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Abstract. A first investigation of the recently proposed Unified Particle
Swarm Optimization algorithm on dynamic environments is provided
and discussed on widely used test problems. Results are very promising
compared to the corresponding results of the standard Particle Swarm
Optimization algorithm, indicating the superiority of the new scheme.

1 Introduction

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm that
belongs to the category of swarm intelligence methods [1,2]. PSO has attained in-
creasing popularity due to its ability to solve efficiently and effectively a plethora
of problems in diverse scientific fields [3, 4]. Most of these problems involve the
minimization of a static objective function, i.e., the main goal is the computation
of a global minimizer that does not change.

Dynamic optimization problems, where the global minimizer moves in the
search space, arise very often in engineering applications. In contrast to the static
optimization case, the main goal in dynamic problems is to track the orbit of the
minimizer [5,6,7]. Many algorithms that address efficiently static problems, fail
when applied to dynamic problems due to their inability to adapt and respond
to changes in the environment. Therefore, studies on static environments are
usually insufficient to reveal an algorithm’s performance when the problem is
dynamic. Carlisle and Dozier [8, 9, 10] conducted a thorough investigation of
PSO on a large number of dynamic test problems. Modifications of PSO that
can tackle dynamic problems efficiently have been recently proposed [3, 11,12].

A Unified PSO (UPSO) scheme has been recently introduced [13]. This
scheme harnesses the local and global variant of PSO, combining their explo-
ration and exploitation abilities without imposing additional requirements in
terms of function evaluations. Convergence in probability was proved for the
new scheme, and experimental results on widely used static benchmark func-
tions justified its superiority against the standard PSO [13].

In this paper, the performance of UPSO in dynamic environments is inves-
tigated and compared with both the local and the global variant of the stan-
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dard PSO algorithm. A test suite of five widely used test problems is employed.
The movement of the global minimizer is simulated by adding to its position
a random vector. Numerous experiments are performed and analyzed to justify
UPSO’s superiority and provide empirical rules regarding the most promising
parameter configuration. The paper is organized as follows: PSO and UPSO are
described in Section 2. Experimental results are reported in Section 3 and the
paper concludes in Section 4.

2 Unified Particle Swarm Optimization

PSO was introduced by Eberhart and Kennedy [1, 14]. Similarly to the evolu-
tionary algorithms, PSO exploits a population of potential solutions to probe
the search space simultaneously. However, its dynamic is based on laws that
govern socially organized colonies rather than natural selection. PSO adheres to
the five basic principles of swarm intelligence [15,16], therefore it is categorized
as a swarm intelligence algorithm.

In PSO’s context, the population is called a swarm and its individuals (search
points) are called particles. Each particle moves in the search space with an
adaptable velocity. Moreover, each particle has a memory where it retains the
best position it has ever visited in the search space, i.e., the position with the
lowest function value. Also, the particles share information among them. More
specifically, each particle has an index number, and, according to this index, it is
assigned a neighborhood of particles with (usually) neighboring index numbers.
In the global variant of PSO, the neighborhood of each particle is the whole
swarm. In the local variant, the neighborhoods are strictly smaller and they
usually consist of a few particles.

Assume an n–dimensional function, f : S ⊂ R
n → R, and a swarm, S =

{X1, X2, . . . , XN}, of N particles. The i–th particle, Xi ∈ S, its velocity, Vi, as
well as its best position, Pi ∈ S, are n–dimensional vectors. A neighborhood of
radius m of Xi consists of the particles Xi−m, . . . , Xi, . . . , Xi+m. The particles
are usually assumed to be organized in a cyclic topology with respect to their
indices. Thus, XN and X2 are the immediate neighbors of the particle X1.

Assume gi to be the index of the particle that attained the best previous
position among all the particles in the neighborhood of Xi, and t to be the
iteration counter. Then, according to the constriction factor version of PSO, the
swarm is updated using the equations [17],

Vi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t) − Xi(t)

)
+ c2r2

(
Pgi(t) − Xi(t)

)]
, (1)

Xi(t + 1) = Xi(t) + Vi(t + 1), (2)

where i = 1, . . . , N ; χ is the constriction factor; c1 and c2 are positive constants,
referred to as cognitive and social parameters, respectively; and r1, r2 are random
vectors with components uniformly distributed in [0, 1]. All vector operations in
Eqs. (1) and (2) are performed componentwise.
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The constriction factor was introduced as means of controlling the magnitude
of the velocities, in order to avoid the “swarm explosion” effect that was detri-
mental for the convergence of early PSO versions, and it is determined through
the formula [17,18],

χ =
2κ

|2 − φ −
√

φ2 − 4φ| , (3)

for φ > 4, where φ = c1 + c2, and κ = 1. This selection is based on the stability
analysis provided in [17].

There are two main characteristics of a population–based algorithm that af-
fect its performance, namely exploration and exploitation. The first is the ability
to probe effectively the search space, while the latter is the ability to converge
to the most promising solutions with the smallest possible computational cost.
A proper trade–off between exploration and exploitation is necessary for the
efficient and effective operation of the algorithm. The global variant of PSO
promotes exploitation since all particles are attracted by the same best posi-
tion, thereby, converging faster towards the same point. On the other hand,
local variant has better exploration properties, since the information regarding
the best position of each neighborhood is communicated slower to the rest of
the swarm through neighboring particles. Therefore, the attraction to specific
points is weaker, thus, preventing the swarm from getting trapped in local min-
ima. Obviously, the proper selection of neighborhood size affects the trade–off
between exploration and exploitation. However, there are no general rules regard-
ing the selection of neighborhood size, and it is usually based on the experience
of the user.

The Unified Particle Swarm Optimization (UPSO) scheme was recently pro-
posed as an alternative that combines the exploration and exploitation proper-
ties of both the local and global PSO variants [13]. For completeness purposes, a
brief description of UPSO is provided in the following paragraphs. The presented
scheme is based on the constriction factor version of PSO, although it can be
straightforwardly defined also for the inertia weight version. Let Gi(t + 1) and
Li(t + 1) denote the velocity update of the i–th particle, Xi, for the global and
local PSO variant, respectively [13],

Gi(t + 1) = χ
[
Vi(t) + c1r1

(
Pi(t) − Xi(t)

)
+ c2r2

(
Pg(t) − Xi(t)

)]
, (4)

Li(t + 1) = χ
[
Vi(t) + c1r

′
1
(
Pi(t) − Xi(t)

)
+ c2r

′
2
(
Pgi(t) − Xi(t)

)]
, (5)

where t denotes the iteration number; g is the index of the best particle of
the whole swarm (global variant); and gi is the index of the best particle in the
neighborhood of Xi (local variant). The search directions defined by Eqs. (4) and
(5) are aggregated in a single equation, resulting in the main UPSO scheme [13],

Ui(t + 1) = (1 − u) Li(t + 1) + u Gi(t + 1), u ∈ [0, 1], (6)
Xi(t + 1) = Xi(t) + Ui(t + 1). (7)

We named the parameter u, unification factor . This factor balances the influence
of the global and local search directions in the final scheme. The standard global
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PSO variant is obtained by setting u = 1 in Eq. (6), while u = 0 corresponds
the standard local PSO variant. All values of u ∈ (0, 1), correspond to composite
variants of PSO that combine the exploration and exploitation characteristics of
its global and local variant.

Besides the aforementioned scheme, a stochastic parameter that imitates the
mutation of evolutionary algorithms can also be incorporated in Eq. (6) to fur-
ther enhance the exploration capabilities of UPSO [13]. Thus, depending on
which variant UPSO is mostly based, Eq. (6) can be written either as [13],

Ui(t + 1) = (1 − u) Li(t + 1) + r3 u Gi(t + 1), (8)

which is mostly based on the local variant, or

Ui(t + 1) = r3 (1 − u) Li(t + 1) + u Gi(t + 1), (9)

which is mostly based on the global variant, where r3 ∼ N (µ, σ2I) is a normally
distributed parameter, and I is the identity matrix. Although r3 imitates muta-
tion, its direction is consistent with the PSO dynamics. For these UPSO schemes,
convergence in probability was proved in static environments [13]. Experimental
results on widely used test problems justified the superiority of UPSO against
the standard PSO, for various configurations of the PSO parameters proposed
in the relative literature [13,18].

3 Results and Discussion

UPSO’s performance was investigated on the most common DeJong test suite,
which consists of the Sphere, Rosenbrock, Rastrigin, Griewank and Schaffer’s F6
function [9,17,18]. We will refer to these problems as Test Problem (TP) 1–5, re-
spectively. Test Problems 1–4 were considered in 30 dimensions, while Test Prob-
lem 5 was considered 2–dimensional. The initialization ranges were [−100, 100]30,
[−30, 30]30, [−5.12, 5.12]30, [−600, 600]30, and [−100, 100]2, respectively.

The aforementioned static optimization problems were transformed to dy-
namic problems by moving their global minimizer. In order to make the simu-
lation more realistic, we considered the global minimizer moving randomly and
unbounded in the search space. This was performed by adding to the global
minimizer a normally distributed random vector with mean value equal to zero
and three different values of the standard deviation (denoted as MStD), 0.01,
0.10 and 0.50. Moreover, the movement was considered to be asynchronous, i.e.,
at each iteration, the global minimizer moved with a probability equal to 0.5.

Regarding PSO, we used the constriction factor version with the standard
default parameter values, namely, χ = 0.729, c1 = c2 = 2.05. Since the global
minimizer was moving without constraints, no bounds were posed on velocities
and particles. The best positions of the particles were re–evaluated after each
movement of the global minimizer (a technique for the detection of changes in
the environment is proposed in [9]). In order to fully exploit the exploration
abilities of local PSO, a neighborhood of radius 1 was used for the computation
of the search direction L of the local PSO variant.
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The values u = 0.2 and u = 0.5 of the unification factor have been proved to
be very efficient in static optimization problems [13]. Preliminary experiments
on dynamic problems were in accordance with the results for static problems.
Thus, initially, we considered the UPSO approach defined by Eqs. (6) and (7)
for u = 0.0 (standard local PSO), u = 0.2, u = 0.5, and u = 1.0 (standard
global PSO). For each test problem, 100 experiments were conducted and the
algorithm was allowed to perform 1000 iterations per experiment. Since the
main goal in dynamic environments is to track the orbit of the global minimizer
rather than to acquire it [7], the quality assessments of static problems, such
as the position with the smallest function value, are not valid in our case [6].
Instead, at each iteration (out of 1000) of an experiment, the mean function
value of the particles’ best positions was recorded. This value provides a more
robust measure of the true quality of the particles [6]. Thus, 1000 such values
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Fig. 1. Behavior of UPSO for different values of the unification factor
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Table 1. Results for Test Problems 1–3

TP MStD u Mean StD Min Max
1 0.01 0.0 3.1655 × 103 4.8187 × 102 1.9664 × 103 4.3169 × 103

0.2 9.1959 × 102 1.2136 × 102 6.3073 × 102 1.3489 × 103

0.5 7.2230 × 102 9.7704 × 101 5.0892 × 102 1.0408 × 103

1.0 1.6995 × 103 3.0792 × 102 1.0917 × 103 2.4738 × 103

0.10 0.0 3.1021 × 103 5.3588 × 102 1.8875 × 103 4.4504 × 103

0.2 9.1283 × 102 1.2416 × 102 5.8145 × 102 1.2892 × 103

0.5 7.2875 × 102 1.0179 × 102 5.1276 × 102 9.3233 × 102

1.0 1.6461 × 103 3.1279 × 102 9.9135 × 102 2.7464 × 103

0.50 0.0 3.2536 × 103 4.7804 × 102 2.2689 × 103 4.4672 × 103

0.2 9.5902 × 102 1.2177 × 102 6.6160 × 102 1.3458 × 103

0.5 7.8051 × 102 9.9330 × 101 5.4604 × 102 1.0057 × 103

1.0 1.8109 × 103 3.2161 × 102 1.1427 × 103 2.7648 × 103

2 0.01 0.0 8.6011 × 106 2.2275 × 106 3.0879 × 106 1.3499 × 107

0.2 1.9842 × 106 3.8800 × 105 1.1650 × 106 2.9605 × 106

0.5 1.4565 × 106 2.9872 × 105 8.9335 × 105 2.4064 × 106

1.0 4.7003 × 106 1.5037 × 106 1.4236 × 106 9.8277 × 106

0.10 0.0 8.5898 × 106 2.1055 × 106 3.8289 × 106 1.3550 × 107

0.2 1.9888 × 106 3.1969 × 105 1.4178 × 106 3.0690 × 106

0.5 1.4439 × 106 3.1333 × 105 7.1354 × 105 2.5139 × 106

1.0 4.6714 × 106 1.4462 × 106 2.0045 × 106 8.4536 × 106

0.50 0.0 8.7243 × 106 2.1533 × 106 3.6296 × 106 1.4842 × 107

0.2 2.0783 × 106 4.5228 × 105 1.3253 × 106 4.2118 × 106

0.5 1.4959 × 106 3.2928 × 105 7.0034 × 105 2.5733 × 106

1.0 5.1983 × 106 2.0042 × 106 2.3351 × 106 1.1613 × 107

3 0.01 0.0 1.5523 × 102 1.9187 × 101 1.0409 × 102 2.1289 × 102

0.2 9.7620 × 101 1.4826 × 101 6.9749 × 101 1.2776 × 102

0.5 7.5825 × 101 1.2203 × 101 4.9258 × 101 1.0963 × 102

1.0 1.0740 × 102 1.7714 × 101 6.4876 × 101 1.5081 × 102

0.10 0.0 2.7790 × 102 6.1293 × 100 2.6168 × 102 2.9438 × 102

0.2 2.3185 × 102 4.1795 × 100 2.2192 × 102 2.4213 × 102

0.5 2.3210 × 102 6.5381 × 100 2.1548 × 102 2.4953 × 102

1.0 2.8625 × 102 9.3753 × 100 2.6475 × 102 3.0655 × 102

0.50 0.0 4.9098 × 102 1.8086 × 101 4.4882 × 102 5.4354 × 102

0.2 3.6957 × 102 8.9636 × 100 3.4994 × 102 3.9674 × 102

0.5 3.9097 × 102 1.5980 × 101 3.5973 × 102 4.2600 × 102

1.0 4.5141 × 102 1.8168 × 101 4.1512 × 102 5.1713 × 102

were obtained per experiment. The behavior of UPSO for each test problem and
unification factor, are illustrated in Fig. 1, for the three levels of MStD. Each
line style corresponds to a different value of MStD and it stands for the mean
value of the particles’ best position per iteration, averaged over 100 experiments.
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Table 2. Results for Test Problems 4 and 5

TP MStD u Mean StD Min Max
4 0.01 0.0 2.8443×101 4.7740×100 1.6007×101 3.9408×101

0.2 8.5797×100 1.0504×100 6.2604×100 1.1255×101

0.5 6.6704×100 9.2881×10−1 5.0150×100 9.5947×100

1.0 1.5233×101 3.1764×100 6.4421×100 2.3072×101

0.10 0.0 2.8802×101 4.3512×100 1.8535×101 3.9056×101

0.2 8.6834×100 1.1195×100 6.5475×100 1.2439×101

0.5 6.8352×100 8.0967×10−1 4.9374×100 8.6670×100

1.0 1.5398×101 2.7152×100 8.5176×100 2.2396×101

0.50 0.0 2.9844×101 4.6330×100 1.6961×101 3.9251×101

0.2 9.2982×100 1.0643×100 7.4027×100 1.1693×101

0.5 7.6360×100 1.0219×100 5.4295×100 1.0125×101

1.0 1.6169×101 3.2054×100 9.3358×100 2.6588×101

5 0.01 0.0 8.0300×10−3 3.3491×10−3 1.6961×10−3 1.3762×10−2

0.2 6.2539×10−3 3.2677×10−3 6.4010×10−4 1.2861×10−2

0.5 3.3174×10−3 1.6358×10−3 9.0027×10−4 1.2290×10−2

1.0 3.4830×10−3 1.6805×10−3 1.0990×10−3 1.0637×10−2

0.10 0.0 1.2160×10−2 1.0920×10−3 1.0468×10−2 1.6584×10−2

0.2 1.1681×10−2 7.3334×10−4 1.0157×10−2 1.3808×10−2

0.5 1.1334×10−2 6.7662×10−4 9.9373×10−3 1.3156×10−2

1.0 1.1156×10−2 5.1947×10−4 1.0125×10−2 1.2706×10−2

0.50 0.0 2.1850×10−2 2.0692×10−3 1.5954×10−2 2.8011×10−2

0.2 1.4647×10−2 9.3145×10−4 1.2654×10−2 1.6941×10−2

0.5 1.3380×10−2 9.3176×10−4 1.1682×10−2 1.8421×10−2

1.0 1.3399×10−2 7.7779×10−4 1.1639×10−2 1.6081×10−2

For statistical comparison purposes, the mean function values obtained per
experiment, were averaged over the 1000 iterations. Thus, a single averaged
mean function value was obtained for each experiment. Therefore, for each test
problem, we obtained a total of 100 such averaged means. The mean, standard
deviation (StD), minimum (Min) and maximum (Max) of the sample of these
100 averaged means are reported for all test problems and unification factor
values in Tables 1 and 2. We observe that UPSO always outperformed both the
local and global variant of PSO, which correspond to the values u = 0.0 and
u = 1.0, respectively. The unification factor with the most promising behavior,
with respect to the reported mean, is u = 0.5, which exhibits the smallest means
in most cases, and the best overall behavior for both small and large values of
MStD, which is an indication of its robustness.

The good performance of u = 0.5 triggered our interest on its behavior using
the UPSO schemes of Eqs. (8) and (9). These schemes enhanced significantly
UPSO’s performance in static optimization problems [13]. For each test problem,
100 experiments were conducted using the UPSO schemes that incorporate r3 ∼
N (µ, σ2I) either on the term of G (cf. Eq. (8)) or on the term of L (cf. Eq. (9)), in
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the update of UPSO’s search direction, U . Two different vectors, µ = (0, . . . , 0)�

and µ = (1, . . . , 1)�, were investigated (for simplicity purposes we use the notion
µ = 0 and µ = 1, respectively), while a small standard deviation, σ = 0.01,
was selected to alleviate deterioration of UPSO’s dynamics [13]. The results are
reported in Tables 3 and 4. The addition of r3 improved further the performance

Table 3. Results for u = 0.5 using r3 ∼ N (µ, σ2I) for Test Problems 1–3

TP MStD µ Position Mean StD Min Max
1 0.01 0.0 on G 3.1805×102 1.2188×102 1.8903×102 7.1865×102

on L 5.0574×103 1.2547×103 2.3535×103 8.7807×103

1.0 on G 7.2196×102 9.3121×101 4.1754×102 9.3062×102

on L 7.3134×102 9.8959×101 4.9692×102 9.5854×102

0.10 0.0 on G 3.3886×102 1.1305×102 2.2138×102 9.6920×102

on L 5.1672×103 1.2852×103 2.5525×103 7.8607×103

1.0 on G 7.3028×102 1.0014×102 5.2279×102 9.9433×102

on L 7.2599×102 9.0081×101 5.3669×102 1.0628×103

0.50 0.0 on G 1.4828×103 2.7719×102 9.0263×102 2.2291×103

on L 6.8694×103 1.5433×103 3.7164×103 1.0982×104

1.0 on G 7.7892×102 1.0623×102 5.5643×102 1.0218×103

on L 7.8379×102 9.5146×101 5.7097×102 1.1437×103

2 0.01 0.0 on G 7.2742×105 2.0365×105 4.2395×105 1.3934×106

on L 3.0387×106 1.2173×106 7.5792×105 6.5612×106

1.0 on G 1.4257×106 3.3186×105 8.3978×105 2.5889×106

on L 1.4241×106 2.9498×105 8.4386×105 2.5711×106

0.10 0.0 on G 7.2379×105 1.7563×105 3.6936×105 1.2948×106

on L 3.3831×106 1.3056×106 1.0576×106 7.5686×106

1.0 on G 1.4670×106 3.0998×105 8.2882×105 2.5353×106

on L 1.4631×106 2.9592×105 8.4093×105 2.2752×106

0.50 0.0 on G 2.0289×107 1.1652×107 6.5949×106 6.8726×107

on L 5.7990×107 2.7477×107 1.6168×107 1.4867×108

1.0 on G 1.5569×106 3.4020×105 9.4104×105 2.5788×106

on L 1.4809×106 3.0238×105 8.8182×105 2.6824×106

3 0.01 0.0 on G 8.7090×101 2.0353×101 5.2522×101 1.6865×102

on L 1.7782×102 2.5795×101 1.3637×102 2.6563×102

1.0 on G 7.4911×101 1.3349×101 4.8584×101 1.1738×102

on L 7.3238×101 1.2202×101 5.0768×101 1.0567×102

0.10 0.0 on G 3.2810×102 1.7360×101 2.9064×102 3.7078×102

on L 4.2494×102 2.8040×101 3.6882×102 5.0882×102

1.0 on G 2.3175×102 7.3102×100 2.1569×102 2.5508×102

on L 2.3111×102 7.1345×100 2.1828×102 2.5152×102

0.50 0.0 on G 1.9161×103 3.8433×102 1.3110×103 3.0697×103

on L 2.1162×103 3.9866×102 1.3790×103 3.5007×103

1.0 on G 3.9092×102 2.4602×101 3.4996×102 5.1264×102

on L 3.8603×102 1.8018×101 3.4986×102 4.2635×102
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Table 4. Results for u = 0.5 using r3 ∼ N (µ, σ2I) for Test Problems 4 and 5

TP MStD µ Position Mean StD Min Max
4 0.01 0.0 on G 2.8650×100 1.1803×100 1.7891×100 9.3589×100

on L 4.5350×101 1.2000×101 1.8176×101 8.4527×101

1.0 on G 6.7278×100 1.0156×100 4.7195×100 1.0510×101

on L 6.6302×100 8.5156×10−1 4.8633×100 9.1128×100

0.10 0.0 on G 3.5698×100 1.0864×100 2.4488×100 7.1177×100

on L 4.5699×101 1.1305×101 2.3487×101 7.9473×101

1.0 on G 6.9523×100 8.7108×10−1 5.5159×100 9.5926×100

on L 6.7420×100 8.7237×10−1 4.5845×100 9.8724×100

0.50 0.0 on G 4.0269×100 9.8038×10−1 3.0680×100 7.9478×100

on L 4.7370×101 1.0754×101 2.7856×101 7.0848×101

1.0 on G 7.5279×100 8.9793×10−1 5.4762×100 1.0165×101

on L 7.6153×100 9.1264×10−1 5.7358×100 9.8793×100

5 0.01 0.0 on G 8.6723×10−3 3.1477×10−3 3.1126×10−3 1.9211×10−2

on L 7.6079×10−3 5.4494×10−3 1.4328×10−3 3.8073×10−2

1.0 on G 3.2053×10−3 1.1405×10−3 8.4245×10−4 6.2444×10−3

on L 2.9865×10−3 1.3656×10−3 9.8465×10−4 1.0661×10−2

0.10 0.0 on G 1.7457×10−2 8.4832×10−3 1.1007×10−2 5.7459×10−2

on L 2.0828×10−1 1.1152×10−1 5.0655×10−2 4.8215×10−1

1.0 on G 1.1240×10−2 6.5926×10−4 1.0022×10−2 1.3759×10−2

on L 1.1246×10−2 6.7370×10−4 9.4405×10−3 1.3298×10−2

0.50 0.0 on G 1.9668×10−1 6.3972×10−2 6.6878×10−2 3.3205×10−1

on L 4.6819×10−1 2.8537×10−2 4.0353×10−1 5.2920×10−1

1.0 on G 1.3523×10−2 1.1829×10−3 1.1475×10−2 2.1030×10−2

on L 1.3627×10−2 1.3526×10−3 1.1788×10−2 2.1753×10−2

of UPSO. For a given level of MStD, the best mean and minimum value both
correspond to the same value of µ in all cases, with µ = 1 being marginally better
than µ = 0, overall. The best behavior was obtained when r3 was incorporated
in the term of G. Finally, we must notice that for large values of MStD (i.e., 0.5)
µ = 1 proved to be the best choice in all test problems with the exception of
Test Problem 4.

Summarizing the results, the UPSO scheme of Eq. (8) can be considered
a good default choice in unknown dynamic environments when no additional
information is available.

4 Conclusions

We investigated the performance of the new, Unified Particle Swarm Optimiza-
tion (UPSO) scheme in dynamic environments. Experiments on widely used
benchmark problems were conducted with very promising results. UPSO out-
performed both the local and global PSO variant. Guidelines regarding the most
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promising UPSO scheme are derived by analyzing the results, and support the
claim that, besides static optimization problems, UPSO is a promising scheme
also in dynamic environments.
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