960.88
0.7 56% 2453.00
0.9 80% 2037.80

Table 3. Analysis of the results for the minimization of the
Beale function.

f(x�) = 0. The results for this function are exhibited in
Table 3.

If we decrease, now, the desired accuracy to10
�6, we

observe that the swarm moves closely to the global min-
imizer of each test function but it cannot find it with the
desired accuracy. This is more clear if we add an offset to
the original global minimizer’s position, at each iteration,
as performed by Angeline [1]. The mean function values of
the swarm for each iteration, after100 runs, for the afore-
mentioned test problems, are exhibited in Figs. 1, 2 and 3.
Different line styles in the figures correspond to different
values of the offset. For all runs, a value of the noise vari-
ance equal to0:01 was used. The vertical axis of each plot
is logarithmically scaled to facilitate visual comparison. In
Figs. 1 and 3 the logarithmlog

10
of the swarm’s mean func-

tion value for100 runs is exhibited, while in Fig. 2 the loga-
rithm log

10
of the swarm’s mean absolute error is exhibited,

due to the negative values of the Levy No.5 function.
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Figure 1. Mean fitness value for the Rosenbrock function.

It is clear now that noise addition causes no crucial
instability to the PSO algorithm. Even in very scattered
landscapes and multimodal functions the results are very
promising. Thus, it would be very interesting to check the



0 50 100 150 200 250 300 350 400 450 500

2

2.5

3

3.5

4

4.5

5

5.5

6

Iterations

L
o

g
a

ri
th

m
 o

f 
A

b
so

lu
te

 E
rr

o
r 

o
f 

th
e

 M
e

a
n

 F
itn

e
ss

offset 0.5 
offset 0.1 
offset 0.01

Figure 2. Mean fitness value for the Levy No.5 function.
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Figure 3. Mean fitness value for the Beale function.

performance of PSO in real–life applications where noise
to the input data and to the function values is almost always
present.

5. CONCLUSIONS

A study of the ability of the Particle Swarm optimization
method to cope with continuously changing environments
has been given. The experimental results indicate that in
the presence of noise and when the landscape is continu-
ously changing PSO method is very stable and efficient. In
fact, in many cases, the presence of noise seems to help
PSO to avoid local minima of the objective function and
locate the global one. Even in the cases where the stan-
dard deviation of the noise was large and a fixed offset was
added to the global minimizer’s position at each iteration,

PSO was able to move closely to the global minimizer’s po-
sition. Thus, preliminary results indicate that PSO has the
ability to cope with noisy and continuously changing envi-
ronments. Further work shall be done to check the perfor-
mance of PSO in other dynamic environments and real–life
applications.
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